环境激励下海洋平台多维地震反应分析及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论研究和震害经验都表明,地震时地面运动对结构物的作用是多分量的,包括三个平动和三个转动分量。国内外学者致力于地震作用下海洋平台结构动力响应及震动控制的研究,取得了一些成果,但主要是基于单向水平地震作用时平台结构的动力分析,另外,海洋环境有别于陆地环境,海洋环境中平台结构地震反应的特殊性问题还有待于进一步研究。因此,对于海洋平台,研究其多维地震反应与控制具有重要的现实意义。在此背景下,本论文在以下几方面进行了系统的理论分析和试验研究:
     (1)针对海洋环境的特殊性,研究了地震波浪的联合作用对平台动力响应的影响。以桩柱、对称平台、偏心平台为研究对象,对环境荷载强度(地震、波浪)、场地土条件、平台周期特点以及偏心平台的偏心率不同时,地震波浪联合作用对平台响应的影响进行了大量的参数分析。分析结果表明:当进行地震波浪联合作用分析时,有必要考虑流体附加质量效应和流固耦合效应对结构响应的影响;地震烈度水平较低,中等及较大风浪条件下有必要考虑地震波浪的联合作用;四类场地土条件下的长周期平台均有必要考虑这种联合作用,短周期平台则可以不考虑,对于中等周期平台这种联合作用与场地土条件及平台偏心情况有关。
     (2)研究了地震动单向输入、双向输入以及地震动不同输入方向对平台结构响应的影响,并提出了一种基于小波能量原理的用于确定海洋平台多维地震响应分析中地震动最不利输入方向的方法。通过小波变换可以获取地震动有效能量输入和有效能量输入速率两个重要参数,从而预测地震动的最不利输入方向。以某一实际平台和一组单层平台系统为算例进行了数值分析。分析结果表明:该方法可以快捷方便地预测地震动的最不利输入方向,且预测精度较高,可以满足工程应用的需要,小波能量原理在多维地震反应分析中具有很好的应用前景。
     (3)对地震作用和地震波浪联合作用下偏心平台结构扭转耦联地震响应进行了参数研究,推导出多维地震动输入下可以考虑不同偏心形式的偏心平台运动方程及其无量纲化形式。分析了偏心形式、地震动转动分量、偶然偏心、波浪入射方向、场地土条件和平台周期特点对偏心平台扭转耦联响应的影响。分析结果表明:结构的偏心形式对结构扭转耦联响应影响较大,不可忽视,同时地震动转动分量对结构平扭耦联响应也存在一定的影响;偶然偏心的存在可能增大结构的扭转耦联效应,且其对双向偏心结构的影响程度要远大于对单向偏心结构的影响程度;波浪入射方向对平台位移响应的影响随着结构扭转平动频率比Ω_(θx)的减小而增大,且对双向偏心平台影响稍大;另外偏心平台的扭转耦联效应与平台的周期特点有一定的对应关系而与地震动场地条件间的关系比较复杂,没有明显的规律性。
     (4)利用随机振动理论研究了地震、波浪作用下调谐液柱阻尼器(Tuned LiquidColumn Damper,简称TLCD)对平台的振动控制效果,重点分析了外荷载模型(高斯平稳白噪声模型、波浪谱模型和地震动谱模型)选取对TLCD阻尼器参数优化及结构振动控制效果的影响。分析中为了更好地反映实际波浪特点,在采用波面谱的同时引入波浪的方向谱,比较了考虑波浪方向分布对结构响应控制的影响。分析结果表明:按波浪谱模型对TLCD阻尼器参数模型进行优化所获得的减振效果要好于按高斯平稳白噪声模型进行优化的结果,不考虑波浪方向分布特性可能会高估TLCD的减振效果,建议实际工程中应选择波浪谱模型,并考虑波浪方向分布函数进行TLCD阻尼器的参数优化设计。此外,从TLCD最优振动控制效果来看,地震荷载作用时的控制效果要好于波浪荷载作用时的情况。
     (5)在普通粘弹性阻尼器的基础上通过构造上简单的改变设计了一种能同时对结构两水平方向振动和绕竖轴扭转振动进行控制的新型粘弹性阻尼器,并对阻尼器的恢复力模型及其对结构震动控制参数进行了理论分析。针对传统恢复力模型中关于阻尼器温频特性描述所存在的问题提出了两种改进模型,解决了模拟精度的问题。利用时程分析方法对新型粘弹性阻尼器在海洋平台多维震动控制效果进行了参数分析,研究了粘弹性材料尺寸形状、环境温度、响应频率对振动控制效果的影响规律,并对阻尼器数量的选取、位置的布设进行了初步的探讨。在此基础上利用反应谱法对阻尼器震动控制效果进行了理论分析,并给出合理的解释。
     (6)对新型粘弹性阻尼器的力学性能及其对结构震动控制效果进行了试验研究。通过力学性能试验,测定了粘弹性材料的剪切模量、损耗因子随激励频率、应变幅值和环境温度的变化规律,在此基础上通过对一组单层平台框架(对称平台、不同偏心形式的偏心平台)的振动台试验,验证了新型粘弹性阻尼器的多维震动控制效果。试验结果表明:不同频率下阻尼器剪切变形时恢复力理论模型的模拟精度很高,且扭转变形和扭剪组合变形试验时,恢复力模型也具有满意的模拟精度;另外震动台试验结果验证了阻尼器多维震动控制效果,阻尼器的增加除了为主体结构附加了一定的初始刚度,还在结构震动过程中消耗了大量的震动能量;对对称框架结构,粘弹性阻尼器能同时对结构双向加速度响应有明显的控制作用,对于位移响应而言,虽能同时对双方向响应起到控制作用,然而当两主轴响应相差很大时,对于响应较小的结构主轴方向,控制作用不明显;对偏心框架结构,粘弹性阻尼器对结构双向加速度和位移响应都具有明显的控制效果;当考虑水下环境震动时,粘弹性阻尼器对平台位移和加速度响应的振动控制效果要比陆上相应情况略有降低。
Both theoretical research and earthquake damage analysis indicate that earthquake excitations are complex multi-component movements including three translational motion components and three rotational motion components.Most researchers have been devoted to the dynamic response analysis and response control for offshore platform only considering one directional earthquake acceleration acting along one axis of the platform.Moreover, different from land environmental conditions,the particularity issues in ocean ambient environment are needed to consider in seismic analysis for offshore platform.Therefore,it is necessary to implement research on multi-dimensional seismic response analysis and vibration control of offshore platform under ambient excitation.The six aspects of work in this thesis are listed as follows.
     (1) The influence of combined actions for earthquake and wave on the dynamic response of platform has been studied.The small dimension piles,symmetric platforms and asymmetric platforms are selected as research objects.The parameters which will affect the platform response are analyzed,such as seismic intensity,wind wave state,the site conditions, period characteristic of platform and the eccentricity of asymmetric platform.Results show that the effects of added mass of sea water and fluid-structure coupling on the pile responses are necessary to consider for the combined action analysis.When the seismic intensity is low and wind wave state is moderate or rough,or for the long-period platform in different ground conditions,considering the combination of seismic action and wave action is necessary for the seismic analysis of offshore platforms,while for the short-period platform,such combined action effect could be neglected.
     (2) The influence of single direction input,bi-direction input and different incidence of earthquake action on the dynamic response of platforms is studied.Then a wavelet energy method is presented to search the critical incidence of earthquake excitation in multi-dimensional seismic response of offshore platforms.The total effective energy and the instantaneous effective energy input rate of an earthquake can be obtained by wavelet transformation to predict the critical incidence of the earthquake and then the maximum dynamic response of the platform can be calculated.The critical incidence is determined using this method for an actual platform and a group of one-storey platform systems. Numerical results show that the application of wavelet transform in multi-dimensional seismic response of structures is convenient and reliable.
     (3) The torsion coupling seismic response of asymmetric platforms considering the combined action effect of earthquake and wave is studied and the vibration equations and its dimensionless form considering earthquake rotational component are derived for different eccentricity forms.The influence factors on torsion coupling response,such as eccentricity forms,earthquake rotational component,occasional eccentricity,incidence of wave action, the ground site conditions and the period characteristic of platform are analyzed through numerical studies.The results indicate that the influence caused by different eccentricity forms is nonnegligible and the torsion component of earthquake motion has some influences on the seismic response of the asymmetric structure.Accidental eccentricity may increase platform's rotation response and it will be more severe for bi-directional eccentricity case. Such rotation coupling effects do have relation with the period characteristic of platforms. However there is not obvious rule for the ground types.
     (4) The effectiveness under optimal design of a Tuned Liquid Column Damper(TLCD) in suppressing environmental excitation-induced vibrations of offshore platform is studied in this paper.The problem is analyzed in the frequency domain with white noise excitation, wave spectrum excitation and earthquake spectrum excitation as three kinds of action models in this study.Optimum parameters of the TLCD for maximum reduction of peak structural response to the three models are calculated and compared.The numerical analysis results show that for the wave-induced vibration better control performance can be obtained when wave spectrum model is chosen instead of white noise excitation.Directional wave spectrum which can describe the full nature of wind-induced wave is first addressed in the analysis so that the directional distribution can be considered.In addition,from the view of optimum control effect,it is better for earthquake-induced vibration than for wave-induced vibration.
     (5) Based on the classical viscoelastic damper,a brand-new damper is designed by the change of simple construction to implement vibration control for both translational vibration and rotational vibration simultaneously.Theoretic analysis has been carried out on the restoring force model and the control parameters.Two improved models are presented to obtain high simulation precision.The influence of the size,shape of the viscoelastic material, the ambient temperature,the response frequency and the optimal number and its arrangement of damper on the vibration control effect is analyzed.Then reasonable explanation on the control effects is made by the response spectrum method.
     (6) Experiments on the mechanical behaviors of the new viscoelastic dampers and its vibration control for steel frame structure are performed.Excitation frequency,strain amplitude and ambient temperature are considered to investigate their effects on the mechanical parameters of the damper.Then,shaking table tests on a group of one-storey platform systems(symmetric platform,asymmetric platform with different eccentricity forms) are performed to investigate the multi-dimensional control effect.The experimental results show that the restoring force model has a high precision for the pure shear test and has a satisfied precision for the rotation and the complex deformation.The dampers installed in the steel frame absorbing much vibration energy as well as increase the structural initial rigidity. The damper has a significant control effect for both directional vibration of the symmetric and asymmetric structure.However,such control effect is not obvious for the structure direction in which its vibration is very weak while the vibration in the other direction is very strong. When the shaking table is filled with water,the control effect is relatively lower than the corresponding case in air.
引文
[1]欧进萍,段忠东,肖仪清.海洋平台结构安全评定—理论、方法与应用[M].北京:科学出版社,2003.
    [2]贾绣明,岳来群,韦子亮.有关我国深海油气资源勘探开发的几点思考[J].国土资源情报,2005,(7):5-7.
    [3]聂武,刘玉秋.海洋工程结构动力分析[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [4]王涛,尹宝树,陈兆林.海洋工程[M].山东:山东教育出版社,2004.
    [5]彭艳菊,吕悦军,唐荣余,沙海军.美国API RP2A-WSD规范对我国海洋石油平台抗震设防的启示[J].地球物理学进展,2004,19(3):635-640.
    [6]Karadeniz H.Spectral Analysis of Offshore Structures Under Combined Wave and Earthquake Loadings[C].Proceedings of the Ninth International Offshore and Polar Engineering Conference,Brest,France:1999:504-511.
    [7]Institute A P.RP2A-WSD:Planning,Designing,and Constructing Fixed Offshore Platforms-Working Stress Design[M].Houston:American Petroleum Institute,2002.
    [8]国家发展和改革委员会.海上固定平台规划、设计和建造的推荐作法工作应力设计法(SY/T 10030-2004)[M].北京:石油工业出版社,2004.
    [9]李宏男.结构多维抗震理论[M].北京:科学出版社,2006.
    [10]胡瑞华.近海钢质桩基平台[M].北京:海洋出版社,1989.
    [11]李润培,王志农.海洋平台强度分析[M].上海:上海交通大学出版社,1992.
    [12]Ben C.Gerwick J.Construction of marine and offshore structures[M].New York:CRC Press LLC,2000.
    [13]孙宁.滩海储油平台的TLD减震研究[D].大连理工大学,2006.
    [14]孙群.深水轻型海洋平台流体动力性能分析研究[D].大连理工大学,2005.
    [15]马海龙.基于粘弹性阻尼器的海洋平台振动控制[D].中国海洋大学,2003.
    [16]王立成.海洋平台结构优化设计理论与方法研究[D].大连:大连理工大学,2002.
    [17]孙树民.独桩平台振动控制研究[D].华南理工大学,2001.
    [18]范运林,陈环.渤海新型海洋平台承载能力的模型试验研究[J].水利学报,1995,(5):44-49.
    [19]施晓春,徐日庆,龚晓南,等.桶形基础发展概况[J].土木工程学报,2000,(4):68-73.
    [20]张伟,周锡初,刘海笑,等.滩海桶形基础平台三维有限元静力分析[J].中国海洋平台,2001,01):9-14.
    [21]何生厚,徐松森,李卫星,等.桶形基础沉贯室内模型试验研究[J].海岸工程,1999,(1):18-24.
    [22]孟昭瑛,龚佩华,杨树耕,等.单立柱桶基平台整体结构静、动力分析[J].海岸工程,1999,(1):11-17.
    [23]卢立勤.海洋平台阻尼减振分析与装置研制[D].大连:大连理工大学,2004.
    [24]Borgman L E.The Spectral Density for Ocean Wave Forces[C].Proceeding of the 4th Coastal Engineering Conference,New York:1965:147-182.
    [25]BorgmanL E.Spectral Analysis of OceanWave Forces on Piling[J].Journal of Waterways,Harbors & Coastal Engineering,1967,93(WW2):129-156.
    [26]Bendat J S,Piersol A G.Decomposition of Wave Forces into Linear and Non-linear Components[J].Journal of Sound Vibration,1986,106(3):391-408.
    [27]Li Y C.Wave Action on the Maritime Structures[M].Dalian:The Press of Dalian University of Technology,1990.
    [28]Sarpkaya T,Isaacson M.Mechanics of wave forces on offshore structures[M].NewYork:Van Nostrand Reinhold,1981.
    [29]Hahn G D.Concepts for Wave-Excited Offshore Structures[J].Journal of Structural Engineering,1995,121(10):1427-1435.
    [30]Barbaro G.A new expression for the direct calculation of the maximum wave force on vertical cylinders[J].Ocean Engineering,2007,34(11-12):1706-1710.
    [31]Berge B,Penzien J.Three-dimensional stochastic response of offshore towers to wave forces[C].The 6th Annual Offshore Technology Conference,Houston:1974:173-190.
    [32]Hahn G D.Effects of sea-surface fluctuations on response of offshore structures[J].Journal of Structural Engineering,1995,121(1):63-74.
    [33]Kareem A,Hsieh C C,Tognarelli M A.Frequency-Domain Analysis of Offshore Platform in Non-Gaussian Seas[J].Journal of Engineering Mechanics,1998,124(6):668-683.
    [34]Chang M T,TUNG C C.AN APPROXIMATE METHOD FOR DYNAMIC ANALYSIS OF OFFSHORE STRUCTURES TO WAVE ACTION[J].Engineering Structures,1990,12(4):120-123.
    [35]Tabeshpour M R,Golafshani A A,Seif M S.Comprehensive study on the results of tension leg platform responses in random sea[J].Journal of Zhejiang University SCIENCE A,2006,7(8):1305-1317.
    [36]Adrezin R,Bar-Avi P,Benaroya H.Dynamic response of compliant offshore structures-rewiew[J].Journal of Aerospace Engineering,1996,9(4):114-131.
    [37]Hur D-S,Mizutani N,Kim D-S.Direct 3-D numerical simulation of wave forces on asymmetric structures[J].Coastal Engineering,2004,51(5-6):407-420.
    [38]Agarwal A K,Jain A K.Dynamic behavior of offshore spar platforms under regular sea waves[J].Ocean Engineering,2003,30(4):487-516.
    [39]钱江,王秀喜.导管架平台非线性随机响应分析[J].海洋工程,1992,10(01):10-19.
    [40]王言英,阎德刚.自升式海洋平台波浪荷载谱计算[J].中国海洋平台,1995,10(2):50-59.
    [41]竺艳蓉,谢峻,龚佩华.各种波浪谱在海洋工程中适用性的研究[J].海洋学报(中文版),1995,17(6):126-131.
    [42]金伟良,郑忠双,邹道勤,等.海洋导管架平台随机响应混合分析方法[J].海洋工程,2001,19(1):14-18.
    [43]周焕廷,王燕,朱雷鸣.海洋平台动力响应分析的复模态法[J].青岛建筑工程学院学报,2004,25(4):111-116.
    [44]王腾,董胜,李华军.考虑桩土作用独桩海洋平台横向振动特性研究[J].中国海洋大学学报(自然科学版),2004,34(2):318-324.
    [45]Penzien J,Scheffey C F,Parmelee R A.Seismic analysis of bridges on long piles[J].Journal of Engineering Mechanics Division,1964,90(EM3):223-254.
    [46]Penzien J,Kaul M K.Response of offshore towers to strong motion earthquakes[J].Earthquake Engineering & Structural Dynamics,1972,1(1):55-68.
    [47]Bea R G,Akky M R,Audibert J M E.Earthquake Response of Offshore Platforms[J].Journal of the Structural Division,1979,105(2):377-400.
    [48]Cerami A.Stochastic seismic analysis of offshore towers[J].Meccanica,1984,19(1):234-241.
    [49]Chen B-F.The significance of earthquake-induced dynamic forces in coastal structures design[J].Ocean Engineering,1995,22(4):301-315.
    [50]Kanvano K,Venkatarama K,Hashimoto T.Dynamic response of a large offshore structure due to seismic loads[C].The Tenth(2000) International Offshore and Polar Engineering Conference,Seattle,USA:2000,4:213-219.
    [51]Naggar M H E,Shayanfar M A,Kimiaei M,et al.Simplified BNWF model for nonlinear seismic response analysis of offshore piles with nonlinear input ground motion analysis[J].Canadian Geotechnical Journal,2005,42(2):365-380.
    [52]周德源,朱伯龙.重力式海洋平台地震反应分析[J].同济大学学报(自然科学版),1986,14(02):151-159.
    [53]陈镕,曹国敖.海洋平台结构地震反应的近似计算[J].地震工程与工程振动,1987,(3):84-92.
    [54]李宏男,林皋.导管架海洋平台在多维地震动作用下的随机反应[J].海洋工程,1992,(4):25-30.
    [55]刘宗贤,李玉亭.单桩基础在无限层地基中的横向地震反应分析[J].四川地震,1994,(3):32-44.
    [56]刘宗贤,李玉亭.无限层地基中桩基础的扭转地震反应分析[J].华南地震,1994,(2):24-29.
    [57]刘宗贤,李玉亭.分层弹性地基场地土扭转地震反应分析[J].东北地震研究,1994,(1):38-51.
    [58]刘宗贤,李玉亭,贾相玉,付文彬.端承桩在分层地基中的横向地震反应分析[J].地震研究,1995,(4):388-396.
    [59]王秀勇,肖熙,张世联.海洋平台地震响应分析[J].中国海洋平台,1997,(4):150-152.
    [60]梁永超,李巨川,张剑波.浅海导管架平台地震响应分析[J].中国海洋平台,2003,18(6):15-17.
    [61]吴小俊,张士华,王德禹.正压冲固海洋平台的地震分析[J].中国海洋平台,2005,20(3):27-30.
    [62]Chen Y S,Jin D P.Nonlinear dynamic analysis of the platform structures subjected to ice excitation(part Ⅰ):Equation of motion[J].Transactions of Tianjin University,1997,3(1):1-5.
    [63]Jin D P,Chen Y S.Nonlinear dynamic analysis of the platform structures subjected to ice excitation(part Ⅱ):Primary resonance[J].Transactions of Tianjin University,1997,3(1):6-14.
    [64]JIN D P,HU H Y.Ice-induced non-linear vibration of an offshore platform[J].Journal of Sound and Vibration,1998,214(3):431-442.
    [65]欧进萍,段忠东,王刚.海冰作用下平台结构自激振动的参数分析与响应的数值计算[J].工程力学,2001,18(5):8-17.
    [66]刘健,陈国明,殷志明.海洋结构在海冰环境中动力响应的视景仿真[J].系统仿真学报,2005,17(12):2969-2971.
    [67]柳春光,贾玲玲.冰振反应谱问题研究[J].地震工程与工程振动,2006,26(1):169-174.
    [68]岳前进,刘圆,屈衍,等.抗冰平台的冰振疲劳分析[J].工程力学,2007,24(06):159-164.
    [69]Li G,Liu X,Li Y,et al.Optimum design of ice-resistant offshore jacket platforms in the Bohai Gulf in consideration of fatigue life of tubular joints[J].Ocean Engineering,2008,35(5-6):484-493.
    [70]岳前进,刘圆,屈衍,等.海洋平台的冰力谱与冰振响应分析[J].计算力学学报,2008,25(5):665-670.
    [71]岳前进,张大勇,刘圆,等.渤海抗冰导管架平台失效模式分析[J].海洋工程,2008,26(1):18-23.
    [72]及春宁,张海,郭磊.冰激振动下海洋平台地基土的动力液化研究[J].海洋通报,2008,27(1):81-87.
    [73]时忠民,屈衍.渤海新型抗冰导管架平台研究[J].中国海上油气,2008,20(5):336-341.
    [74]Crook J.Extreme engineering[Russian Pacific oil and gas field exploitation][J].Power Engineer,2004,18(5):29-31.
    [75]Penzien J,Kaul M K,Berge B.Stochastic response of offshore towers to random sea waves and strong motion earthquakes[J].Computers & Structures,1972,2(5-6):733-756.
    [76]Michael I,Wu S R.Wave and earthquake effects on axisymmetric offshore structures[J].Applied Mathematics and Mechanics,1984,5(4):1437-1447.
    [77]Yamada Y,Iemura H.Seismic response of offshore structures in random seas[J].Earthquake Engineering & Structural Dynamics,1989,18(7):965-981.
    [78]Bea R G,Young C N.Loading and capacity effects on platform performance in extreme waves and earthquakes[C].Proceeding of the Offshore Technology Conference,Richardson,Tex:1993:1-16.
    [79]Bea R G.Earthquake and wave design criteria for offshore platforms[J].Journal of the Structural Division,American Society of Civil Engineers,1979,105(ST2):401-419.
    [80]Venkataramana K,Kawano K.Nonlinear dynamics of offshore structures under sea wave and earthquake forces[J].Sadhana,1995,20(2-4):501-512.
    [81]Venkataramana K,Kawano K,Yoshihara S,et al.Time-Domain Dynamic Analysis of Offshore Structures Under Combined Wave and Earthquake Loadings[C].Proceedings ofthe Eighth (1998) International Offshore and Polar Engineering Conference,Montreal,Canada:1998:404-411.
    [82]Fukusumi,Uchida N,Takahashi D.Response Characteristic of Soft Settled Type of Offshore Structures Subjected to Harmonic Sea Wave and Earthquake Wave[C].The Proceedings of the 13th(2003) International Offshore and Polar Engineering Conference,Honolulu,Hawaii,USA:2003:1007-1012.
    [83]Etemad h K,Gharabaghi h R M,Chenaghlou M R.Nonlinear dynamic behavior of fixed jacket-type offshore platforms subjected to simultaneously acting wave and earthquake loads[C].Proceedings of the 23rd international Conference on Offshore Mechanics and Arctic Engineering,Vancouver,Canada:2004:893-900.
    [84]Chandrasekaran S,Jain A K,Chandak N R.Seismic analysis of offshore triangular tension leg platforms[J].International Journal of Structural Stability and Dynamics,2006,6(1):97-120.
    [85]李英民,赖明.工程地震动模型化研究综述及展望(Ⅰ)——概述与地震学模型[J].重庆建筑大学学报,1998,20(2):73-80.
    [86]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998.
    [87]Lopez O A,Chopra A K,Hernandez J J.Critical response of structures to multicomponent earthquake excitation[J].Earthquake Engineering & Structural Dynamics,2000,29(12):1759-1778.
    [88]Penzien J,Watabe M.Characteristics of 3-dimensional earthquake ground motions[J].Earthquake Engineering & Structural Dynamics,1974,3(4):365-373.
    [89]何浩祥,张玉怿,李宏男.建筑结构在双向水平地震作用下的扭转振动效应[J].沈阳建筑工程学院学报,2002,18(4):241-243.
    [90]Rosenblueth E,Meli R.The 1985 Earthquake:Causes and Effects in Mexico City[J].Concrete International,1986,8(5):23-34.
    [91]石诚.考虑双向水平地震作用的结构抗震分析与设计若干问题研究[D].重庆:重庆大学,2004.
    [92]Trifunac M D.The role of strong motion rotations in the response of structures near earthquake faults[J].Soil Dynamics and Earthquake Engineering,2009,29(2):382-393.
    [93]Heredia-Zavoni E,Barranco F.Torsion in Symmetric Structures due to Ground-Motion Spatial Variation[J].Journal of Engineering Mechanics,1996,122(9):834-843.
    [94]陈国兴,孙士军,宰金珉.多维地震动输入下结构地震反应分析[J].南京建筑工程学院学报,1999,49(2):7-14.
    [95]Cakiroglu A.Unfavorable seismic directions in earthquake-resistant design[C].Proceeding of the 7th world conference on earthquake engineering,Istanbul:1980:201-208.
    [96]Cakiroglu A.Earthquake-resistant design according to the most unfavourable seismic direction under combined internal forces[J].Earthquake Engineering & Structural Dynamics,1987,15(7):853-864.
    [97]Wilson E L,Button M R.Three-dimensional dynamic analysis for multi-component earthquake spectra[J].Earthquake Engineering & Structural Dynamics,1982,10(3):471-476.
    [98]Smeby W,Kiureghian A d.Modal combination rules for multi-component earthquake excitation[J].Earthquake Engineering & Structural Dynamics,1985,13(1):1-12.
    [99]Lopez O A,Torres R.The critical angle of seismic incidence and the maximum structural response[J].Earthquake Engineering & Structural Dynamics,1997,26(9):881-894.
    [100]Menun C,Der Kiureghian A.A Replacement for the 30%,40%,and SRSS Rules for Multicomponent Seismic Analysis[J].Earthquake Spectra,1998,14(1):153-163.
    [101]冯云田,李明瑞,林春哲.复杂结构的弹性地震反应分析[J].地震工程与工程振动,1991,11(4):17-22.
    [102]朱东生,虞庐松,刘世忠.不规则桥梁地震动输入主方向的研究[J].兰州铁道学院学报(自然科学版),2000,19(6):37-40.
    [103]范立础,聂利英,李建中.复杂结构地震波输入最不利方向标准问题[J].同济大学学报(自然科学版),2003,31(6):631-636.
    [104]Hongnan L,Li S,Gangbing S.Modal combination methods for earthquake-resistant design of tall structures to multidimensional excitations[J].The Structural Design of Tall and Special Buildings,2004,13(4):245-263.
    [105]Newmark N M.Torsion in symmetrical building[C].Proceeding of the 4th world conference on earthquake engineering,Santiago,Chile:1969:19-30.
    [106]Ghafory-Ashtiany M,Singh M P.Structural response for six correlated earthquake components[J].Earthquake Engineering & Structural Dynamics,1986,14(1):103-119.
    [107]吴健生,李波.用于结构地震反应分析的六维输入[J].天津大学学报,1989,35(2):1-10.
    [108]Gupta I D,Trifunac M D.A note on contribution of torsional excitation to earthquake response of simple symmetric building[J].地震工程与工程振动,1987,7(3):27-46.
    [109]李宏男.结构多维地震反应[D].哈尔滨:国家地震局工程力学研究所1990.
    [110]李宏男,孙立晔.地震面波产生的地震动转动分量研究[J].地震工程与工程振动,2001,21(1):15-23.
    [111]孙士军,陈国兴.地面运动转动分最的合成方法[J].地震学刊,1998,10(1):19-24.
    [112]王君杰.多点多维地震动随机模型及结构的反应谱分析方法[D].哈尔滨:国家地震局工程力学研究所,1992.
    [113]刘季.在多维地震动复合作用下结构的反应和建筑结构扭转地震效应[J].哈尔滨建筑工程大学学报,1986,2(2):59-71.
    [114]Wilson E L,Suharwardy I,Habibullah A.A clarification of the orthogonal effects in a three-dimensional seismic analysis[J].Earthquake Spectra,1995,11(4):659-666.
    [115]Lopez O A,Torres R.Discussion of "A Clarification of Orthogonal Effects in a Three-Dimensional Seismic Analysis" by E.L.Wilson,I.Suharwardy,and A.Habibullah[J].Earthquake Spectra,1996,12(2):357-361.
    [116]Avramidis I E.Concurrent design forces in buildings under multicomponent earthquake excitation:the CQC-theta-method[M]//Advances in structural dynamic.Hong Kong,2000:795-800.
    [117]刘季.结构多维地震反应的组合问题[J].哈尔滨建筑大学学报,1987,(2):1-9.
    [118]刘季,阎维明.非正交阻尼系统对多维地震动输人的反应及其组合[J].地震工程与工程振动,1998,8(1):78-86.
    [119]Newmark N M,Hall W J.Earthquake Spectra and Design[M].Berkeley:EERI,1982.
    [120]王东升,李宏男,王国新.双向地震动作用弹塑性反应谱研究[J].大连理工大学学报,2005,45(2):248-254.
    [121]Clough R W,Penzien J.Dynamics of Structures[M].New York:McGraw-Hill,Inc.,1993.
    [122]陈文兵,唐家祥.水平任意向地震输入下双塔楼联体结构的动力分析[J].振动与冲击,2003,22(1):29-32.
    [123]Housner G W.Characteristics of strong motion earthquakes[J].Bulletin of the Seismological Society of America,1947,37(1):17-31.
    [124]Williams D.Displacements of a linear elastic system under given transient load[J].Aeronautical Quarterly,1949,1(1):123-136.
    [125]Kiureghian A D.Structural response to stationary excitation[J].Journal of Engineering Mechanics,1980,106(EM6):1195-1213.
    [126]王虎栓,江近仁.高层建筑随机地震反应分析[J].地震工程与工程振动,1988,8(3):86-96.
    [127]李宏男.结构多维随机地震反应分析及抗震设计计算方法的研究[J].沈阳建筑工程学院学报,1995,11(1):81-87.
    [128]李宏男,王苏岩.多维地震动作用下非对称结构扭转耦联随机反应分析[J].建筑结构学报,1992,13(6):12-20.
    [129]胡聿贤,周锡元.弹性体在平稳和平稳化地面运动下的反应[M]//地震工程研究报告集第一集.北京:科学出版社,1962:33-50.
    [130]刘季,王前信.多维与多支座地震输人及结构扭转反应[M]//中国工程抗震研究四十年.北京:地震出版社,1989.
    [131]王光远.建筑结构的振动[M].北京:科学出版社,1978.
    [132]Lee M C,Penzien J.Stochastic analysis of structures and piping systems subjected to stationary multiple support excitations[J].Earthquake Engineering & Structural Dynamics,1983,11(1):91-110.
    [133]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-94.
    [134]林家浩,钟万勰,张亚辉.大跨度结构抗震计算的随机振动方法[J].建筑结构学报,2000,21(1):29-36.
    [135]Lin J H.A fast CQC algorithm of PSD matrices for random seismic responses[J].Computers & Structures,1992,44(3):683-87.
    [136]Penzien J,Tseng S.Three-dimensional Dynamic Analysis of Fixed Offshore Platforms [M]//Numerical Methods in Offshore Engineering.New York:John Wiley and Sons Ltd,1978.
    [137]邱大洪.大型海上工程中的关键力学问题[J].科技导报,1994,12(12):25-27.
    [138]姜素珍.海洋平台分析中完全二次型组合法浅析[J].特种结构,1994,11(2):34-35.
    [139]阎维明,周福霖,谭平.土木工程结构振动控制的研究进展[J].世界地震工程,1997,13(2):8-20.
    [140]Soong T T,Dargush G F.Passive energy dissipation systems in structural engineering[M].New York:John Wiley and Sons,1997.
    [141]李宏男,李忠献,祁凯,等.结构振动与控制[M].北京:中国建筑工业出版社,2005.
    [142]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制[J].建筑结构学报,2002,23(2):2-12.
    [143]李秀岭.非对称建筑结构的磁流变阻尼器半主动控制[D].大连:大连理工大学2006.
    [144]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.
    [145]腾振超,杨宇.结构振动控制技术的发展与应用[J].油气田地面工程,2005,24(11):1-2.
    [146]刘方,邹向阳,赵万里,等.土木工程结构振动控制的概况与新进展[J].长春工程学院学报(自然科学版),2007,8(3):15-19.
    [147]霍林生.偏心结构利用调液阻尼器减震控制的研究[D].大连:大连理工大学2006.
    [148]黄尚廉,陶宝祺,沈亚鹏.智能结构系统——梦想、现实与未来[J].中国机械工程,2000,11(1-2):32-35.
    [149]姜德生,Richard O C.智能材料、器件、结构与应用[M].武汉:武汉工业大学出版社,2000.
    [150]桂洪斌,金咸定,肖熙.海洋平台振动控制研究综述[J].中国海洋平台,2003,18(5):19-25.
    [151]周亚军,赵德有.海洋平台结构振动控制综述[J].振动与冲击,2004,23(4):40-43.
    [152]赵东,王威强,马汝建,等.海洋平台振动控制研究现状及近期发展[J].石油机械,2005,33(5):69-72.
    [153]Lee H H.Stochastic Analysis for Offshore Platform with Added Mechanical Dampers[J].Ocean Engineering 1997,24(9):817-834.
    [154]欧进萍,段忠东,肖仪清.基于实测动冰力时程的海洋平台冰振反应分析[J].海洋工程,1999,17(2):70-78.
    [155]欧进萍,龙旭,肖仪清,等.导管架式海洋平台结构阻尼隔振体系及其减振效果分析[J].地震工程与工程振动,2002,22(3):115-122.
    [156]欧进萍,肖仪清,段忠东,等.设置粘弹性耗能器的JZ20-2MUQ平台结构冰振控制[J].海洋工程,2000,18(3):9-14.
    [157]马海龙,陆建辉,李宇生.基于极点配置的海洋平台粘弹性阻尼振动控制[J].船舶力学,2004,8(4):116-120.
    [158]郁有升,王燕.海洋平台阻尼隔振减振原理及振动控制效果分析[J].青岛建筑工程学院学报,2005,26(1):34-40.
    [159]陆建辉,梅宁.海洋平台离散模型振动控制研究[J].力学与实践,2001,23(2):26-29.
    [160]陆建辉,彭临悔,李华军.固定式近海石油平台振动控制研究[J].中国造船,2000,41(3):63-68.
    [161]孙树民.独桩平台波浪反应的调谐质量阻尼器控制研究[J].噪声与振动控制,2001,21(4):14-17.
    [162]孙树民.考虑流体-桩-土相互作用的独桩平台波浪响应的TMD控制研究[J].中国造船,2002,43(1):52-57.
    [163]贾影,李宏男,宋岩升.TLD对海洋平台地震反应控制的简化计算方法[J].地震工程与工程振动,2002,22(3):160-164.
    [164]李宏男,霍林生,刘洋.采用神经网络半主动TLCD对海洋固定式平台的振动控制[J].防灾减灾工程学报,2003,23(2):22-27.
    [165]李宏男,马百存.固定式海洋平台利用TLD的减震研究[J].海洋工程,1996,14(3):91-96.
    [166]王翎羽等.调谐液体阻尼器(TLD)的减振原理及其在JZ20-2MUQ平台上的减振应用研究[M]//天津大学船舶与海洋工程系研究报告.天津,1994.
    [167]Gattulli V,Ghanem R.Adaptive Control of Flow-induced Oscillation Inducing Vortex Effects[J].International Journal of Non-Linear Mechanics,1999,34(5):853-868.
    [168]Ahmad S K,Ahmad S.Active control of non-linearly coupled TLP response under wind and wave environments[J].Computers&Structures,1999,70(7):735-747.
    [169]Li H,Hu S-L J,Takayama T.Optimal active control of wave-induced vibration for offshore platforms[J].China Ocean Engineering,2001,15(1):1-14.
    [170]Suhardjo J,Kareem A.Feedback-feedforward of offshore platforms under random waves[J].Earthquake Engineering and Structural Dynamics,2001,30(2):213-235.
    [171]Abdel-Rohman M.Structural control of a steel jacket platform[J].Structural Engineering and Mechanics,1996,4(2):125-138.
    [172]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究[J].高技术通讯,2002,(10):85-90.
    [173]张春巍,欧进萍.海洋平台结构振动的AMD主动控制参数分析[J].地震工程与工程振动,2002,22(4):151-156.
    [174]嵇春艳.主动质量驱动器对导管架式海洋平台振动控制效果研究[J].华东船舶工业学院学报(自然科学版),2004,18(6):1-7.
    [175]嵇春艳,张枢文,万乐坤.H_2控制方法中加权函数对海洋平台振动控制效果的影响分析[J].江苏科技大学学报(自然科学版),2007,21(1):1-6.
    [176]张力,张文首,岳前进.基于模态空间的海洋平台冰致振动的H_∞控制[J].动力学与控制学报,2008,6(3):284-288.
    [177]崔洪宇,赵德有.基于支持向量机的导管架式海洋平台振动主动控制研究[J].振动与冲击,2008,27(10):156-199.
    [178]Kawano K.Active control effects on dynamic response of offshore structures[C].Proceedings of the 3rd ISOPE Conference,1993:594-598.
    [179]Mahadik A S,Jangid R S.Active control of offshore jacket platforms[J].International Shipbuilding Progress,2003,50(4):277-295.
    [180]管友海,黄维平.MR阻尼器在海洋平台半主动振动控制中的应用[J].中国海洋平台,2002,17(3):25-28.
    [181]孙树民,梁启智.隔震独桩平台地震反应的半主动磁流变阻尼器控制研究[J].振动与冲击,2001,20(3):61-64.
    [182]万乐坤,嵇春艳,尹群.海洋平台磁流变模糊半主动振动控制研究[J].船舶工程,2007,29(4):28-31.
    [183]Lin W H,Chopra A K.Asymmetric One-Storey Elastic Systems With Non-Linear Viscous and Viscoelastic Dampers:Simplified analysis and Supplemental Damping System Design[J].Earthquake Engineering & Structural Dynamics,2003,32(4):579-596.
    [184]Lin W H,Chopra A K.Understanding and Predicting Effects of Supplemental Viscous Damping On Seismic Response of Asymmetric One-Storey Systems[J].Earthquake Engineering & Structural Dynamics,2001,30(10):1475-1494.
    [185]李忠献,万家.高层建筑结构扭转耦合地震反应阻尼器控制试验研究[J].振动工程学报,1999,12(2):262-266.
    [186]李春祥,韩传峰.非对称结构扭转振动多重调谐质量阻尼器((MTMD)控制的最优位置[J].地震工程与工程振动,2003,23(6):149-155.
    [187]李春祥,张丽卿.地震作用下不规则建筑AMTMD控制的动力特性-Ⅱ:扭转振动控制[J].振动与冲击,2007,26(8):50-54.
    [188]黄世敏,魏琏,衣洪建等.地震作用下不对称高层建筑平移-扭转耦联振动的控制研究[J].工程抗震与加固改造,2003,(4):1-5.
    [189]李秀领,李宏男.框架-剪力墙偏心结构的MRD减振试验研究[J].东南大学学报,2005,35(S1):27-30.
    [190]龚治国,吕西林,翁大根.超高层主楼与裙房黏滞阻尼器连接减振分析研究[J].土木工程学报,2007,40(9):8-15.
    [191]江宜城,唐家祥.多维地震动作用下基础隔震结构地震相应分析[J].工程抗震与加固改造,2002,6(2):1-6.
    [192]熊世树,陈金凤,梁波等.三维基础隔震结构多维地震反应的非线性分析[J].华中科技大学学报(自然科学版),2004,12(32):81-84.
    [193]李宏男,霍林生.调液阻尼器对结构扭转耦联振动控制的优化设计[J].计算力学学报,2005,22(2):129-134.
    [194]李宏男,杨浩.多维地震作用下偏心结构的磁流变阻尼器半主动控制[J].地震工程与工程振动,2004,24(3):167-174.
    [195]霍林生,李宏男,孙丽.多维地震作用下非对称结构利用TLCD减震控制研究[J].地震工程与工程振动,2001,21(4):147-153.
    [196]李钢,李宏男.多维地震作用下非对称结构利用“双功能”软钢阻尼器减震设计[J].工程抗震与加固改造,2008,30(2):5-9.
    [197]李钢.新型金属阻尼器减震结构的试验及理论研究[D].大连:大连理工大学,2006.
    [198]交通部第一航务工程勘察设计院.海港水文规范(JTJ213-98)[M].北京:人民交通出版社,1998.
    [199]国家发展和改革委员会.环境条件与环境荷载规范(SY/T10050-2004)[M].北京:石油工业出版社,2004.
    [200]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991.
    [201]张学志,黄维平,李华军.考虑流固耦合时的海洋平台结构非线性动力分析[J].中国海洋大学学报(自然科学版),2005,35(5):823-826.
    [202]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [203]赵更新.土木工程结构分析程序设计[M].北京:中国水利水电出版社,2002.
    [204]日本港湾协会.港口建筑物设计标准[M].北京:人民交通出版社,1979.
    [205]李茜,杨树耕.采用ANSYS程序的自升式平台结构有限元动力分析[J].中国海洋平台,2003,18(4):41-46.
    [206]杨树耕,藤明清,孟昭瑛,等.有限元分析软件ANSYS在海洋工程中的应用(续1)[J].中国海洋平台,2000,15(5):40-46.
    [207]张保军,于春洁.春晓气田群井口平台结构形式研究[J].中国海上油气,2003,15(1):29-31.
    [208]郭继武.建筑抗震设计[M].北京:中国建筑工业出版社,2002.
    [209]李宏男.建筑抗震设计原理[M].北京:中国建筑工业出版社,1996.
    [210]谢礼立,翟长海.最不利设计地震动研究[J].地震学报,2003,25(3):250-261.
    [211]黄怀州,洪明,迟少艳.随机波浪载荷作用下导管架平台动力响应及疲劳可靠性分析[J].船舶力学,2006,10(4):65-71.
    [212]何晓宇,李宏男.地震与波浪联合作用下海洋平台动力特性分析[J].海洋工程,2007,25(03):18-25.
    [213]刘廷权,王兴国,周晶,等.基于桩-土-结构相互作用的海洋平台结构抗震优化设计[J].船舶力学,2004,8(4):80-85.
    [214]周亚军,赵德有,马骏.基于人工神经网络的海洋平台振动主动控制[J].船舶力学,2003,7(5):65-69.
    [215]郭军,朱静,肖熙.海洋平台在组合载荷作用下的随机域可靠性分析[J].强度与环境,1995,(2):1-7.
    [216]杨和振,李华军,王国兴.海洋平台结构模态参数识别的仿真研究[J].海洋工程,2003,21(4):75-80.
    [217]李海波,吴映栋.海洋平台结构抗震可靠性时程分析方法[J].海洋工程,2004,22(2):46-50.
    [218]管友海,李华军,黄维平.海洋平台磁流变阻尼器半主动控制研究[J].青岛海洋大学学报(自然科学版),2002,32(4):650-656.
    [219]周广利,白若阳.导管架平台的动力分析[J].中国海洋平台,2006,21(1):45-48.
    [220]杨飏,欧进萍.导管架式海洋平台结构磁流变阻尼隔震的振动台试验[J].地震工程与工程振动,2005,25(4):141-148.
    [221]JIN Q,LI X,SUN N,et al.Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platfom[J].Marine structures,2007,20(4):238-254.
    [222]Tromans P S,Graaf J W v d.A substantiated risk assessment of a jacket structure[C].Offshore Technology Conference,Tex.:1992:651-662.
    [223]Stewart G.Non-linear structural dynamics by the pseudo-force influences method,partⅡ:Application to offshore platform collapse[C].Proc.,Int.Offshore and Polar Engrg,Colo.:1992:264-271.
    [224]Patil K C,Jangid R S.Passive control of offshore jacket platforms[J].Ocean Engineering,2005,32(16):1933-1949.
    [225]MOSTAFA Y E,NAGGAR M H E.Response of fixed offshore platforms to rave and current loading including soil-structure interaction[J].Soil dynamics and earthquake engineering,2004,24(4):357-368.
    [226]Bea R G,Xu T,Stear J,et al.Wave Forces on Decks of Offshore Platforms[J].Journal of Waterway,Port,Coastal and Ocean Engineering,1999,125(3):136-144.
    [227]周亚军.导管架海洋平台结构振动智能主动控制研究[D].大连:大连理工大学,2004.
    [228]魏巍.导管架式海洋平台地震破坏状态分析研究[D].青岛:中国海洋大学,2004.
    [229]Wiison E L.Static & Dynamic Analysis of Structures(译著:结构静力与动力分析)[M].北京:中国建筑工业出版设,2006.
    [230]赵灿晖,周志祥.多维非平稳随机地震响应分析的快速算法[J].振动与冲击,2006,25(5):62-73.
    [231]李宏男,孙鸿敏.小波分析在土木工程领域中的应用[J].世界地震工程,2003,19(2):16-22.
    [232]Albert B,Francis J N.A First Course in Wavelet with Fourier Analysis[M].Beijing:Electronic Industry Press,2004.
    [233]The Mathworks I.Wavelet ToolboxTM User' s Guide,Wavelets:A New Tool for Signal Analysis[M].2007.
    [234]Chui C K.An Introduction to Wavelets[M].New York:Academic Press,1992.
    [235]Iyama J,Kuwamura H.Application of wavelets to analysis and simulation of earthquake motions[J].Earthquake Engineering & Structural Dynamics,1999,28(33):255-272.
    [236]Kuwamura H,Iyama J,Takeda T.Energy input rate of earthquake ground motion-matching of displacement theory and energy theory[J].Journal of Structural and Construction Engineering,1997,498(37-42.
    [237]Kuwamura H,Takeda T,Sato Y.Energy input rate in earthquake destructiveness-Comparison between epicentral and oceanic earthquake[J].Journal of Structural and Construction Engineering,1997,491(29-36.
    [238]Iyama J.Estimate of input energy for elasto-plastic SDOF systems during earthquakes based on discrete wavelet coefficients[J].Earthquake Engineering & Structural Dynamics,2005,34(1799-1815.
    [239]Erdick.Torsional Effects in Dynamically Excited Structures[D].Houston,Texas:Houston University 1975.
    [240]Chandler A K,Hutchinson G L.Torsional Coupling Effects in the Earthquake Response of Asymmetric Buildings[J].Engineering Structures,1986,8(3):222-236.
    [241]Hejal R,Chopra A K.Earthquake Response of Torsionally Coupled Frame Buildings[J].Journal of Structural Engineering,1989,115(4):834-851.
    [242]Hejal R,Chopra A K.Lateral-Torsional Coupling in Earthquake Response of Frame Buildings[J].Journal of Structural Engineering,1989,115(4):852-867.
    [243]Chandler A M,Correnza J C,Hutchinson G L.Period-Dependent Effects in Seismic Torsional Response of Code Systems[J].Journal of Structural Engineering,1994,120(12):3418-3434.
    [244]徐培福,黄吉锋,韦承基.高层建筑结构在地震作用下的扭转振动效应[J].建筑科学,2000,16(1):1-6.
    [245]Sakai F,Takaeda S,Tamaki T.Tuned liquid column damper-new type device for suppression of building vibrations[C].Proceedings of the International Conference on High-rise Buildings,Nanjing,China:1989:926-931.
    [246]Sakai F,Zakaeda S,Tamaki T.Experimental study on tuned liquid column damper(TLCO)(in Japanese)[C].Proceedings of the Colloquium on Vibration Control of Structures(JSCE),Japan:1991:189-196.
    [247]Teramura A,Yoshida O.Development of vibration control system using U-shaped water tank[C].Proceedings of 11th World Conference on Earthquake Engineering,Elsevier:1996:paper no.1343.
    [248]翟伟廉,李肇胤,李桂青.U型水箱对高层建筑和高耸结构风振控制的试验和研究[J].建筑结构学报,1993,14(5):37-41.
    [249]Xue S D,Ko J M,Xu Y L.Wind-induced vibration control of bridges using liquid column damper[J].Earthquake Engineering and Engineering Vibration,2002,1(2):271-280.
    [250]Taflanidis A A,Angelides D C,Manos G C.Optimal design and performance of liquid column mass dampers for rotational vibration control of structures under white noise excitation[J].Engineering Structures,2005,27(4):524-534.
    [251]Chang C C.Mass dampers and their optimal designs for buildings vibration control[J].Engineering Structures,1999,21(5):454-463.
    [252]Samali B,Templeton D,Kwok K S C.The effectiveness of multiple tuned liquid column dampers in controlling vibration of tall buildings subject to earthquake excitation[C].Proceedings of 2nd International Conference on Motion and Vibration Control,Yokohama:1994:120-125.
    [253]Franz Z.A vertically acting tuned liquid column damper[C].Proceedings of.Application.Mathematic Mechanics,Vienna,Austria:1999:345-346.
    [254]Lee H H,Wong S H,Lee R S.Response mitigation on the offshore floating platform system with tuned liquid column damper[J].Ocean Engineering,2006,33(1118-1142.
    [255]Abe M,Kimura S,Fujino Y.Control laws for semi-active tuned liquid column damper with variable orifice openings[C].Proceedings of 2nd International Workshop on Structural Control,Hong Kong:1996:
    [256]Yalla S K,Kareem A,Kantor J C.Semi-active control strategies for tuned liquid column dampers to reduce wind and seismic response of structures[C].Proceedings of Second World Conference on Structural Control,Kyoto,Japan:1998:559-568.
    [257]李宏男,阎石,林皋.建筑结构利用TLCD减振的神经网络智能控制[J].地震工程与工程振动,2000,20(3):137-142.
    [258]霍林生,李宏男.基于市场机制的TLCD半主动控制方案[J].应用力学学报,2005,22(1):71-75.
    [259]欧进萍.导管架式海洋平台结构的磁流变阻尼隔震控制[J].高技术通讯,2003,6):66-73.
    [260]Newmark N M,Rosenblueth E.Fundamental of Earthquake Engineering[M].New Jersey:Prentice-Hall Inc.,1971.
    [261]洪峰.基底隔震结构的随机地震反应分析和概率设计[D].哈尔滨:国家地震局工程力学研究所,1995.
    [262]Wen Y K.Equivalent linearization for hysteretic systems under random excitation[J].Journal of Applied Mechanics.1980.(47):150-154.
    [263]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2000.
    [264]周云.粘弹性阻尼器减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [265]Kasai K,Munshi J A,Lai M L,et al.Viscoelastic Damper Hysteretic Model:Theory,Experiment and Application[M]//Proceeding of ATC-17-1 Seminar on Seismic-Isolation,Passive Energy Dissipation and Active Control.Redwood City,CA,1993:521-532.
    [266]徐赵东,赵铁鸿,周云.粘弹性阻尼器的等效标准固体模型[J].建筑结构,2001,31(3):67-69.
    [267]刘棣华.粘弹性阻尼减振降噪技术[M].北京:宇航出版社,1990.
    [268]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [269]徐赵东,周云.粘弹性阻尼器三种计算模型的对比与分析[J].华南建设学院西院学报,1999,7(2):1-7.
    [270]吴波,郭安薪.粘弹性阻尼器的性能研究[J].地震工程与工程振动,1998,18(2):108-116.
    [271]Tsai C S.Temperature Effect of Viscoelastic Dampers During Earthquake[J].Journal of Structural Engineering,1992,120(2):394-409.
    [272]Chang K C,Lai M L,Soong T T,et al.Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers[C].NCEER 93-0009,National Center for Earthquake Engineering Research,Buffalo,NY:1993:
    [273]隋杰英.粘弹性阻尼器及消能支撑的试验研究与工程应用[D].南京:东南大学,2002.
    [274]毕家驹.近海力学导论[M].上海:同济大学出版社,1989.