水平地震作用下梁填充钢框架结构抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剪力墙和钢框架是两种常用的建筑结构体系。钢筋混凝土剪力墙大多呈脆性破坏且震后不易修复;钢框架结构侧向刚度小易引起非结构构件的破坏,因此在高地震烈度区的使用受到限制。为了满足建筑结构刚度能够在一定范围内变化,可把深梁作为一种新型抗侧力结构形式或加固构件。它能够在工厂预制、拆卸方便、可回收利用,符合建筑节能发展方向,因此可广泛应用于新建结构,已有建筑物改造和加固。本文根据模型试验、计算分析和静力弹塑性分析,研究该种结构的抗震性能,以推动深梁构件的应用。本文主要研究内容有:
     1.通过对纯钢框架、钢板深梁填充钢框架、钢筋混凝土深梁填充钢框架以及组合深梁填充钢框架在水平低周反复荷载作用下的模型试验研究,分析结构的变形性能,滞回曲线和耗能等抗震性能。试验证明:试件滞回曲线饱满,深梁可作为结构抗震设防的第一道防线,钢框架作为第二道防线;通过改变深梁跨高比可使框架初始刚度在一定范围内调幅,将钢板深梁或组合深梁作为抗侧构件或耗能构件(阻尼器)。相同尺寸下,钢筋混凝土深梁提高结构初始刚度最显著(比钢板深梁提高了41.2%),组合深梁次之;组合深梁的耗能性能最佳(比钢筋混凝土深梁的提高了27%);组合深梁比钢板深梁节省约33.3%,降低了钢材使用量。最后,对深梁的受力机理进行了分析。
     建议钢板深梁和组合深梁填充钢框架取弹性层间位移角限制为层高的1/300,弹塑性位移角限值为1/40;钢筋混凝土填充钢框架弹性层间位移角限值为层高的1/550,弹塑性层间位移角限值为1/50。建议采用跨高比属于(1,2)之间的钢筋混凝土深梁、钢板深梁和组合深梁。
     2.在外荷载作用下,深梁和钢框架组成的混合结构体系共同受力。将混合结构简化为简单的协同工作计算模型,分析深梁和钢框架之间的水平荷载分配。钢板深梁简化为:两个承载对边为固定约束,两个未承载的对边为自由边,利用能量法分析其在非均匀受压状态下的临界应力。允许钢材发生屈曲,以屈曲后强度作为极限状态,分析钢板深梁受弯屈曲后的有效高度。
     3.采用试验拟合的方法,分别建立能考虑刚度退化等特征的钢筋混凝土深梁、组合深梁和钢板深梁填充钢框架的恢复力模型,并给出恢复力模型中骨架曲线、滞回曲线各阶段刚度的退化规律。
     4.利用SAP2000有限元分析软件,对钢筋混凝土深梁填充钢框架的模型进行push-over分析并验证其可行性。同时建立一层和两层的足尺钢框架模型,分析填充钢筋混凝土深梁后的受力性能。
Shear walls and steel frame are two commonly used system for building structure. Most of reinforced concrete shear wall is brittle failure and difficult to repair after the earthquake; Lateral stiffness of steel frame is small,so it easily lead to the destruction of nonstructural members. Therefore, it is limited in high earthquake fortification zone. In order to realize the modulation of structural stiffness in a certain range, Deep Beam can be as a new anti-lateral force member or the strenghening member. It can be widely used in the new building, and strenghening or renovation building. Based on the model test, calculation analysis and push-over analysis, seismic behavior of the structure was studied.The main content is described as follows:
     1. According to model test of pure steel frame, steel plate deep beam infilled steel frame (SDBF), reinforced concrete deep beam infilled steel frame (RDBF) and composite steel and concrete deep beam infilled steel frame (CDBF) under horizontal load, deformation, hysteresis curves and so on of these structure were analyzed.These results showed that: The hysteresis loops of the tests are replete;deep beam can be used as the first defence line of earthquake-resistance and the steel frame can be used as the second;by changing span-height ratio, the initial stiffness of the structure can be ajusted within a certain range; reinforced concrete deep beam is the most prominent in raising the initial stiffness; energy dissipation of composite steel and concrete is best.Finally, the failure mechanism of the deep beams were investigated.
     The thesis suggested that elastic angular displacement limited value is 1/300 and plastic angular displacement limited value is 1/40 of SDBF and CDBF; elastic angular displacement limited value is 1/550 and plastic angular displacement limited value is 1/50 of RDBF.
     2. The deep beam and steel frame composed of hybrid structural system to stressing under the external load. In order to analyse load distribution of the deep beam and the steel frame,the hybrid structural system can be simplified as a caulation model.The steel deep beam is simplified as:two opposite edges with load clamped and the other two without load free.Analyzing the critical stress of the beam under non-uniform pressed status with the energy method.Making the post-buckling strength as ultimate limit state to analyze the effective height after the bending of the steel deep beam.
     3. According to hysteresis loops of the tests, the thesis suggested restoring force mode of RDBF,SDBF and CDBF under horizontal load. The thesis also gave the stiffness calculative formulas of exponential and hysteresis curves.
     4. Finite element model of RDBF was established by the SAP2000 software to make push-over analysis and verify the feasibility.At the same time, one layer or two layers model of full-scale steel frames were established to analyze the structure performance with reinforced concrete deep beam.
引文
[1]陈绍番,顾强.钢结构基础(第二版)[M].北京:中国建筑工业出版社,2007
    [2]张耀春,周绪红.钢结构设计原理[M].北京:高等教育出版社,2004
    [3]薛建阳.钢与混凝土组合结构[M].武汉:华中理工大学出版社,2007
    [4]张培信.钢-混凝土组合结构设计[M].上海:上海科学技术出版社,2004
    [5]钟善桐.高层钢-混凝土组合结构[M].广州:华南理工大学出版社,2003
    [6]张瑞云,刘杰.钢-混凝土组合结构的研究和实践[J].石家庄铁道学院学报,2006,19(2):1-5
    [7]杨勇,聂建国,郭子雄.核心型钢混凝土组合结构体系应用前瞻[J].四川建筑科学研究,2006,32(2):1-5
    [8]高景峰,赵万杰.中国建筑产业增长与经济发展分析[J].建筑管理现代化,2008,99(2):1-3
    [9]Antoniades K K, Salonikios T N, Kappos A J. Tests on Seismically Damaged Reinforced Concrete Walls Repaired and Strengthened Using Fiber-reinforced Polymers. Journal of Composites for Construction,2005,9(3):236-246
    [10]Astaneh-Asl A.. Seismic Behavior and Design of Steel Shear Walls[R]. Moraga CA:Structural Steel Educational Council,2001
    [11]Astaneh-Asl A..Seismic Behavior and Design of Composite Steel Plate Shear Walls[R]. Moraga CA:Structural Steel Educational Council,2002
    [12]陶红林,刘甲铭.钢-混凝土组合结构住宅建筑体系技术经济分析[J].建筑经济,2007,30(12):110-111
    [13]T. Takahashi,Y.Takemoto, T.takeda, et al.Experimental Study on Thin Steel Shear Walls and Particular Bracings under Alternative Horizontal Load [R]. Lisbon Portugal:IABSE Symposium. International Association for Bridge and Structural Engineering,1973
    [14]董子建.非加劲钢板剪力墙试验与理论研究[D].西安:西安建筑科技大学,2005
    [15]蔡克铨,林盈成,林志翰.钢板剪力墙抗震行为与设计[J].建筑钢结构进展,2007,9(5):19-25
    [16]Jonah J. Shishkin,Robert GDriver and Gilbert Y. Grondin.Analysis of Steel Plate Shear Walls Using the Modified Strip Model[J]. J. Struct. Engrg.,2009,135(11):1357-1366
    [17]In-Rak Choi and Hong-Gun Park.Steel Plate Shear Walls with Various Infill Plate Designs[J]. J. Struct. Engrg.,2009,135(7):785-796
    [18]Hong-Gun Park,Jae-Hyuk Kwack,Sang-Woo Jeon,et al.Framed Steel Plate Wall Behavior under Cyclic Lateral Loading[J].J. Struct. Engrg.,2007,133(3):378-388
    [19]Elgaaly,M.,Liu Y..Analysis of Thin-steel-plate Shear walls[J]. J. Struct. Engrg.,1997,123 (11):1487-1496
    [20]Mohamed Elgaaly.Thin Steel Plate Shear Walls Behavior and Analysis[J].Thin-Walled Structures.1998, 123(3):151-180
    [21]Adam S. Lubell, Helmut GL.Prion, Carlos E.Ventura,et al. Unstiffened Steel Plate Shear Wall Performance under Cyclic Loading[J]. Journal of structural Engineering,2000,126(4):453-460.
    [22]陈国栋郭彦林.钢板剪力墙低周反复荷载试验研究[J].建筑结构学报,2004,23(2):19-28
    [23]陈国栋,郭彦林.非加劲板抗剪极限承载力[J].工程力学,2003,20(2):49-53
    [24]兰银娟.折板钢板剪力墙抗侧力结构理论研究[D].西安:西安建筑科技大学,2006
    [25]Toko Hitaka,Chiaki Mastsui. Experimental of Study on Shear Wall with Slits[J].Journal of Structural Engineering.2003,129(5):519-528
    [26]苏磊.带缝钢板剪力墙结构分析与试验研究[D].武汉:武汉理工大学,2004
    [27]曹志亮.带缝钢板剪力墙稳定性分析[D].武汉:武汉理工大学,2004
    [28]王恒.带缝钢板剪力墙性能研究[D].西安:西安建筑科技大学,2006
    [29]袁朝庆,贺有丰,徐松芝.钢框架一带缝钢板剪力墙结构受力性能分析[J].地震工程与工程震动,2008,28(4):96-101
    [30]曹春华,郝际平,王迎春,等.开缝薄钢板剪力墙低周反复荷载试验研究[J].西安建筑科技大学学报(自然科学版),2008,40(1):46-52
    [31]钟玉柏,张素梅,马欣伯.四边简支开缝钢板剪力墙抗剪静力性研究[J].哈尔滨工业大学学报,2006,38(12):2054-2059
    [32]缪友武.两侧开缝钢板剪力墙结构性能研究[D].北京:清华大学,2004
    [33]郭彦林,缪友武,董全利.全加劲两侧开缝钢板剪力墙弹性屈曲研究[J].建筑钢结构进展,2007,9(3):58-62
    [34]缪友武,董全利,郭彦林.两侧边开缝钢板剪力墙弹性屈曲分析[J].钢结构,2007,22(9):95-98
    [35]蒋路,陈以一,汪文辉,等.足尺带缝钢板剪力墙低周往复加载试验研究Ⅰ[J].建筑结构学报,2009,30(5):57-64
    [36]蒋路,陈以一,卞宗舒.足尺带缝钢板剪力墙低周往复加载试验研究Ⅱ[J].建筑结构学报,,2009,30(5):65-71
    [37]孙飞飞,戴成华,李国强.大宽厚比开缝组合钢板墙低周反复荷载试验研究[J].建筑结构学报,2009,30(5):72-81
    [38]孙飞飞,刘桂然.钢板开圆孔的组合钢板墙结构地震反应分析与试验验证[J].建筑结构学报,2009,30(5):82-88
    [39]汪大绥,陆道渊,黄良,等.天津津塔结构设计[J].建筑结构学报(增刊),2009,(S1):72-78
    [40]ICBO. The Uniform Building Code [S]. Whittier, CA:The International Conference of Building Officials,1997
    [41]ICC. The International Building Code[S]. Falls Church, VA:International Code Council,2000
    [42]CCBFC. National Building Code of Canada[S]. Ottawa, Ontario:Canadian Commission on Building and Fire Codes, National Research Council of Canada,1995
    [43]AISC. Seismic Provisions for Structural Steel Buildings [S]. Chicago:American Institute of Steel Construction,2005
    [44]Qiuhong Zhao, Abolhassan Astaneh-Asl. Cyclic Behavior of Traditional and Innovative Composite Shear Walls[J]. Journal of Structural Engineering,2004,130(2):271-284
    [45]Kahn L F, Hanson R D. Infilled Walls for Earthquake Strengthening[J]. J. Struct. Div.1979:105(2), 283-296
    [46]Kabele P, Takeuchi S, Inaba K et al. Performance of engineered cementitious composites in repair and retrofit: analytical estimates[A]. Reinhardt HW, Namaan A, Editors. High Performance Fiber Reinforced Composites (HPFRCC 3)[C]. Cachan, Cedex, France:RILEM Publications,1999:617-627
    [47]Horii H., Kabele P., Takeuchi S., et al. On the Prediction Method for the Structural Performance of Repaired/Retrofitted Structures[A]. Mihashi H, Rokugo K, Editors. Fracture Mechanics in Concrete Structures:Proceedings of FRAMCOS-3[C].Freiburg, Germany:AEDIFICATIO Publishers, 1998:1739-1748
    [48]Kanda T, Watanabe S, Li VC. Application of pseudo strain hardening cementitious composites to shear resistant structural elements[A]. Mihashi H, Rokugo K, Editors. Fracture Mechanics in Concrete Structures:Proceedings of FRAMCOS-3[C]. Freiburg, Germany:AEDIFICATIO Publishers,1998: 1477-1490
    [49]Kesner KE. Development of Seismic Strengthening and Retrofit Strategies for Critical Facilities Using Engineered Cementitious Composite Materials[D]. Cornell University, Ithaca, NY,2003
    [50]Kyle S, DOUGLAS, Sarah L, BILLINGTON, Keith E, KESNER. Simplified modeling techn -iques for a proposed retrofit system using high-performance fiber-reinforced cementitious composites[A]. 13th World Conference on Earthquake Engineering[C]. Vancouver, B.C., Canada:Venue West Conference Services Ltd.,2004:1712-1720
    [51]郭德发,梁昔明,王芳.钢筋混凝土深梁非线性有限元分析[J].西安交通大学学报,1997,31(6):84-88
    [52]龚克.单广义位移的深梁理论和中厚板理论[J].应用数学和力学,2000,21(9):984-990
    [53]赵军,朱海堂,高丹盈.钢筋钢纤维混凝土深梁受剪承载力的试验研究[J].河南科学,2003,21(5):670-673
    [54]高丹盈,赵军,朱海堂.钢筋钢纤维混凝土深梁抗裂度的计算方法[J].水利学报,2002,11:124-128
    [55]贺小岗,关国雄.钢筋销栓模型及其在深梁分析中的应用[J].工程力学,2001,18(1):96-102
    [56]陈萌,刘辉,刘立新.钢筋混凝土梁受剪承载力的统一计算方法[J].郑州工业大学学报,2000,21(2):54-78
    [57]杨伯源,巫绪涛,李和平.剪切弯曲下短深梁位移数值计算精度的研究[J].应用力学学报,2003,20(2):145-146
    [58]黄侨,张连振,马桂军.基于塑性理论的钢筋砼简支深梁的抗剪强度研究(一)[J].工程力学,2005,22(4):167-170
    [59]黄侨,张连振,马桂军.基于塑性理论的钢筋砼简支深梁的抗剪强度研究(二)[J].工程力学,2005,(226):155-158
    [60]夏桂云,曾庆元,李传习.建立Timoshenko深梁单元的新方法[J].交通运输工程学报,2004, 4(2):27-32
    [60]夏桂云,曾庆元,李传习,等.一种考虑剪切变形的平行四边形厚/薄板通用单元[J].应用力学学报,2003,20(4):136-141
    [62]张显军,李殿斌,马桂军.上限法求解钢筋混凝土深梁极限荷载[J].黑龙江工程学院学报(自然科学版),2006,20(1):26-28
    [63]刘霞,易伟建,沈蒲生.钢筋混凝土深梁的拓扑优化模型[J].工程力学,2006,23(9):93-97
    [64]刘华新,孙荣书,张晓东.钢筋混凝土深梁抗剪承载力影响因素分析[J].武汉理工大学学报,2007,29(2):65-67
    [65]夏广政,夏冬桃,徐礼华,等.混杂纤维增强混凝土深梁受弯性能试验研究[J].华中科技大学学报(自然科学版),2007,35(11):31-33
    [66]夏广政,夏冬桃,徐礼华,等.混杂纤维增强高性能混凝土拉压比试验研究[J].重庆建筑大学学报,2007,29(5):1031-106
    [67]夏广政,夏冬桃,徐礼华,等.钢纤维和聚丙烯纤维对高强混凝土强度的影响[J].建筑结构,2008,33(12):345-350
    [68]池寅,徐礼华,夏冬桃.钢纤维混凝土深梁试验研究与非线性有限元分析[J].华中科技大学学报(城市科学版),2007,24(2):52-55
    [69]郑宏,杨飞颖,张维刚.钢板深梁屈曲分析[J].建筑科学与工程学报,2007,24(3):31-35
    [70]石宇.水平地震作用下多层冷弯薄壁型钢结构住宅的抗震性能研究[D].西安:长安大学,2009
    [71]谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态,2003,298(10):1-8
    [72]Housner G W. Behavior of Structures during Earthquake[J]. Journal of Engineering Mechanics, 1959,85(14):109-129
    [73]Raul D. Bertero,Vitelmo V. Bertero. Performance Based Seismic Engineering: the Need for a Reliable Conceptual Comprehensive Approach[J]. Earthquake Engineering and Structure Dynamics,2002, 31(3):627-652
    [74]Moehle JP. Displacement-Based Design Procedure of RC Structures Subjected to Earthquakes[J]. Earthquake Spectra, EERI,1992,8(3):403-428.
    [75]郭磊,李建中,范立础.直接基于位移的结构抗震设计理论研究进展[J].世界地震工程,2005,21(4):157-164.
    [76]Park Y.J,Ang. A. H-S. Seismic Damage Analysis of Reinforced Concrete Building[J]. Journal of Structural Engineering,1985,111(4):740-756
    [77]Fajfar P.. Equivalent Ductility Factors Taking into Account Low-cycle Fatigue[J]. Earthquake Engineering and Structural Dynamics,1992,21:837-848
    [78]吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法[J].土木工程学报,2001,34(1):44-49
    [79]欧进萍,何政,吴斌,等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动, 1999,19(1):21-30
    [80]盛明强.基于滞回耗能的结构抗震性能评价方法研究[D].上海:同济大学,2008
    [81]Shunsuke Otani. Earthquake Resistant Design of Reinforced Concrete Buildings-Past and Future [J]. Journal of Advanced Concrete Technology,2004,2(1):3-24
    [82]蔡健,周靖,禹奇才.建筑抗震设计理论研究进展[J].广州大学学报(自然科学版),2005,4(1):65-73
    [83]Kilar V., Fajfar P..Simple Push-Over Analysis of Asymmetric Building [J].Earthquake Engineering and Structural Dynamic,1997,26(2):233-249
    [84]Munshi JA., Ghosh SK... Analysis of Seismic Performance of a Code Designed Reinforced Concrete Building [J]. Engineering Structures,1998,20 (3):608-616
    [85]Saidii M.,Sozen MA..Simple Nonlinear Analysis of RC Structures[J].Engineering Structures, 1981,105(5):937-951
    [86]叶燎原,潘文.结构静力弹塑性分析(push-over)的原理和计算实例[J].建筑结构学报,2000,21(1):37-43
    [87]杨溥,李英民,王亚勇,等.结构静力弹塑性分析(push-over)方法的改进[J].建筑结构学报,2000,21(1):44-51
    [88]汪梦甫,周锡元.关于结构静力弹塑性分析(Push-over)方法中的几个问题[J].结构工程师,2002,(4):17-22
    [89]伊华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进[J].工程力学,2003,20(4):45-49
    [90]李峻,叶燎原Push-over分析法及其与非线性动力分析法的对比[J].世界地震工程,1999,15(2):34-39
    [91]侯爱波,汪梦甫.循环往复加载的push-over分析方法及其应用[J].湖南大学学报(自然科学版),2003,30(3):145-152
    [92]龚思礼.建筑抗震设计[M].北京:中国建筑工业出版社,1994
    [93]徐龙军,谢礼立,胡进军.抗震设计谱的发展及相关问题综述[J].世界地震工程,2007,23(2):46-57
    [94]胡聿贤.地震工程学[M].北京:地震出版社,1994
    [95]王松涛.现代抗震设计方法[M].北京:中国建筑工业出版社,1997
    [96]程绍革,王理,张允顺.弹塑性时程分析方法及其应用[J].建筑结构学报,2000,21(1):52-56
    [97]李云贵,绍弘,田志昌,等.多层、高层建筑结构弹塑性动力、静力分析[J].建筑结构学报,2002,23(5):56-62
    [98]钟树生,钟永慧,倪忠.高层建筑的结构时程分析[J].四川建筑,2007,27(6):169-173
    [99]李明昊.高层建筑结构的非线形时程分析[J].四川建筑,2006,26(1):119-121
    [100]王亚勇,刘小弟.结构抗震时程分析法输人地震记录的选择方法[J].建筑结构学报,1991,34(2):51-56
    [101]王亚勇.关于设计反应谱、时程法和能量方法的探讨[J].建筑结构学报,2000,21(1):21-28
    [102]董军,邓洪渊,王肇民.结构动力分析阻尼模型研究[J].世界地震工程,2000,16(4):63-69
    [103]黄宗明.结构地震反应分析中的阻尼研究[D].重庆:重庆大学,1995
    [104]JGJ99-98.高层民用建筑钢结构技术规程[S].北京:中国建筑工业出版社,1998
    [105]Kiureghian A.D. Structural Response to Stationary Excitation [J]. Engineering Mechanics,1980, 106(6):1195-1213
    [106]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004
    [107]Basu B., Gupta V. K..Seismic Response of SDOF Systems by Wavelet Modeling of Nonstationary Processes [J].Journal of Engineering Mechanics,1998,124(10):1142-1150
    [108]Basu B., Gupta V. K..On equivalent linearization using wavelet transform [J]. Journal of Vibration and Acoustics,1999,121(4):429-432
    [109]吴深,周瑞忠.基于小波变换的结构地震响应与能量计算分析[J].地震工程与工程振动,2006,26(6):24-30
    [110]曹永红,曹晖,李英民.地震动中控制钢筋混凝土框架非线性响应的小波分量[J].地震工程与工程振动,2008,28(4):106-110
    [111]刘强,周瑞忠.基于小波变换的MDOF线弹性体系地震响应分析[J].华中科技大学学报(城市科学版),2008,25(4):99-102
    [112]康谷贻.关于承载力极限状态(Ⅱ)[J].建筑结构,1996,23(2):53-57
    [113]中国建筑科学研究院.钢筋混凝土结构设计第五批课题研究报告集[M].北京:中国建筑工业出版社1996
    [114]中国建筑科学研究院.混凝土结构研究报告选集(3)[M].北京:中国建筑工业出版社,1994
    [115]管品武.钢筋混凝土框架柱塑性铰区抗剪承载力试验研究及机理分析[D].长沙:湖南大学,2000
    [116]江见鲸.钢筋混凝土非线性有限元分析.西安:陕西科学技术出版社,1994
    [117]徐伟良,吴德伦.钢筋混凝土框架全过程分析的非线性简化单元及其应用[J].建筑结构学报,1995,16(3):59-65
    [118]车惠民.部分预应力混凝土[M].重庆:西南交通大学出版社,1990
    [119]刘立新.钢筋混凝土深梁、短梁和浅梁受剪承载力的统一计算方法)[J].建筑结构学报,1995,16(4):1321
    [120]刘立新,田秋.钢筋混凝土受剪构件和受扭构件的破坏机理及受力模型的探讨[J].郑州工学院学报,1994,15(4):1-11
    [121]Adam S.Lubell,Helmet G.L.Prion,Carlos E.Ventura,et al.Unstiffened steel plate shear wall performance under cyclic loading [J].Journal of structural Engineering,2000,126(4):453-600
    [122]Toko Hitaka and Chiaki Matsui. Experimental study on steel shear wall with slits[J] Journal of Structural Engineering,2003,129(5):586-595
    [123]陈富生,邱国华,范重.高层建筑钢结构设计[M].北京:中国建筑工业出版社,2004
    [124]刘大海.高楼钢结构设计[M].北京:中国建筑工业出版社,2004
    [125]陈绍蕃.钢结构稳定设计指南(第二版)[M].北京:中国建筑工业出版社,2004
    [126]曲庆璋.弹性板理论[M].北京:人民交通出版社,2000
    [127]沈惠申.板壳后屈曲行为[M].上海:上海科学技术出版社,2002
    [128]肖明心.板的稳定理论[M].成都:四川科学技术出版社,1993
    [129]陈骥.钢结构稳定理论与设计(第二版)[M].北京:科学技术出版社,2003
    [130]付宝莲.弹性力学中的能量原理及其应用[M].北京:科学技术出版社,2004
    [131]吴连元.板壳稳定性理论[M].武汉:华中理工大学出版社,1996
    [132]郑宏.钢构件非线性稳定[M].北京:科学出版社,2002
    [133]郭红霞,陈应波,卢哲安,等.大跨预应力混凝土框架结构[J].工业建筑,2008,38(12):44-48
    [134]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南[M].北京:人民交通出版社,2008
    [135]孙勇,张志强,李爱群.基于侧向力加载方式的Pushover分析方法[J].工业建筑,2009,39(5):47-52
    [136]刘鹏飞,孙洪波.青岛财富中心超限高层Pushover分析[J].青岛理工大学学报,2009,30(3):69-74
    [137]孙勇,张志强,李爱群.静力弹塑性分析方法基于水平位移加载模式的研究[J].工程抗震与加固改造,2009,31(1):74-80
    [138]陈宇,张明,沈蒲生.带加强层框架核心筒结构的Pushover分析[J].工程抗震与加固改造,2008,30(6):33-40
    [139]Chopra A K,Goel R K. A model Pushover analysis procedure for estimating seismic is demands for buildings[J].Earthquake Engineering and structure Dynamics,2002,31(3):561-582