新型铅阻尼器与预应力装配式框架节点抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力装配式混凝土框架结构集预应力混凝土结构与装配式混凝土结构的优点于一体,具有生产效率高、产品质量好、对环境影响小、有利于可持续发展等优点,是一种符合建筑结构未来发展方向的结构体系。本文在分析国内外相关方面研究的基础上,针对此结构体系耗能较低、地震反应较大的弱点,研发了一种新型耗能减震装置,进行了此耗能装置与安装此耗能装置的无粘结预应力装配混凝土框架节点抗震性能的理论分析和试验研究,主要内容概括如下:
     (1)发明了新型铅阻尼器。在充分分析已有阻尼器相关技术性能及适用范围的基础上,发明了耗能效率高、性能稳定、耐久性好、占用空间小、有放大位移及转角功能的新型转动式铅剪切阻尼器。
     (2)新型转动式铅阻尼器的理论分析及试验研究。采用有限元理论和周期性动力试验的方法,分析和研究了诸如铅块长宽高、荷载幅值、加载频率等对此阻尼器耗能性能的影响及其整体工作性能。研究结果表明,在一定的铅块长度和宽度范围内,阻尼器的阻尼力基本上随铅块长度和宽度的增大而线性增加,而铅块高度对阻尼力的影响则相对较小,但随铅块高度的增大,阻尼器的初始刚度有所降低;加载位移幅值较小时,阻尼器就进入塑性阶段工作,开始耗散能量;中低加载频率对阻尼器虚拟的影响较小,可以忽略。总之,该阻尼器滞回环较为丰满,基本呈矩形或平行四边形,工作性能稳定,可以实现在结构小位移情况下产生较大耗能能力的目标,且加工工艺简单、耐久性好、体积较小。
     (3)安装阻尼器与未安装阻尼器预应力装配混凝土框架节点的数值模拟和试验对比研究。采用数值模拟和低周反复荷载试验方法,研究和分析不同预应力度、预应力筋位置、梁端配筋形式、阻尼器阻尼力等条件下预应力装配混凝土框架节点的破坏机理和抗震性能。分析和试验结果表明,安装阻尼器后,节点的耗能能力得到很大提高,承载能力也得到了一定程度的增强,且未对节点的延性产生明显影响;构件的破坏模式依然保持梁铰破坏模式,混凝土的损伤和破坏仍然发生在梁端局部,是结构在强地震作用下,受力最佳、损失最小且有利于震后修复的一种破坏模式。总之,新型转动式铅阻尼器能够非常有效地提高预应力装配混凝土框架结构抗震能力,具有良好的工程应用价值。
     (4)杆式铅剪切阻尼器及其耗能减震分析。针对现有耗能装置一般都占用一定使用空间、影响空间布局的弊端,提出一种不占用使用空间、在结构内部安放并与结构形成一体且无需检修的耗能装置。有限元数值模拟结果表明,该耗能装置能够明显地提高钢筋混凝土框架节点和框架结构的耗能能力,具有潜在的工程应用前景。
Prestress assembling concrete structure have higher performances than other concrete structure forms, possessing the advantages of pretressed concrete and assemble concrete being characteristic of safe, economy, high production rate, assurance of quality, reducing environmental disturbance and contributing to sustainable development, according with the development direction in the future, etc. Based on the studies at home and abroad, experimental and theoretical studies on the seismic performances of pretress assembling concrete beam-column connections added passive energy dissipation device are carried out here in order to improve the ability of energy dissipation and reduce seismic responses. The main research contents as follows:
     (1) An invention of new lead damper. On the basis of intensive analysis of technical performance and application scope of existing dampers, a new lead damper of displacement-amplifying type is developed with characteristics of high efficiency of energy dissipation, stable performance, good durability, little space occupation, etc.
     (2) Theoretical and experimental studies on the damper which is developed in this paper are carried out. Finite element method and periodic dynamic testing method are used to analyze the influencing factors for the damper, such as length, width, height of lead block and amplitude, frequency of load, etc. The results show that the rolling type lead shear damper realizes the preconcerted aim of better energy dissipation capability on the condition of small displacement. The hysteretic curve was chubby and the approximate parallelogram distribution characteristics. The restoring force model of the damper is been suggested on characteristics of restoring force. The damper is characterized by simple process, lower cost, small area. The lead shear damper is suitable for vibration control of building structures.
     (3) Theoretical and experimental studies on the behavior of prestress assembling concrete beam-column connections added passive energy dissipation devices and without them are carried out. By finite element method and experimental research, the performance and parameters of beam-column connections added energy dissipation device is investigated. The parameters include magnitude of prestress, location of prestressing tendon, form of reinforcement in the end region of beam and different yield forces of damper. Stress distribution, failure mode, hysteresis characteristics, deforming capacity, cracks development, energy dissipation and stiffness degradation are studied. The research results show that the energy dissipation capacity of joint added energy dissipation device is improved greatly and that is proved that the damper proposed in this paper maintains a good energy dissipation property, stable performance, and makes up for the weaknesses of low energy dissipation ability of prestress assembling concrete structure, provide essential technical conditions for its application in earthquake area. The structure added damper increase its carrying capacity, influence the ductility less. The failure mode of prestress assembling concrete structure added this damper is still“beam end plastic hinge failure mechanism”. This failure mode is beneficial to stress distribution with minimum damage, and structural repair.
     (4) A new energy dissipating device is proposed in this paper, which is characterized by doing no take up service space, forming one body with structure so that the problem of existing energy dissipating device occupying large service space is solved. By finite element method frame joints and frame structure added this energy dissipating device is investigated in several case. The results show that vibration energy dissipation ability of is notable, do not take up extra space, and do not need the maintenance in the future.
引文
1李爱群.工程结构减振控制.机械工业出版社, 2007:1-8
    2沈聚敏,周锡元,高小旺等.抗震工程学.中国建筑工业出版社,2000:1-392
    3 Walraven Joost C. Concrete for a New Century. Proceeding of the 1st FIB Congress, Osaka, 2002, Vol(1): Primary, 11-22
    4 M. J. Nigel Priestley, Tao Jian Ren. Seismic Response of Precast Prestressed Concrete Frames with Partially Debonded Tendons. PCI Journal,1993,38(l):58-69
    5薛伟辰.预制混凝土框架结构体系研究与应用进展.工业建筑,2002,32(11):47-50
    6周锡元,闫维明,杨润林.建筑结构的隔震、减振和振动控制.建筑结构学报,2002,23(2):2-12
    7周云.金属耗能减震结构设计.武汉理工大学出版社,2006
    8周福霖.工程结构减震控制.地震工程出版社,1997
    9 Hanson R D, Soong T T. Seismic Design with Supplemental Energy Dissipation Devices. EERI, MNO-8, 2001
    10闫维明,周福霖.土木工程结构振动控制的研究进展.世界地震工程,1997,13 (2):8-12
    11李桂青,霍达.结构振动控制理论及应用。1993年,武汉工业大学出版社
    12建筑结构被动控制的理论与应用。吴波,李慧1997年,哈尔滨工业大学出版社
    13 Yao J T P. Concept of Structural control. ASCE, J Struct Div 1972,98(7)
    14 Miller R K, Masri S F, Dehghanyer T J, et al. Active vibration control of large civil structures. J Engrg Mech,ASCE, 1988,114(9): 1542-1570
    15 Kannan S,Uras H M, Aktan H M. Active control of building seismic response by energy dissipation. Earthquake Engrg and Struct Dyn, 1995,24(5): 747-759
    16 B. Samali, K. C. S. Kwok. Use of viscoelastic dampers in reducing wind and earthquake-induced motion of structures. Engineering Structures, 1995, 17(9): 639-654
    17 Javeed A. Munshi. Effect of viscoelastic dampers on hysteretic response of reinforced concrete elements. Engineering Structures, 1997, 19(11): 921-935
    18 Christopher Higgins, Kazuhiko Kasai. Experimental and analytical simulation of wind response for a full-scale VE-damped steel frame. J. Wind Eng. Ind. Aerodyn, 1998, 77: 297-313
    19 Semih S. Reduction of earthquake response of plane frame dampers. Engineering Structures, 2003, 25(14): 1755-1761
    20李钢.新型金属阻尼器减震结构的试验及理论研究.大连理工大学博士学位论文, 2006
    21 James, M K, Tsiang-Chuan. Seismic response of light internal equipment in base-isolated structures. Earthquake Engrg And Struct Dyn, 1985,13(6): 711-732
    22 Mostaghel N, Khodaverdian M. Dynamics of resilient-friction base isolator (R-FBI). Earthquake Engrg And Struct Dyn, 1987, 15(3): 379-390
    23 Singh M P, Malsuhte S R. A study of seismic response characteristics of structures with friction damping. Earthquake Engrg And Struct Dyn, 1989,18:767-783
    24 Shin Tae-Myunt, Kim Kv}-ang-Joon. Seismic response of submerged secondary systems in base-isolated structures. Earthquake Engrg And Struct Dyn, 1997,19(6): 452-464
    25 Nicos Makris. Viscous heating of fluid dampers. I: small-amplitude motions, J. Engrg. Mech. ASCE,1998,124(11):1210-1216
    26 L.D. Lee, D. P. Taylor. Viscous damper development and future trends. The Structural Design of Tall Buildings, 2001, 10(5):311-320
    27 S. Soda. Role of viscous damping in nonlinear vibration of buildings exposed to intense ground motion. J. Wind Eng. Ind. Aerodyn,1996,59(2-3):247-264
    28 M. Martinez, Rodrigo, M. L .Romero. An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications. Engineering Structures,2003,25(7):913-925
    29 Sladek J R, Klingner R E. Effect of tuned mass dampers on seismic response. J Struct Div, ASCE 1983,109: 2004-2009
    30 Villaverde R, Martin S C. Passive seismic control of cable-stayed bridges with damped resonant appendages. Earthquake Engrg And Struc Dyn,1995,24: 233-246
    31 Kaynia A M, Veneziano D, Biggs J M. Absorber system for earthquake excitation. J Struct Div, ASCE, 1981,107: 1465-1484
    32 Villaverde Engrg And R. Reduction in seismic response with heavily-damped vibration absorbers. Earthquake Struc Dyn,1985,13: 33-42
    33 Makris N, Constantinou M C, Dargush G F. Analytical model of viscoelastic liquid dampers. J Struct Mech, ASCE, 1993,119: 3310-3325
    34 Makris N, Dargush G F, Constantinou M C. Dynamic analysis of generalized viscoelastic fluids. J Struct Mech, ASCE, 1993,119: 1663-1679
    35 Chang K C, Soong T T, Lai M L. Seismic behavior of steel frame with added viscoelastic dampers. J of Struc Engrg, ASCE, 1995, 121(10): 1418-1426
    36王肇民,张旭升.斜拉弹簧质量阻尼器的风振控制机理.建筑结构学,1998,19(3):50-57
    37瞿伟廉,程慰塑,毛增达等.设置粘弹性阻尼器钢结构高层建筑抗震抗风设计的实用方法.建筑结构学报,1998,19(3):41-49
    38刘伟庆,魏琏.摩擦耗能支撑钢筋混凝土框架的振动台试验研究.建筑结构学报,1997,18(3):29-37
    39 Hvorat D, Barak P, Rabins M. Semi-active versus active or active tuned mass dampers for structural control. J Engrg Mech, ASCE, 1983,109: 109-129
    40刘季,周永程,雷立宏.结构主动控制AMD系统分析及其优化设计.地震工程与工程振动,1996,16(3):55-60
    41李惠,铃木祥之,吴波.AMD控制结构地震反应的试验研究.振动工程学报,1999,12(2):223-228
    42 Yang J N, Wu J C, Z Li. Control of seismic-excited buildings using active variable stiffness system. J of Struct Engrg, 18(8), 589-596
    43 Takui Kobori T, et al. Seismic response controlled structure with active variable stiffness systems. Earthquake Engrg And Struct Dyn, 1993,22:925-941
    44顾明,王晓勇.用主动调频质量阻尼器控制高层建筑的风致振动.地震工程与工程振动.1998,18(3): 88-95
    45 Soong T T. Active structural control: Theory and Practice. Longman Scientific & Technical, 1990
    46 Masata Abe. Semi-active tuned mass dampers for seismic protection of civil structures. Earthquake Engrg & Struct Dyn, 1996,25:743-749
    47 Chin-Hsiung Loh,Ming-Jin Ma. Control of seismically excited building structures using variable dampers systems. Engrg Struct, 18(8):279-287
    48 Qurwshi S W, Tsutsumi. Hybrid control of sliding structure. Proc of the tenth world conference on earthquake engineering, 1992,Madrid
    49 Kawamura S, Fujii S, et al. Hybrid isolation system using friction-control sliding bearing. Proc of the tenth world conference on earthquake engineering, 1992, Madrid
    50 Craig J, et al. Active-passive damping for structural response attention in building using cladding Proc of ATC一17-1 seminar on seismic isolation, passive dissipation, and active control, San Francisco,1993 (2): 11一12
    51李爱群,瞿伟廉,程文壤.南京电视塔的混合振动控制研究.建筑结构学报,1996,17(3):9-17
    52蓝宗建,房良,王新德等.钢筋混凝土巨型框架多功能减振结构体系.工业建筑,2002,(2):1-3
    53陈波,潘汉明,瞿伟廉.土木工程结构模糊控制发展综述.武汉理工大学大学学报,2001,23(7):80-82
    54瞿伟廉,李卓球,姜德生等.智能材料结构系统在土木工程中的应用.地震工程与工程振动,1999,19(3):87-95
    55吴波,孙科学,李惠等.形状记忆合金力学性能的试验研究.地震工程与工程振动, 1999,19(2):104-111
    56瞿伟廉,袁润章,项海巩. ER智能材料减震结构体系的研究.振动工程学报, 1999,12(2):193-201
    57韩玉林,李爱群,林萍华.基于形状记忆合金耗能器的框架振动控制试验研究.东南大学学报,2000,30(4):16-20
    58欧进萍,邹向阳.粘弹性耗能器的性能试验研究.振动与冲击,1999,18(3):12-19
    59周云,徐赵东,赵鸿铁.粘弹性阻尼结构的性能、分析方法及工程运用.地震工程与工程振动,1998,18(3)
    60刘季,陈月明.粘弹性阻尼器结构的减震研究.哈尔滨建筑大学学报,1998,31(5):1-7
    61隋杰英.粘弹性阻尼器性能试验研究.东南大学博士学位论文,2000
    62程文壤,隋杰英,陈月明等,宿迁市交通大厦采用粘弹性阻尼器的减震设计与研究.建筑结构学报,2000,21(3):30-35
    63 Lin, R. C. , Liang, Z. ,Soong T. T. and Zhang, R. H. An experimental study of seismic structural response with added viscoelastic dampers. Technical report NCEER-88-0018.National Center for Earthquake Engineering Research, Buffalo, NY, 1988
    64 Taylor. Devices seismic dampers and seismic rotection products. http:// www.tayordevices.com/tayd.htm
    65 Tzan S, Pantelides C P. Hybrid structural control using viscoelastic dampers and active control system. Earthquake Engrg and Struct Dyn, 1994,23:1369-1388
    66 Caughey T K, Karyeaclis M P. Stability of semi-active impact damper. J Appl Mech, 1989,56(4):926-940
    67王亚勇,薛彦涛,欧进萍等.北京饭店等重要建筑的消能减震抗震加固设计方法.建筑结构学报,2001,22(2):35-39
    68 Pall A S, M arsh C, Fazio P. Friction joint for seismic control of large panel structures. J. Prestressed Concrete Inst, 1980, 25(6): 38-61
    69 Pall A S, Marsh C. Response of friction damped braced frames. J Struct Div, ASCE, 1982,108
    70 FitzGerald T F, A nagnos T, Goodson M et al. Slotted bolted connections in a seismic design for concentrically braced connect ions. Earthquake Spectra, 1989, 5(2): 383-391
    71 Aiken ID, Kelly J M. Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures. Report No. UCB/EERC- 90/03. University of California. Berkeley, CA, USA, 1990
    72 Nims D K, Richter P J, Bachman R E. The use of the energy dissipating restraint for seismic hazard mitigation. Earthquake Spectra, 1993, 9(3): 467-489
    73吴斌,张纪刚,欧进萍. Pall型摩擦阻尼器的试验研究与数值分析.建筑结构学报,2003, 24(2): 7-13
    74 A. S. Pall and R. Pal 1. Friction-dampers used for seismic control of new and existingbuildings in Canada. Proceedings of ATC 17-1 on seismic isolation, Energy Dissipation andActive Control, 1993, 2:675-686.
    75 A.S. Pall, S. Vezina, P. Proulx and R. Pall. Friction dampers for seismic control of Canadian Space Agency Headquarters. Earthquake Spectra. 1993, 9(3):547-557.
    76 I.D. Aiken, J.M. Kelly and A.S.Pall. Seismic response of a nine-story steel frame with friction damped cross-bracing. EERC Report No. UCB-EERC-88/17, University of California, Berkeley, California, 1988.
    77 Kelly, J.M, Skinner, R.I, and Heine, A.J. Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bull. N. Z. Nat. Soc. For Earthquake Engrg, 1972, 5: 63-88
    78 Staton John, William C Stone, Geraldine S Cheok. A Hybrid Reinforced Precast Frame for Seismic Regions. PCI Journal, 1997(2):20-32
    79 Englekirk Robert E. An Innovative Design Solution for Precast Prestressed Concrete Buildings in High Seismic Zones. PCI Journal,1996(4):44-53
    80 Hiroshi Muguruma, Minehiro Nishiyarna, Fumio Watanabe. Lessons Learned from the Kobe Earthquake———A Japanese Perspective. PCI Journal,1995(4):28-42
    81曲翠松.中国建筑与可持续发展.现代城市研究,2008,03:73-78
    82 Bergman, D.M, and Goel, S.C. Evaluation of cyclic testing of steel-plate devices for added damping and stiffness. Rep. No. UMCE 87-10, Univ. of Michigan, Ann Arbor, Mich, 1987
    83 A.S. Whittaker, V V Bertero, et al. Seismic testing of steel plate energy dissipation devices. Earthquake Spectra, 1991,7(4): 563-604
    84吴斌,欧进萍.软钢屈服耗能器的疲劳性能和设计准则.世界地震工程,1996,4: 8-13
    85 K. C. Tsai, H. W Chen, et al. Design of steel triangular plate energy absorbers for seismic-resistant construction. Earthquake Spectra, 1993, 9(3): 505-528
    86 Tyler R. G.. A tenacious base isolation system using round steel bar. Bulletinof the New Zealand National Society for Earthquake Engineering, 1978,11(4): 273-281
    87 T kobori, T Yamada, Y Takenaka. Effect of dynamic tuned connector on reduction of seismic response--application to adjacent buildings. Proceedings of ninth world conference on earthquake engineering, Tokyo-Kyoto, Japan, 1988, 5
    88 D. M. Bergman, R. D. Hanson. Characteristics of mechanical dampers. Proceedings of ninth world conference on earthquake engineering, Tokyo-Kyoto, Japan, 1988, 5
    89 D. J. Dowrick, W. J. Cousins, W. H. Robinson, J. Babor. Recent developments in seismic isolation in New Zealand. Proceedings of tenth world conference on earthquake engineering, Madrid, Spain, 1992, 4
    90 G. F. Dargush, T. T. Soong. Behavior of metallic plate dampers in seismic passive energy dissipation systems. Earthquake Spectra, 1995, 11(4): 545-568
    91欧进萍,吴斌.组合钢板屈服耗能器性能及对其高层钢结构减振效果的试验研究.建筑结构学报,2001, 22(1): 26-32
    92龙晓鸿,李黎,唐家祥. I-型钢槽阻尼器的ANSYS仿真分析.华中科技大学学报(自然科学版),2002, 30(8): 79-81
    93 Kokubo, E, Fujita, K, Fuyama, H, Ichihashi, I, Development of a lead extrusion damper for pwr reactor coolant loop system. Seismic Eng. Conf. Proc. ASME, 1995 PVP 312: 425-430
    94王艳武,王铁英,王焕定,张永山.两类铅阻尼器试验研究.地震工程与工程振动, 2004, 24(1): 166-171
    95李冀龙,欧进萍.铅剪切阻尼器的阻尼力模型与设计.工程力学,2006,23(4):67-73
    96 Graesser E J, Cozzarelli F A. Shape-memory alloys as new materials for aseismic isolation. J. Eng. Mech., ASCE, 1991, 117(11): 2590-2608.
    97 Peter W C. Experimental and analytical studies of shape memory alloy dampers for structure control. Proceedings of SPIE. San Diego, CA, USA, 1995, 2445:241-251.
    98李冀龙,欧进萍. X形和三角形SMA板式阻尼器的阻尼力模型.地震工程与工程振动,2002,22(6):109-114
    99薛素铎,董军辉,卞晓芳.新型SMA阻尼器在体育场挑篷结构中的减振效果分析.空间结构, 2004, 10(2):3-6
    100周云,周福霖,邓雪松.铅阻尼器的研究与应用.世界地震工程. 1999,15(1):53-61
    101杨军.铅挤压阻尼器的研制及结构消能减震相关问题的研究.华中科技大学博士学位论文,2005
    102 Robinson W H. Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engrg and Struct Dyn, 1982,10: 593-604
    103张春科.板式铅剪切阻尼器的工程应用与转动式铅剪切阻尼器研究.北京工业大学硕士学位论文,2008
    104 Kim S. Elliott. Research and development in precast concrete framed structures. Prog. Struct. Engng. Mater. John Wiley&Sons. Ltd. 2000,2:405-428
    105潘其健.预制预应力混凝土框架结构抗震能力的试验研究.东南大学硕士学位论文, 2006
    106 Cheok G. S., Stone W.C., Nakaki S.D. Simplified Design Procedure for Hybrid Precast Concrete Connections. NISTIR 5765. National Institute of Standards and Technology.Gaithersburg. Feb. 1996
    107 Jubum Kim. Behavior of Hybrid Frames Under Seismic Loading [D]. Dept. of Civil & Environment Engineering. University of Washington. 2002
    108 M.J.Nigel Priestley, Gregory A. MacRae. Seismic Tests of Precast Beam-to-Column Joint Subassemblages Witb Unbonded Tendons . PCI Journal. 1996. Vo1.41 (1), 64-81
    109 Englekirk, R.E. Design-Construction of the Paramount: A 39-Story Precast Prestressed Concrete Apartment Building. PCI Journal. 2002. Vo1.47(4):6-71
    110 Kiyoshi Nakano, Keizo Tanabe, et al. Damage Controlled Seismic Design by Precast Prestressed Concrete Structure with Mild-Press-Joint Basic Concept of Design [C]. Proceedings of the first FIB Congress. 2002
    111 Hiroto Kato, Yuuhiko Ichisawa. Experimental Study on Seismic Performance of Precast Prestressed Concrete Building [C]. Proceedings of the first FIB Congress. 2002
    112 COST CI. Control of the semi-rigid behaviour of civil engineering structural connections. Final Report. European Commission EUR 19244. Nov. 1999
    113苏小卒,朱伯龙.预应力混凝土框架的反复荷载试验及有限元全过程滞回分析,同济大学学报,1987,15(1):35~46
    114孟少平.预应力混凝土框架结构抗震能力及设计方法的研究,东南大学申清博士学位论文,2000
    115余志武,罗小勇.水平低周反复荷载作用下无粘结部分预应力混凝土框架的抗震性能研究.建筑结构学报,1996,17(2):30~36
    116董挺峰.预应力装配式混凝土框架结构抗震性能的试验与理论研究.北京工业大学博士学位论文,2006
    117王冬雁.无粘结预应力装配混凝土节点抗震及震损加固性能的研究.北京工业大学博士学位论文,2008
    118徐晓,郝文秀,邹立坤,等.耗能支撑的斜撑刚度对框架结构减震效果的影响.河北农业大学学报,2007(03),113~115.
    119欧进萍,吴斌,龙旭.结构被动耗能减振效果的参数影响.地震工程与工程振动,1998,18(1):60~70.
    120 Monti M D, Robinson W H. A lead shear damper suitable for reducing the motion induced by wind and earthquake. Proc.11th WCEE, Acapuloo, Mexico,23~28 June 1996, Paper No.271.
    121李松瑞.铅及铅合金.长沙:中南工业大学出版社, 1996
    122《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册--锌镉铅铋.北京:冶金工业出版社,1992
    123陈国发,王德全.铅冶金学.北京:冶金工业出版社,2000
    124 J.F.T.Pittmanet al.Numerical analysis of forming processes.John Wiley and Sons, 1984
    125杨军.铅挤压阻尼器的研制及结构消能减震相关问题的研究.华中科技大学博士学位论文,2005
    126庄茁,张帆,于旭光等. ABAQUS非线性有限元分析与实例.北京:科学出版社,2005
    127石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社,2006
    128 Robert Park. The design and construction of structural concrete. Proceedings of the 13th FIP Congress On Challenges for Concrete in the Next Millennium, Amsterdam 1998,Vol.2:873~878
    129 Suzanne Dow Nakaki, et al. PRESSS Industry Seismic Workshops: Concept Development. PCI JOURNAL,1991,36(5):54~61
    130 M. J. Nigel Priestley. Overview of PRESSS Research Program. PCI JOURNAL,1991,36(4):50~57
    131 M. J. Nigel Priestley. The PRESSS Program-Current Status and Proposed Plans for PhaseⅢ. PCI JOURNAL,1996,41(2):22~40
    132 Magdy T. El-Sheikh, Richard Sause, Stephen Pessiki et al. Seismic Behavior and Design of unbonded Post-Tensioned Precast Concrete Frames[J]. PCI JOURNAL, 1999,44(3):54~71
    133 M. J. Nigel Priestley, S. (Sri) Sritharan, James R. Conley et al. Preliminary Results and conclusions From the PRESSS Five-Story Precast Concrete Test Building [J]. PCI JOURNAL,1999,44(6):42~67
    134 Minehiro Nishiyama et al. FAILURE MECHANISM OF POST-TENSIONED BEAM-COLUMN SUBASSEMBLAGES[C]. Proceedings of the 1st fib Congress,Osaka,2002, Disk B, Session6: 321~330
    135中野清司,田邉恵三等:PC圧着関節工法による損失制御架構の力学的性状に関する実験研究、日本建築学会構造系論文集NO.576 P.125 2004年2月
    136董挺峰,李振宝,周锡元等:无粘结预应力装配式框架内节点抗震性能研究.北京工业大学学报,2006,32 (2)
    137过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003
    138江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京:清华大学出版社,2005
    139中国建筑科学研究院主编.混凝土设计规范(GB50010-2002).北京:中国建筑工业出版社,2002
    140 ABAQUS Inc. Damaged plasticity model for concrete and other quasi-brittle material. ABAQUS theory manual
    141 J. Lubliner, J. Oliver, S. Oller,etc. A plastic-damage model for concrete. Journal of Solid Structures. 1989,35(3):299-326
    142 Jeeho Lee, Gregeoy L. Fenves. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics,1999,124(8):892-900