带泊松跳的随机时滞发展方程的适定性、稳定性、整体吸引集和可控性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的目的是研究几类连续的和不连续的乘性噪声驱动的随机时滞发展方程,如带泊松跳与时滞的随机偏微分方程的适定性、稳定性、整体吸引集、可控性以及一大类在Hilbert空间框架下随机时滞发展方程的一些细微的性质.本文主要使用的方法包括:Picard迭代法、半群方法(或温和解逼近)、随机分析的技术、不动点定理和积分不等式方法.本文的结构如下:
     第一章给出论文一些背景介绍和预备知识.在1.1节中,介绍了随机时滞发展方程并给出了本文主要研究的问题.在1.2节中,给出了论文中将要用到的一些预备知识,包括随机It6积分、带泊松跳随机积分、对H>1/2的分数次布朗运动的Wiener积分、微积分方程、时滞微分方程、脉冲微分方程和一些有用的不等式.
     第二章利用Picard迭代方法、半群方法和预解算子的理论得到了带泊松跳与时滞的中立型随机微分积分方程的适定性.在2.1节中,利用Picard迭代法和预解算子的理论,在一类广义Lipschitz条件下得到了带泊松跳与有限时滞的中立型随机微分积分方程温和解的存在唯一性.此外,利用Bihari不等式的一个推论给出了解对初始值的连续依赖性.为了说明在2.1节中结果的有效性,我们提供了热方程的一个例子.在2.2节中,同样利用2.1节中所用的方法得到了一类带泊松跳与无限时滞的中立型随机微分积分方程的适定性.另外,利用停时技术,在局部非Lipschitz条件下得到了此类方程温和解的存在唯一性.
     第三章讨论了随机时滞发展方程的整体吸引集.我们的方法是基于不动点方法和使用一些适当的积分不等式.在3.1节中,通过建立两个新的脉冲积分不等式分别得到了带泊松跳的脉冲中立型随机偏函数微分积分方程温和解的整体吸引集与拟不变集.此外,我们还得出一些充分条件,以确保在矩指数稳定性和几乎必然指数稳定性的意义下温和解的稳定性.在3.2节中,利用Banach不动点定理结合微积分方程的预解算子的理论考虑了一类对于H>1/2的分数次布朗运动中立型随机偏微分积分方程温和解的的适定性.此外,通过使用在4.1节中得到的积分不等式,我们得到了此方程中的一类方程的整体吸引集.
     第四章考虑了一类带泊松跳与无限时滞的二阶脉冲中立型随机微分方程的可控性.利用有界线性算子的强连续余弦族理论、随机分析和Banach不动点定理得到了对带泊松跳与无限时滞的非局部二阶脉冲中立型随机函数微分方程的可控性一组新的充分条件.特别地,我们将此结论应用于带泊松跳与无限时滞的随机非线性波动方程.
     第五章研究了于Hilbert空间中带泊松跳与有限时滞的随机二维Navier-Stokes方程在均方和几乎必然意义下弱解的渐近行为.
The objective of this dissertation is to study for some classes of stochastic delay evolution equations driven both by continuous and discontinuous multiplicative noise. Or in other words, more detailed, the inspiration of this dissertation is some charac-teristics of solutions, such as the well-posedness, stability, global attracting set and controllability for the stochastic partial differential equations with delay and Poisson jumps and some fine properties for a large class of stochastic delay evolution equa-tions in the Hilbert spaces framework. Main methods will be used in the disserta-tion include:Picard approximation method, the semigroup method (or mild solution approach), the techniques of stochastic analysis, fixed point theorems and integral inequalities method. Structure of this dissertation is as follows:
     In Chapter1, the introduction and the preliminaries are given. In Section1.1, we introduce on the stochastic delay evolution equations as well as all problems will be studied in this dissertation. In Section1.2, we provide some preliminaries which may be applied to the remaining chapters throughout the dissertation, including stochastic integrals with Brownian motion, stochastic integrals with Poisson jumps, the Wiener integral for the fractional Brownian motion with H>1/2, integro-differential equa-tions, differential equations with delay, impulsive differential equations, and some useful inequalities.
     In Chapter2, the well-posedness of neutral stochastic integro-differential equa-tions with delay and Poisson jumps is proved by the Picard type method of approxi-mation, the semigroup method and theory of resolvent operators. In Section2.1, under a class of generalized Lipschitz conditions, by using the method of Picard approxima-tion and the theory of resolvent operators, the existence and uniqueness of mild solu-tions for neutral stochastic integro-differential equations with finite delay and Poisson jumps is investigated. In addition, utilizing a corollary of Bihari's inequality, we ob-tain the stability through the continuous dependence of mild solutions on the initial data. As applications, to illustrate the effectiveness of the results achieved in Section2.1, we provide an example on heat equation. In Section2.2, also by the method used in Section2.1, we study the well-posedness for a class of neutral impulsive stochastic integro-differential equations with infinite delay and Poisson jumps. Moreover, the existence and uniqueness of mild solutions under local non-Lipschitz conditions is also given by means of the stopping time technique.
     In Chapter3, we discuss the global attracting set for neutral stochastic delay evo-lution equations. Our approaches are based on a fixed point method and the method by using some appropriate integral inequalities. In Section3.1, by establishing two new impulsive-integral inequalities, the global attracting and quasi-invariant sets of the mild solution for neutral impulsive stochastic partial functional differential equa-tions with Poisson jumps are obtained, respectively. Moreover, we shall derive some sufficient conditions to ensure stability of this mild solution in the sense of both mo-ment exponential stability and almost surely exponential stability. In Section3.2, by using Banach fixed point theorem combined with theories of resolvent operators for integro-differential equations, the well-posedness of mild solutions for a class of neu-tral stochastic partial integro-differential equations driven by a fractional Brownian motion with Hurst index H€(1/2,1) is investigated. In addition, by using an inte-gral inequality as in Section3.1, we obtain the global attracting set for a class of this equations.
     In Chapter4, the controllability of a class of second order neutral impulsive stochastic differential equations with infinite delay and Poisson jumps is considered. By using the theory of strongly continuous cosine families of bounded linear opera-tors, stochastic analysis techniques and with the help of the Banach fixed point the-orem, we derive a new set of sufficient conditions for the controllability of nonlocal second order neutral impulsive stochastic functional differential equations with infi-nite delay and Poisson jumps. Especially, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.
     In Chapter5, we study the asymptotic behavior for the weak solutions of stochas-tic2D Navier-Stokes equations with finite memory and Poisson jumps in both mean square and almost sure senses by viewing the classical form of the stochastic Navier-Stoke equation as a semilinear stochastic evolution equation in Hilbert spaces.
引文
[1]S. Albeverio, Z. Brzezniak and J.L. Wu, Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients, J. Math. Anal. Appl.371 (2010),309-322.
    [2]S. Albeverio, V. Mandrekar and B. Rudiger, Existence of mild solutions for stochastic differential equations and semilinear equqtions with non-Gaussian Levy noise, Stoch. Proc. Appl.119 (2009),835-863.
    [3]E. Alos, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaus-sian process, Ann. Prob.29 (2001),766-801.
    [4]A. Anguraj and A. Vinodkumar, Existence, Uniqueness and Stability Results of Impulsive Stochastic Semilinear Neutral Functional Differential Equations with Infinite Delays, Electr. J. Diff. Equa.67 (2009),1-13.
    [5]A. Anguraj and A. Vinodkumar, Existence, uniqueness and stability of impul-sive stochastic partial neutral functional differential equations with infinite delays, J. Appl. Math. Informatics 28(3-4) (2010),739-751.
    [6]D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge Univer-sity Press,2004.
    [7]G. Arthi and K. Balachandran, Controllability of Damped Second-Order Im-pulsive Neutral Functional Differential Systems with Infinite Delay, J. Optim. Theory Appl.152 (2012),799-813.
    [8]R.B. Ash, Probability and Measure Theory, Academic Press, San Diego, Sec-ond Edition,2000.
    [9]K.J. Astrom, Introduction to Stochastic Control Theory, Academic Press, New York,1970.
    [10]L. Bachelier, Theorie de la Speculation, Annales Scientifique de 1'Ecole Nor-male Superieure,3e serie, tome 17 (1900),21-86.
    [11]D. Bainov and V. Covachev, Impulsive Differential Equations with a Small Pa-rameter, vol.24 of Series on Advances in Mathematics for Applied Sciences, World Scientific, Singapore,1994.
    [12]D.D. Bainov and P.S. Simeonov, Systems with Impulsive Effect, Ellis Horwood Ltd, Chichester,1989.
    [13]D.D. Bainov and P.S. Simeonov, Systems with Impulse Effect Stability Theory and Applications, Ellis Horwood Limited, Chichester,1989.
    [14]D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, Longman Scientific and Technical Group, Eng-land,1993.
    [15]D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations:Asymptotic Properties of the Solutions, vol.28 of Series on Advances in Mathematics for Applied Sciences, World Scientific, Singapore,1995.
    [16]D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, International Publications, Orlando, Fla, USA,1998.
    [17]C.T.H. Baker, C.A.H. Paul and D.R. Wille, A bibliography on the numeri-cal solution of delay differential equations, Numerical Analysis Report 269, Mathematics Department, University of Manchester, U.K.,1995.
    [18]C.T.H. Baker, C.A.H. Paul and D.R. Wille, Issues in the numerical solution of evolutionary delay differential equations, Adv. Comput. Math.3(1995), 171-196.
    [19]K. Balachandran and J.P. Dauer, Controllability of nonlinear systems in Ba-nach spaces:a survey, J. Optim. Theory Appl.115(1) (2002),7-28.
    [20]K. Balachandran and R. Kumar, Existence of solutions of integrodifferential evolution equations with time varying delays, Appl. Math. E-Notes 7 (2007), 1-8.
    [21]P. Balasubramaniam and J.P. Dauer, Controllability of semilinear stochastic delay evolution equations in Hilbert spaces, Int. J. Math. Math. Sci.31 (2002), 157-166.
    [22]P. Balasubramaniam and P. Muthukumar, Approximate controllability of second-order stochastic distributed implicit functional differential systems with infinite delay, J. Optim. Theory Appl.143 (2009),225-244.
    [23]P. Balasubramaniam and S.K. Ntouyas, Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space, J. Math. Anal. Appl.324 (2006),161-176.
    [24]D. Baleanu, Z.B. Gunvenc and J.A.T. Machdo, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, New York, NY, USA,2010.
    [25]J.H. Bao, A. Truman and C.G. Yuan, Almost Sure Asymptotic Stability of Stochastic Partial Differential Equations with Jumps, SIAM J. Control Op-tim.49(2) (2011),771-787.
    [26]D. Barbu and G. Bocsan, Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients, Czechoslovak Math. J. 52(127) (2002),87-95.
    [27]M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive differential equa-tions and inclusions, Hindawi Publishing Corporation, New York,2006.
    [28]A. Bensoussan and R. Temam, Equations stochastique du type Navier-Stokes, J. Funct. Anal.13 (1973),195-222.
    [29]F. Biagini, B.(?)ksendal, Y.Z. Hu and T.S. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer-Verlag London, Ltd., London,2008.
    [30]I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations, Acta Math. Acad. Sci. Hungar. 7(1956),71-94.
    [31]L. Bo, K. Shi and Y. Wang, Approximating solutions of neutral stochastic evolution equations with jumps, Sci. China Ser. A 52(5) (2009),895-907.
    [32]B. Boufoussi and S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett.82(2012),1549-1558.
    [33]R. Brown, A Brief account of microscopical observations made in the months of June, July and August 1827 on the particles contained in the pollen of plants, privately circulat, (1828)
    [34]Z. Brzezniak, E. Hausenblas and J.H. Zhu,2D stochastic Navier-Stokes equa-tions driven by jump noise, Nonlinear Anal.79 (2013),122-139.
    [35]Z. Brzezniak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Trans. Am. Math. Soc.358 (2006) 5587-5629.
    [36]Z. Brzezniak, H.W. Long and I. Simao, Invariant measures for stochastic evo-lution equations in M-type 2 Banach spaces, J. Evol. Equ.10 (2010),785-810.
    [37]Z. Brzezniak and S. Peszat, Stochastic two dimensional Euler equations, Ann. Probab.29(4) (2001),1796-1832.
    [38]G. Cao, Stochastic differential evolution equations in infinite dimensional, M.S. Thesis, Huazhong University of Science and Technology,2005.
    [39]M. Capinski and S. Peszat, On the existence of a solution to stochastic Navier-Stokes equations, Nonlinear Anal.44 (2001),141-177.
    [40]T. Caraballo, Asymptotic exponential stability of stochastic partial differential equations with delay, Stochastic 33 (1990),27-47.
    [41]T. Caraballo and M.A. Diop, Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion, Front. Math. China (2013),16 pages, doi:10.1007/s11464-013-0300-3.
    [42]T. Caraballo, J.Q. Duan, K.N. Lu and B. SchmalfuB, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud. 10(1) (2010),23-52.
    [43]T. Caraballo, M.J. Garrido-Atienza and T. Taniguchi, The existence and ex-ponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal.74 (2011),3671-3684.
    [44]T. Caraballo and K. Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays, Stoch. Anal. Appl.17 (1999),743-763.
    [45]T. Caraballo, J.A. Langa and T. Taniguchi, The Exponential Behaviour and Stabilizability of Stochastic 2D-Navier-Stokes Equations, J. Differential Equa-tions 179 (2002),714-737.
    [46]T. Caraballo, M.J. Garrido-Atienza and J. Real, Existence and uniqueness of solutions for delay stochastic evolution equations, Stoch. Anal. Appl.20(6) (2002),1225-1256.
    [47]T. Caraballo, A.M. Marquez-Duran and J. Real; Asymptotic behaviour of the three-dimensional α-Navier-Stokes model with delays, J. Math. Anal. Appl. 340 (2008),410-423.
    [48]T. Caraballo and J. Real, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.459(2040) (2003),3181-3194.
    [49]T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations 205(2) (2004),271-297.
    [50]T. Caraballo, J. Real and T. Taniguchi, The exponential stability of neu-tral stochastic delay partial differential equations, Disc. Cont. Dyn. Syst.18 (2007),295-313.
    [51]T. Cardinali and P. Rubbioni, Impulsive semilinear differential inclusions: topological structure of the solution set and solutions on non-compact do-mains, Nonlinear Anal.:TMA 69 (2008),73-84.
    [52]N. Carimichel and M.D. Quinn, Fixed Point Methods in Nonlinear Control, in: Lecture Notes in Control and Information Society, Vol.75, Springer, Berlin, 1984.
    [53]Y.K. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos Solitons Fracals 33 (2007),1601-1609.
    [54]Y.K. Chang, A. Anguraj and M.M. Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal.: Hybrid Systems 2 (2008),209-218.
    [55]H.B. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays, Proc. Indian Acad. Sci. (Math. Sci.) 122(2) (2012), 283-295.
    [56]P. Cheridito, Arbitrage in fractional Brownian motion models, Finance Stock 7(4) (2003),533-553.
    [57]R. Cont and P. Tankov, Financial Modelling with Jump Processes, Financial Mathematics Series. Chapman and Hall/CRC, Boca Raton,2004.
    [58]P. Constantin and C. Foias, Navier-Stokes equations, Univ. of Chicago Press, Chicago/London,1988.
    [59]J.M. Coron, Control and Nonlinearity, Mathematical Surveys and Mono-graphs, Vol.136, American Mathematical Society, Providence, RI,2007.
    [60]J. Cui and L.T. Yan, Existence result for impulsive neutral second-order stochastic evolution equations with nonlocal conditions, Math. Comput. Model.57 (2013),2378-2387.
    [61]R.F. Curtain and H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Springer, Berlin, Germany,1995.
    [62]G. Da Prato and M. Iannelli, Existence and regularity for a class of integro-differential equations of parabolic type, J. Math. Anal. Appl.112 (1985),36-55.
    [63]G. Da Prato and A. Lunardi, Solvability on the real line of a class of linear Volterra integrodifferential equations of parabolic type, Ann. Mat. Pura Appl. 4(150) (1988),67-117.
    [64]G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, UK,1992.
    [65]G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, UK,1996.
    [66]M.A. Diop, K. Ezzinbi and M. Lo, Mild solutions to neutral stochastic par-tial functional integrodifferential equations with non-Lipschitz coeffcients, J. Numer. Math. Stoch.4(1) (2012),1-12.
    [67]Z. Dong, On the uniqueness of the invariant measure of the Burgers equation driven by Levy processes, J. Theory Probab.21 (2008),322-335.
    [68]Z. Dong, W.B. V. Li and J.L. Zhai, Stationary weak solutions for stochastic 3D functional Navier-Stokes equations with Levy noise, Stoch. Dyn.12(1) (2012), 1-22.
    [69]J.P.C. Dos Santos, On state-dependent delay partial neutral functional integro-differential equations, Appl. Math. Comput.216 (2010),1637-1644.
    [70]M. Eddabhi and M. Erraoui, On quasi-linear parabolic SPDEs with non-Lipschitz coefficients, Random Oper. Stoch. Equ.6(2) (1998),105-126.
    [71]A. Einstein, Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen, Annalen der Physik und Chemie 17(4) (1905),549-560.
    [72]K. Ezzinbi, S. Ghnimi and M. Taoudi, Existence and regularity of solutions for neutral partial functional integrodifferential equations with infinite delay, Nonlinear Anal.:Hybrid Systems 4 (2010),54-64.
    [73]H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Vol.108 of North-Holland Mathematics Studies, North-Holland, Amsterdam, The Netherlands,1985.
    [74]M. Ferrante and C. Rovira, Convergence of delay differential equation driven by fractional Brownian motion, J. Evol. Equ.10(4) (2010),761-783.
    [75]F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields 102(3) (1995),367-391.
    [76]M. Frigon and D. O'Regan, Impulsive differential equations with variable times, Nonlinear Anal.:TMA.26 (1996),1913-1922.
    [77]X.L. Fu, Y. Gao and Y. Zhang, Existence of solutions for neutral integrodiffer-ential equations with nonlocal conditions, Taiwanese J. Math.16(5) (2012), 1879-1909.
    [78]J. Garcia-Luengo, P. Marin-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud.13(2) (2013),331-357.
    [79]T.E. Govindan, Stability of mild solutions of stochastic evolutions with vari-able decay, Stoch. Anal. Appl.21 (2003),1059-1077.
    [80]T.E. Govindan, Sample Path Exponential Stability of Stochastic Neutral Par-tial Functional Differential Equations, J. Numer. Math. Stoch.3(1) (2011), 1-12.
    [81]L.F. Guo and Q.X. Zhu, Stability analysis for stochastic Volterra-Levin equa-tions with Poisson jumps:Fixed point approach, J. Math. Phys.52 (2011), 1-15.
    [82]M.E. Gurtin and A.C. Pipkin, A general theory of heat conduction with finite wave speed, Arch. Ration. Mech. Anal.31 (1968),113-126.
    [83]R.C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc.273(1) (1982),333-349.
    [84]R.C. Grimmer and A.J. Pritchard, Analytic resolvent operators for integral equations in a Banach space, J. Differential Equations 50 (1983),234-259.
    [85]R. Grimmer and J. Pruss, On linear Volterra equations in Banach spaces. Hyperbolic partial differential equations, Ⅱ. Comput. Math. Appl.11 (1985), 189-205.
    [86]G. Gripenberg, S.O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge,1990.
    [87]I. Gyongy and N.V. Krylov, On stochastic equations with respect to semi-nartingales Ⅱ. lto formula in Banach spaces, Stochastics 6 (1981/82),153-173.
    [88]I. Gyongy, Existence and uniqueeness results for semilinear stochastic partial differential equations, Stoch. Proc. Their Appl.73(2) (1998),271-299.
    [89]J.K. Hale and J. Kato, Phase spaces for retarded equations with infinite delay, Funkcial. Ekvac.21 (1978),11-41.
    [90]J.K. Hale, Theory of functional differential equations. Springer, New York, second edition. Applied Mathematical Sciences, Vol.3,1977.
    [91]J.K. Hale, Asymptotic Behavior of Dissipative Systems, in:Mathematical Sur-veys and Monographs, AMS, Providence, RI,1988.
    [92]J.K. Hale and S.M.V. Lunel, Introdution to Functional Differential Equations, Springer-Verlag, Berlin/NewYork,1993.
    [93]E. Hausenblas and J. Seidler, Stochastic convolutions driven by martingales: Maximal inequalities and exponential integrability, Stoch. Anal. Appl.26(1) (2008),98-119.
    [94]E. Hernandez and H.R. Henriquez, Impulsive partial neutral differential equa-tions, Appl. Math. Lett.19 (2006),215-222.
    [95]E. Hernandez, H.R. Henriquez and J.P.C. dos Santos, Existence Results for Abstract Partial Neutral Integro-differential Equation with Unbounded Delay, Electr. J. Diff. Equa.29 (2009),1-23.
    [96]J.G. Heywood, Open Problems in the Theory of the Navier-Stokes Equa-tions for Viscous Incompressible Flow. Lecture Notes in Mathematics 1431. Springer Verlag, New York,1988.
    [97]Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, in:Lecture Notes in Mathematics, vol.1473, Springer-Verlag, Berlin,1991.
    [98]L. Hu and Y. Ren, Existence Results for Impulsive Neutral Stochastic Func-tional Integro-Differential Equations, Acta Appl. Math.111(3) (2010),303-317.
    [99]K. Ichikawa, Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl.90 (1982),12-44.
    [100]K. Ito, Differential equations determining Markov process, Zenkoku Shijo Danwakai. (English translation, Kiyoshi Ito, Selected papers, Springer Verlag, Berlin),1987.
    [101]R. Jahanipur, Stability of stochastic delay evolution equations with monotone nonlinearity, Stoch. Anal. Appl.21 (2003),161-181.
    [102]O. Kallenberg, Foundations of Modern Probability, Berlin, Springer,2002.
    [103]F. Kappel and W. Schappacher, Some considerations to the fundamental the-ory of infinite delay equations, J. Differential Equations 37 (1980),141-183.
    [104]S. Karthikeyan and K. Balachandran, Controllability of nonlinear stochastic neutral impulsive systems, Nonlinear Anal.3 (2009),266-276.
    [105]S. Karthikeyan and K. Balachandran, On controllability for a class of stochas-tic impulsive systems with delays in control, Internat. J. Syst. Sci.44(1) (2013), 67-76.
    [106]V.B. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic, Norwell. MA,1992.
    [107]A.N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kur-ven im Hilbertschen Raum, C. R. (Doklady) Acad. Sci. USSR (N.S.) 26 (1940),115-118.
    [108]P. Kotelenez, On the semigroup approach to stochastic evolution equations, in:Stochastic Space-time Models and Limit Theorems, Dordrect:Reidel, 1985.
    [109]N.V. Krylov and B.L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki,14 (1979),71-146.
    [110]N.V. Krylov and B.L. Rozovskii, Stochastic evolution equations, J. Soviet Math.16(1981),1233-1277.
    [111]V. Lakshmikantham, D. Bainov and P.S. Simeonov, Theory of impulsive differ-ential equations, Series in Modern Applied Mathematics,6. World Scientific Publishing Co., Inc., Teaneck, NJ,1989.
    [112]L.D. Landau and E.M. Lifshitz, Fluid Mechanics, in:Course of Theoretical Physics, vol.6, Pergamon Press, Addison-Wesley Publishing Co., Inc., Lon-don, Paris, Frankfurt,1959, Translated from the Russian by J.B. Sykes and W.H. Reid, Reading, Mass.
    [113]H. Leiva, Exact controllability of the suspension bridge model proposed by Lazer and McLenna, J. Math. Anal. Appl.309 (2005),401-419.
    [114]J. Leray, Etude de diverses equations integrates non lineaires et de quelques problemes que pose l'hydrodynamique, J. Math. Pures Appl.12 (1933),1-82.
    [115]B. Li, The attracting set for impulsive stochastic difference equations with continuous time, Appl. Math. Lett.25(8) (2012),1166-1171.
    [116]D.S. Li and D.Y. Xu, Existence and global attractivity of periodic solution for impulsive stochastic Volterra-Levin equations, Electr. J. Qual. Theory Diff. Equ.46 (2012),1-12.
    [117]D.S. Li and D.Y. Xu, Attracting and quasi-invariant sets of stochastic neutral partial functional differential equations, Acta Math. Scientia 33B(2) (2013), 578-588.
    [118]J. Liang, J.H. Liu and T.J. Xiao, Nonlocal problems for integrodifferential equations, Dyn. Cont. Disc. Impul. Syst, Ser. A 15 (2008),815-824.
    [119]J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Paris:Dunod, Gauthier-Villars,1969.
    [120]K. Liu, Stability of Infinite Dimensional Equations with Applications, Chap-man and Hall, CRC, London,2006.
    [121]K. Liu and A. Truman, A note on almost sure exponential stability for stochas-tic partial functional differential equations, Stat. Prob. Lett.50 (2000) 273-278.
    [122]D.Z. Liu, G.Y. Yang and W. Zhang, The stability of neutral stochastic delay differential equations with Poisson jumps by fixed points, J. Comput. Appl. Math.235(10) (2011),3115-3120.
    [123]J.W. Luo, Exponential stability for stochastic neutral partial functional differ-ential equations, J. Math. Anal. Appl.355 (2009),414-425.
    [124]J.W. Luo and K. Liu, Stability of infinite dimensional stochastic evolution with memory and Markovian jumps, Stoch. Proc. Appl.118 (2008),864-895.
    [125]A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal.21(5) (1990),1213-1224.
    [126]N.I. Mahmudov, Existence and uniqueness results for neutral SDEs in Hilbert spaces, Stoch. Anal. Appl.24(1) (2006),79-95.
    [127]N.I. Mahmudov, On controllability of linear stochastic systems in Hilbert spaces, J. Math. Anal. Appl.259 (2001),64-82.
    [128]N.I. Mahmudov and A. Denker, On controllability of linear stochastic sys-tems, Int. J. Control 73 (2000),144-151.
    [129]N.I. Mahmudov and M.A. McKibben, Approximate Controllability of Second-order Neutral Stochastic Evolution Equations, Dyn. Cont. Disc. Impul. Syst. 13 (2006),619-634.
    [130]N.I. Mahmudov and M.A. McKibben, Abstract Second-Order Damped McKean-Vlasov Stochastic Evolution Equations, Stoch. Anal. Appl.24 (2006),303-328.
    [131]X. Mao, Stochastic Differential Equations and Applications, Horwood Pub-lishing Limited, Chichester, UK,1997.
    [132]P. Marin-Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal.67(10) (2007),2784-2799.
    [133]C. Marinelli and M. Rockner, Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise, Electr. J. Prob.15(49) (2010),1528-1555.
    [134]C.M, Marle, Measures et Probabilites, Hermann, Paris, France,1974.
    [135]A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol.43 (2001),247-267.
    [136]K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Frac-tional Differential Equations, John Wiley & Sons, New York, NY, USA,1993.
    [137]V.D. Mil'man and A.D. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J.1(2) (1960),233-237.
    [138]Y.S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Re-lated Processes, Springer,2008.
    [139]E. Motyl, Stochastic Navier-Stokes equations driven by Levy noise in un-bounded 3D domains, Potential Anal.38(3) (2013),863-912.
    [140]P. Muthukumar and C. Rajivganthi, Approximate controllability of fractional order neutral stochastic integro-differential systems with nonlocal conditions and infinite delay, Taiwanese J. Math.17(5) (2013),1693-1713.
    [141]P. Muthukumar and P. Balasubramaniam, Approximate controllability of second-order damped McKean-Vlasov stochastic evolution equations, Com-put. Math. Appl.60(10) (2010),2788-2796.
    [142]J. van Neerven, Stochastic Evolution Equations, ISEM Lecture Notes 2007/08.
    [143]Cesar J. Niche and G. Planas, Existence and decay of solutions in full space to Navier-Stokes equations with delays, Nonlinear Anal.74 (2011),244-256.
    [144]C.Y. Ning, Y. He, M. Wu and Q.P. Liu, pth moment exponential stability of neutral stochastic differential equations drivenby Levy noise, J. Franklin In-stitute 349 (2012),2925-2933.
    [145]D. Nualart, The Malliavin Calculus and Related Topics, second ed., Springer-Verlag, Berlin,2006.
    [146]J.W. Nunziato, On heat conduction in materials with memory, Q. Appl. Math. 29(1971),187-204.
    [147]S.K. Ntouyas and D. ORegan, Some remarks on controllability of evolution equations in Banach spaces, Electr. J. Diff. Equa.29 (2009),1-6.
    [148]B.(?)ksendal, Stochastic Differential Equations, Springer, New York,6th ed., 2005.
    [149]E. Paedoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastic 3(2) (1979),127-167.
    [150]J.Y. Park, K. Balachandran and N. Annapoorani, Existence results for impul-sive neutral functional integrodifferential equations with infinite delay, Non-linear Anal.71 (2009),3152-3162.
    [151]J.Y. Park, K. Balachandran and G. Arthi, Controllability of impulsive neu-tral integrodifferential systems with infinite delay in Banach spaces, Nonlinear Anal.:Hybrid Systems 3 (2009),184-194.
    [152]J.Y. Park, P. Balasubramaniam and N. Kumaresan, Controllability for neu-tral stochastic functional integrodifferential infinite delay systems in abstract space, Numer. Func. Anal. Optim.28 (2007),1369-1386.
    [153]A. Pazy, Semigroup of Linear operators and Applications to Partial Differen-tial Equations, Springer Verlag, New York,1992.
    [154]N.A. Perestyuk, V.A. Plotnikov, A.M. Samoilenko and N.V. Skripnik, Dif-ferential Equations with Impulse Effects:Multivalued Right-Hand Sides with Discontinuities, Walter de Gruyter GmbH and Co. KG, Berlin/Boston,2011.
    [155]S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Levy noise, Cambridge University Press,2007.
    [156]G. Planas and E. Hernandez, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations, Disc. Cont. Dyn. Syst.21(4) (2008),1245-1258.
    [157]P.E. Protter, Stochastic integration and differential equations, Springer, New York, second ed.,2004.
    [158]J. Pruss, Evolutionary Integral Equations and Applications. Monographs in Mathematics,87. Birkhuser Verlag, Basel,1993.
    [159]Y. Qin, N. Xia and H. Gao, Adapted solutions and continuous dependence for nonlinear stochastic differential equations with terminal condition, Chin. J. Appl. Probab. Statist.23 (2007),273-284.
    [160]M.N. Rabelo, M. Henrique and G. Siracusa, Existence of integro-differential solutions for a class of abstract partial impulsive differential equations, J. In-equal. Appl. (2011),2011:135,19 pages, doi:10.1186/1029-242X-2011-135.
    [161]A. Raghothama and S. Narayanan, Periodic response and chaos in nonlinear systems with parametric excitation and time delay, Nonlin. Dyn.27 (2002), 341-365.
    [162]P.A. Razafimandimby and M. Sango, Asymptotic behavior of solutions of stochastic evolution equations for second grade fluids, C. R. Math. Acad. Sci. Paris 348(13-14) (2010),787-790.
    [163]P.A. Razafimandimby and M. Sango, On the exponential behaviour of stochastic evolution equations for non-Newtonian fluids, Applicable Anal. 91(12) (2012),2217-2233.
    [164]Y. Ren and R. Sakthivel, Existence, uniqueness, and stability of mild solutions for second-order neutral stochastic evolution equations with infinite delay and Poisson jumps, J. Math. Phys.53 (2012),1-14.
    [165]Y. Ren and D.D. Sun, Second order neutral stochastic evolution equations with infinite delay under Caratheodory conditions, J. Optim. Theory Appl. 147 (2010),569-582.
    [166]Y. Ren and N. Xia, Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput. 210 (2009),72-79.
    [167]Y. Ren, Q. Zhou and L. Chen, Existence, uniqueness and stability of mild solu-tions for time-dependent evolution equations with Poisson jumps and infinite delay, J. Optim. Theory Appl.149 (2011),315-331.
    [168]Y. Ren, H.L. Dai and R. Sakthivel, Approximate controllability of stochastic differential systems driven by a Levy process, Int. J. Control.86(6) (2013), 1158-1164.
    [169]M. Rockner and T. Zhang, Stochastic evolution equation of jump type:exis-tence, uniqueness and large deviation principles, J. Potential Anal.26 (2007), 255-279.
    [170]Y. Rogovchenko, Impulsive evolution systems:main results and new trends, Dyn. Cont. Disc. Impul. Syst.3(1) (1997),57-88.
    [171]Y. Rogovchenko, Nonlinear impulsive evolution systems and application to population models, J. Math. Anal. Appl.2007(2) (1997),300-315.
    [172]S.T. Rong, On strong solution, uniqueness, stability and comparison theo-rems for a stochastic system with Poisson jumps, Distributed parameter sys-tems (Vorau,1984),352-381, Lecture Notes in Control and Inform. Sci.,75, Springer, Berlin,1985.
    [173]S.T. Rong, Theory of stochastic differential equations with jumps and applica-tions, Mathematical and analytical techniques with applications to engineer-ing, Springer, New York,2005.
    [174]A.V. Roup and others, Limit cycle analysis of the verge and foliot clock es-capement using impulsive differential equations and poincar maps, Int. J. Control 76 (2003),1685-1698.
    [175]M.R. Rosa, The global attractor for the 2D Navier-Stokes Bow on some un-bounded domains, Nonlinear Anal.32 (1998),71-85.
    [176]B.L. Rozovskii, Stochastic evolution systems, Mathematics and its Applica-tions, vol.35, Kluwer Academic Publishers Group, Dordrecht,1990.
    [177]P.M. Rubio and J. Real, Attractors for 2D-Navier-Stokes equations with delays on some unbounded domains, Nonlinear Anal.67 (2007),2784-2799.
    [178]R. Sakthivel, Q.H. Choi and S.M. Anthoni, Controllabilityofnonlinear neutral evolution integrodifferential systems, J. Math. Anal. Appl.275 (2002),402-417.
    [179]R. Sakthivel and J.W. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl.342 (2009), 753-760.
    [180]R. Sakthivel and J.W. Luo, Asymptotic stability of nonlinear impulsive stochastic differential equations, Stat. Prob. Lett.79 (2009),1219-1223.
    [181]R. Sakthivel, P. Revathi and N.I. Mahmudov, Asymptotic Stability of Frac-tional Stochastic Neutral Differential Equations with Infinite Delays, Abstr. Appl. Anal. (2013), Article ID 769257,9 pages, doi:10.1155/2013/769257.
    [182]R. Sakthivel, N.I. Mahmudov and Sang-Gu Lee, Controllability of non-linear impulsive stochastic systems, Int. J. Control.82(5) (2009),801-807.
    [183]R. Sakthivel, Y. Ren and N.I. Mahmudov, Approximate controllability of second-order stochastic differential equations with impulsive effects, Modern Phys. Lett. B 24(14) (2010),1559-1572.
    [184]R. Sakthivel and Y. Ren, Complete controllability of stochastic evolution equations with jumps, Rep. Math. Phys.68(2) (2011),163-174.
    [185]A.M. Samoilenko and N.A Perestyuk, Impulsive Differential Equations, vol.14 of World Scientific Series on Nonlinear Science. Series A:Monographs and Treatises, World Scientific, Singapore,1995.
    [186]H.C. Simpson, Stability of periodic solutions of integrodifferential equations, SIAM J. Appl. Math.38 (1980),341-363.
    [187]L.F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge Univ. Press, Cambridge,2003.
    [188]L.J. Shen and J.T. Sun, Approximate controllability of stochastic impulsive functional systems with infinite delay, Automatica 48 (2012),2705-2709.
    [189]E. Schmidt, Uber eine Klasse linearer funktionaler Differentialgleichungen. Math. Ann.70(4) (1911),499-524.
    [190]T. Taniguchi, The existence and asymptotic behaviour of energy solutions to stochastic 2D functional Navier-Stokes equations driven by Levy processes, J. Math. Anal. Appl.385(2) (2012),634-654.
    [191]T. Taniguchi, The existence of energy solutions to 2-dimensional non-Lipschitz stochastic Navier-Stokes equations in unbounded domains, J. Differential Equations 251(12) (2011),3329-3362.
    [192]T. Taniguchi, The existence and asymptotic behaviour of solutions to non-Lipschitz stochastic functional evolution equations driven by Poisson jumps, Stochastics 82(4) (2010),339-363.
    [193]T. Taniguchi, The existence and uniqueness of energy solutions to local non-Lipschitz stochastic evolution equations, J. Math. Anal. Appl.360(1) (2009), 245-253.
    [194]T. Taniguchi, Successive approximations to solutions of stochastic differential equations, J. Differential Equation,96 (1992),152-169.
    [195]T. Taniguchi, K. Liu and A. Truman, Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differential Equations 181 (2002),72-91.
    [196]T. Taniguchi and J.W. Luo, The existence and asymptotic behaviour of mild solutions to stochastic evolution equations with infinite delays driven by Pois-son jumps, Stoch. Dyn.9(2) (2009),217-229.
    [197]R. Temam, Navier-Stokes equations, Theory and Numerical Analysis, second ed., North-Holland, Amsterdam,1979.
    [198]R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York/Berlin,1988.
    [199]R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis,2nd ed., SIAM, Philadelphia,1995.
    [200]S. Tindel, C. Tudor and F. Viens, Stochastic evolution equations with frac-tional Brownian motion, Prob. Theory Related Fields 127(2) (2003),186-204.
    [201]C.C. Travis and G.F. Webb, Compactness, regularity, and uniform continu-ity properties of strongly continuous cosine families, Houston J. Math.3(4) (1977),555-567.
    [202]C.C. Travis and G.F. Webb, Second oder differential equations in Banach spaces. In:Proceedinds International Symposium on Nonlinear Equations in Abstract Spaces, pp.331-361. Academic Press, New York,1987.
    [203]C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hung.32 (1978),76-96.
    [204]C.C. Travis and G.F. Webb, Existence and stability for partial functional dif-ferential equations, In Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I.,1974), Vol. Ⅱ, pages 147-151. Academic Press, New York,1976.
    [205]C.C. Travis and G.F. Webb, Existence, stability, and compactness in the a-norm for partial functional differential equations, Trans. Amer. Math. Soc. 240 (1978),129-143.
    [206]L. Wan and Q.H. Zhou, Asymptotic behaviors of stochastic two-dimensional Navier-Stokes equations with finite memory, J. Math. Phys.52 (2011),1-15.
    [207]L. Wang and D.S. Li, Impulsive-integral inequalities for attracting and quasi-invariant sets of impulsive stochastic partial differential equations with infinite delays, J. Ineq. Appl. (2013),2013:338,11 pages, doi:10.1186/1029-242X-2013-338.
    [208]N. Wiener, Differential space, J. Math. Phys.2 (1923),131-174.
    [209]W. Willingger, W. Leland, M. Taqqu and D. Wilson, On self-similar nature of ethernet traffic, IEEE/ACM Trans. Networking 2 (1994),1-15.
    [210]F. Wu, S. Hu and Y. Liu, Positive solution and its asymptotic behaviour of stochastic functional Kolmnogorov-type system, J. Math. Anal. Appl.364 (2010),104-118.
    [211]B. Xie, Stochastic differential equations with non-Lipschitz coefficients in Hilbert spaces, Stoch. Anal. Appl.26(2) (2008),408-433.
    [212]Y. Yamada, Asymptotic behavior of solutions for semilinear Volterra diffusion equations, Nonlinear Anal.:TMA 21 (1993),227-239.
    [213]Z.M. Yan, Approximate controllability of partial neutral functional differen-tial systems of fractional order with state-dependent delay, Int. J. Control 85 (2012),1051-1062.
    [214]Z.M. Yan and H.W. Zhang, Existence of solutions to impulsive fractional par-tial neutral integro-differential inclusions equation with state-dependent de-lay, Electr. J. Diff. Equa.81 (2013),1-21.
    [215]Z.M. Yan and X.X. Yan, Existence of solutions for impulsive partial stochas-tic neutral integrodifferential equations with state-dependent delay, Collect. Math.64(2) (2013),235-250.
    [216]T. Yang, Impulsive Systems and Control:Theory and Applications, Springer, Berlin,2001.
    [217]X.F. Yin, Z.M. Liu, Y. Chen and N.H. Kuang, Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations with non-Lipschitz coefficients, Advances in Math.41(4) (2012), 473-486.
    [218]Z. Yuan, L. Yuan and L. Huang, Dynamics of periodic Cohen-Grossberg neu-ral networks with varying delays, Neurocomputing 70 (2006),164-172.
    [219]J. Zabczyk, Mathematical control theory, Basel:Birkhauser,1992.
    [220]J. Zabczyk, Controllability of stochastic linear systems, Syst. Control Lett.1 (1991),25-31.
    [221]H. Zhao, On existence and uniqueness of stochastic evolution equation with Poisson jumps, Statist. Probab. Lett.79 (2009),2367-73.
    [222]E. Zuazua, Controllability and observability of partial differential equations: some results and open problems, in Handbook of Differential Equations:Evo-lutionary Equations, Elsevier Science 3 (2006),527-621.