H_2 O_2 /SCN~- /Cu~(2+)/luminol 反应体系 化学纰光动力学与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在碱性介质条件下铜离子催化过氧化氢氧化硫氰酸盐反应是为数不多的几个在封闭以及开放体系都存在非线性振荡的体系。本文利用化学发光检测手段、电位在线测量技术测定了体系中丰富的非线性现象,并系统地考察了反应物浓度、流速以及温度等条件对体系非线性行为的影响。另外,采用毛细管电泳手段对碱性条件下过氧化氢氧化硫氰酸盐过程中反应物、中间产物以及生成物进行跟踪测量,提出了反应机理模型并进行了机理分析和数值模拟,与实验现象基本吻合。具体内容有如下几点:
     ⑴利用低浓度的鲁米诺作为化学发光探针,系统地测量了封闭体系中各组分浓度对振荡反应体系非线性行为的影响。实验发现,改变组分浓度对振荡曲线的频率和振幅都有很大的影响。铜离子的浓度的增加使得曲线周期缩短,振幅减小,而振荡寿命基本不变(当浓度很高时,振荡寿命缩短);体系诱导期随着硫氰根浓度增大而显著增加,主要是由于硫氰根的存在抑制了铜离子催化过氧化氢分解的催化活性,体系振荡寿命因为硫氰根浓度增大而使体系pH值降低的更快而缩短,在较强碱性条件下,低浓度的硫氰根有利于振荡反应的进行;碱性条件为振荡反应进行提供了必要的介质环境,当pH<9或者pH>13时,振荡反应终止。
     ⑵采用开放体系,系统考察对振荡曲线的振幅、频率等的影响因素进行了半定量分析,并对振荡曲线上两个振荡峰的可能形成机制进行推测,作者认为峰Ⅰ的形成是由于体系中羟基自由基氧化鲁米诺产生化学发光并叠加在峰Ⅱ上形成,而峰Ⅱ的化学发光峰应该为超氧自由基氧化鲁米诺所引起,两种自由基的生成与体系中铜离子的价态的相互转化密切相关,当[Cu~Ⅰ(SCN)_n]~(1-n)转化为[Cu~Ⅱ(SCN)_n]~(2-n)时生成羟基自由基,而由Cu~ⅠHO_2→[Cu~Ⅰ(SCN)_n]~(1-n)时产生超氧自由基。当向开放体系中加入少量的EDTA时,峰Ⅰ的振幅迅速减小而峰Ⅱ却基本不变。随着EDTA浓度的增加,降低了体系中Cu(Ⅱ)的有效浓度,导致两峰强度降低。实验还表明,EDTA的加入对体系的振荡周期基本不影响,这可归于Cu(Ⅱ)-EDTA配合物十分稳定,而Cu(Ⅱ)-EDTA与Cu(Ⅱ)之间的相互转变速度很快,不影响整个反应体系的周期变化。
     ⑶首次采用卤离子选择性电极测定体系中电位动力学曲线,发现与传统的铂电位振荡曲线的相位明显不同,而且其电位的改变与体系中pH值变化关联度小,有利于对振荡核心物种的监测。与化学发光研究方法相比较,最明显的特点是碘离子选择性电位动力学曲线的位置(即电极电位的大小)受到反应物浓度的影响很小,几乎不变,据此推测应与振荡体系中关键自催化中间产物的含量密切相关,为以后对该体系的深入研究提供新的方法。
     ⑷利用毛细管电泳分离分析技术,实时检测在碱性pH=9.85时,过氧化氢氧化硫氰根反应体系的反应物、中间产物以及生成物随时间变化的动力学曲线。与前人在酸性和中性条件下实验相比,在碱性条件下,无催化的过氧化氢氧化硫氰根反应速度很慢,硫氰根的初次氧化生成次硫氰根为反应的速控步,在pH=9.85时,该反应的表观反应速率为4×10~(-5) mol~(-1)min~(-1)。
     次硫氰根自身的循环以及与铜离子催化过氧化氢分解反应之间的相互耦合机制是形成H_2O_2/SCN~-/Cu~(2+)/OH~-体系非线性现象的根本原因,在前人工作的基础上,作者提出自催化反应以及负反馈机制以解释H_2O_2/SCN~-/Cu~(2+)/OH~-体系复杂反应动力学行为。
     该论文有图43幅,表4个,参考文献225篇。
The thiocyanate oxidation by hydrogen peroxide under copper ion catalysis in basic solution is a few systems that exists oscillatory behaviors in a batch and a continued stirred tank reactor (CSTR). In this dissertation, the numerous nonlinear phenomenons has been acquired by chemiluminescence and potential monitoring measurement and the effects of variety of factors such as concentration of ingredient, flow rate and temperature have discussed systematically and detailed. In addition, the capillary electrophoresis technique was also applied in the thiocyanate oxidation by hydrogen peroxide in basic solutions, the reaction substance, the intermediate and the final products were monitored in the reaction process. The reaction mechanisms were put forward to elaborate the experiment results. The simulation results wrer agree with the experiment data. The main contents including the following parts:
     1. The ingredient effects on the nonlinear behaviors were systematically surveyed in a batch by means of chemiluminescence technique using low concentration luminol as the probe. It has found that the ingredient concentration has obvious effects on the oscillatory frequency and amplitude. The oscillation periods decrease with the copper(Ⅱ) concentration increase while the total oscillatory life keep constant (the oscillatory life cut down at the higher copper(Ⅱ) concentration). The induction periods were dramatically increased with the raised thiocyanate concentration. The increased suppression on catalytic activity of copper(Ⅱ) at higher thiocyanate concentration and the quick pH drops were the main reasons for this appearance. At high pH values, the low thiocyanate concentration helps the oscillatory reaction. The appropriate basic condition is necessary for the oscillatory reaction and the oscillations are disappeared at pH<9 or pH>13.
     2. The influences of the ingredient concentrations on the oscillatory behaviors were studied through the amplitude, the period and peak height as the function of measure parameters in a CSTR. The dynamical structure of two peaks during a period was discussed in detail. The key species involving in the two-transformation process are inferred to be superoxide radical and hydroxyl radical generated in the system. The two radical generations were closely related to the copper valence conversion in the oscillatory system. When EDTA added in the system, the height of the two peaks were reduced due to the lessened free Cu(Ⅱ) content. It has also found that the EDTA addition have little effect on the oscillatory periods. This phenomenon may be due to the stable Cu(Ⅱ)-EDTA compound and the Cu(Ⅱ)-EDTA(?) Cu(Ⅱ) transformation are too fast to affect the periods.
     3. The halide ion selective electrode potential was first applied in the determination of the kinetic curves of the system, the obvious phase difference from the traditionally Pt electrode was found and the correlation of the iodide electrode and pH was little, hence, the core substance was easily determined. The Pt、bromide、iodide electrode potential kinetic curves were investigated systematic and the similar conclusions have received. It has guessed that the potential was closely related to the core oscillatory substance.
     4. Based on the capillary electrophoresis(CE) analysis technique, the kinetic curves of reactant, the intermediate and the product in the thiocyanate oxidation by hydrogen peroxide reaction at basic solution has been acquired. Compared to reaction in the neutral and acid media, the reaction rate is slower and the first thiocyanate oxidation by hydrogen peroxide is the key reaction step. It has found that the reaction apparent rate constant is 4×10~(-5) mol~(-1)min~(-1)at pH = 9.85.
     The mutual coupling of the recycles of OSCN~- and free radical generated by hydrogen peroxide decomposition under copper ion catalysis were the key reaction step in the H_2O_2/SCN~-/Cu~(2+)/OH~- complex kinetic system. The author has proposed the mechanism for the complex reaction based on the abundant nonlinear phenomena.
     This dissertation has 43 graphs, 4 tables, and 225 references.
引文
[1] Sagues, F.; Epstein, I. R. Nonlinear chemical dynamics[J]. Dalton Trans., 2003, (7): 1201-1217.
    [2]刘海苗.碘酸盐-亚硫酸盐-硫代硫酸盐反应体系的时空动力学[D].中国矿业大学, 2010.
    [3] Epstein, I. R.; Showalter, K. Nonlinear chemical dynamics: oscillations, patterns and chaos[J]. J. Phys. Chem., 1996, 100(31) : 13132-13147.
    [4]冯长根,刘赵森,曾庆轩.非线性化学动力学的研究现状;科技进步与学科发展“科学技术面向新世纪”学术年会论文集[C].北京, 1998.
    [5] Soh, S.; Byrska, M.; Kandere-Grzybowska, K. et. al. Reaction-diffusion systems in intracellular molecular transport and control[J]. Angew. Chem. Int. Ed. Engl., 2010, 49(25): 4170-4198.
    [6] Mikhailov, A. S.; Showalter, K. Control of waves, patterns and turbulence in chemical systems[J]. Physics Reports, 2006, 425(2-3): 79-194.
    [7] Borowiak, M. A. Design of complexity of industrial catalytic systems-impulse oscillation model studies[J]. J. Mol. Cataly.A, 2000, 156(1-2): 21-57.
    [8] Kondepudi, D.K.; Asakura, K. Chiral autocatalysis, spontaneous symmetry breaking and stochastic behavior [J]. Acc. Chem. Res., 2001, 34(12): 946-954.
    [9]冯长根,曾庆轩.化学振荡混沌与化学波[M].北京理工大学出版社, 2004.
    [10]李祥云.化学振荡反应研究简史[J].化学通报, 1986, 11: 56-59.
    [11] Epstein, I. R.; Pojmanm, J. A. An introduction to nonlinear chemical dynamics: oscillations, waves, patterns and chaos[M]. Oxford university press, 1998.
    [12]毛善成.硫化钠氧化的复杂反应动力学与机理[D].中国矿业大学, 2009.
    [13]马娟.复杂化学体系中涨落效应及其调控的理论研究[D].中国科学技术大学, 2009.
    [14]赵刚.复杂化学体系中若干非线性动力学问题的研究[D].中国科学技术大学, 2006.
    [15] Epstein I. R.; Pojman, J. A. An introduction to nonlinear chemical dynamics[M]. New York: Oxford University Press, 1998.
    [16] Bray, W. C. A periodic reaction in homogeneous solution and its relation to catalysis[J]. J. Am. Chem. Soc., 1921, 43(6): 1262-1267.
    [17] Belousov, B. P. A. periodic reaction and its mechanism [J]. Compilation of Abstracts on Radiation Medicine. 1959, 147: 145.
    [18] Zhabotinsky, A. M. Periodic processes of malonic acid oxidation in a liquid phase[J]. Biofizika, 1964, 9: 306–311.
    [19]高庆宇,蔡遵生,赵学庄.非线性化学反应动力学[J].化学进展, 1997, 9: 59- 68.
    [20] Degn, H. Effect of bromine derivatives of malonic acid on the oscillating reaction of malonic acidcerium ions and bromate[J]. Nature, 1967, 213: 589-590.
    [21] Jahnke, W.; Skaggs, W. E.; Winfree, A. T. Chemlcal vortex dynamics in the Belousov-Zhabotlnsky reaction and in the two-variable oregonator model[J]. J. Phys. Chem., 1989, 93: 740-749.
    [22] Yamaguchi, T.; Kuhnert, L.; Nagy-Ungvarai, Z. et. al. Gel systems for the Belousov-Zhabotlnskii reaction[J]. J. Phys. Chem., 1991, 95: 5831-5837.
    [23] Maselko, J.; Reckley, J. S.; Showalter, K. Regular and irregular spatial patterns in an immobilized-catalyst Belousov-Zhabotinsky reaction[J]. J. Phys. Chem., 1989, 93: 2774-2780.
    [24] RamReddy, M. K.; Dahlem, M.; Zykov,V. S. et. al. The effect of an illumination jump on wave propagation in the Ru-catalyzed Belousov-Zhabotinsky reaction[J]. Chem. Phys. Lett., 1995, 236: 111-116.
    [25] Field, R. J.; Noyes, R. M. Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinshy reaction[J]. J. Am. Chem. Soc., 1974, 96: 2001-2006.
    [26] Muller, S. C.; Plesser T.; Hess, B. Two-dimensional spectrophotometry of spiral wave propagation in the Belousove-Zhabotinskii reaction[J]. Physica D., 1987, 24: 71-86.
    [27] Nagy-Ungvarai, Z.; Muller, S. C.; Tyson, J. J. et. al. Experimental study of the chemical waves in the Ce-catalyzed Belousov-Zhabotlnskii reaction. 2. Concentration profiles[J]. J. Phys. Chem., 1989, 93; 2760-2764.
    [28] Agladze, K. I.; Krinsky, V. I.; Pertsov, A. M. Chaos in the non-stirred Belousov-Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures[J]. Nature, 1984, 308: 834-835.
    [29] Bi, Q. S. The mechanism of bursting phenomena in Belousov-Zhabotinsky(BZ) chemical reaction with multiple time scales[J]. Chin. Sci., 2010, 53(3): 748-760.
    [30] Li, Q. S.; Zhu, R. Chaos to periodicity and periodicity to chaos by periodic perturbations in the Belousov-Zhabotinsky reaction[J]. Chaos, 2004, 19: 195-201.
    [31]薛可轶,高庆宇,刘兵等. H_2O_2-Na2S2O3反应对pH和反应物起始浓度比的依赖性[J].物理化学学报, 2004, 20(7): 772-775.
    [32]陆永超.反应过程中硫氧化合物的检测和动力学分析[D].中国矿业大学, 2010
    [33]高庆宇,孙康,李兰萍等.从铜离子的作用研究Orban振荡体系中的动力学特征[J].高等学校化学学报, 2001, 22(6): 1025-1027.
    [34] Rabai, G., Beck, M. T.; Kustin, K. et al. Systematic design of chemical oscillations. 49. sustained and damped pH oscillation in the periodate thiosulfate reaction in a contious-flow stirred tank reactor[J]. J. Phys. Chem., 1989, 93(7) : 2853-2858.
    [35] Orban, M.; Epstein, I.R. Systematic design of chemical oscillations. 26. a new halogen-free chemical oscillator-the reaction between sufide ion and hydrogen-peroxide in a CSTR[J]. J. Am. Chem.Soc., 1985, 107(8) : 2302-2305.
    [36] Orban, M.; Epstein, I.R. Systematic design of chemical oscillations. 39. chemical oscillators in group VIA - the Cu(Ⅱ)-catalyzed reaction between hydrogenperoxide and thiosulfate ion[J]. J. Am. Chem. Soc., 1987, 109(1): 101-106.
    [37] Liu, H. M.; Xie, J. X.; Yuan, L. Temperature oscillations, complex oscillations, and elimination of extraordinary temperature sensitivity in the iodate-sulfite-thiosulfate flow system[J]. J. Phys. Chem. A. 2009, 113(42): 11295-11300.
    [38] Horvath, A. K. Revised explanation of the pH oscillations in the iodate-thiosulfate-sulfite system[J]. J. Phys. Chem., 2008, 112(17): 3935-3942.
    [39] Orban, M. Oscillations and bistability in the Cu(Ⅱ)-catalyzed reaction between H_2O_2 and KSCN[J]. J. Am. Chem. Soc., 1986, 108: 6893-6898.
    [40] Amrehn, J.; Resch, P.; Schneider, F. W. Oscillating chemiluminescence with luminol in the continuous flow stirred tank reactor[J]. J. Phys. Chem., 1988, 92: 3318-3320.
    [41]Sattar, S; Epstein, I. R. Interaction of luminol with the oscillating system H_2O_2-KSCN~-CuSO_4-NaOH[J]. J. Phys. Chem. , 1990, 94: 275-277.
    [42]Luo, Y.; Kustin, K.; Epstein, I. R. Mechanistic study of oscillations and bistability in the Cu(Ⅱ)-catalyzed reaction between H_2O_2 and KSCN[J]. J. Am. Chem. Soc., 1989, 111: 4541-4548.
    [43] Sun, T.; Guo, H. R.; Xu, H. L. Influence of BSA on Cu~(2+)-SCN~-- H_2O_2 chemical oscillating system[J]. Chem. J. Chin. Univ., 2007, 28(5): 856-858
    [44] Zhao, C.; Zheng, J.; Xie, J. et.al. Investigations of different chemiluminescent peaks in H_2O_2-SCN~--Cu~(2+)-OH--luminol flow system[J] Luminescence, 2011, 26(2): 130-135
    [45] Wei, Q.L.; Chen, L.; Wu, Q.L. et. al. State-transition in the chemical birhymicity of CuSO_4- H_2O_2-KSCN~-NaOH reaction system by modulating flow rate[J]. Chem. J. Chin. Univ., 2000, 21(9): 1432-1436.
    [46] Orban, M.; Kurin-Csorgei, K.; Rabai, G. et. al. Mechanistic studies of oscillatory copper(Ⅱ) catalyzed oxidation reactions of sulfur compounds[C]. Chemical Engineering Science Symposium on NonLinear Dynamics in Chemical and Bioengineering Processes, 2000, 55(2)SI: 267-273
    [47] JimenezPrieto, R.; Silva, M.; PerezBendito, D. Determination of gallic acid by an oscillating chemical reaction using the analyte pulse perturbation technique[J]. Anal. Chim. Acta, 1996, 321(1): 53-60
    [48] Iranifam, M.; Segundo, M. A.; Santos J. L. M. et. al. Oscillating chemiluminescence systems: state of the art[J]. Luminescence, 2010, 25(6): 409-418.
    [49] Kiatisevi, S.; Maisch, S. Study of the oscillation and luminol chemiluminescence in the H_2O_2-KSCN~-CuSO_4-NaOH system[J]. Chem. Phys. Lett. 2010, 499(1-3):173-177.
    [50] Wisniewski, A.; Pekala, K.; Orlik, M. Kinetic model of the H_2O_2-SCN~--OH~--Cu~(2+) oscillator and Its application to the interpretation of the potentiometric responses of various inert electrodes monitoring the reaction course[J]. J. Phys. Chem. A, 2010, 114(1): 183-190.
    [51] Pekala, K.; Jurczakowski, R.; Orlik, M. On the interpretation of the potentiometric response of the inert solid electrodes in the monitoring of the oscillatory processes involving hydrogen peroxide[J]. J. Solid State Electrochem., 2010, 14(1): 27-34.
    [52] Samadi-Maybodi, A. Ourad, S.M., Studies of visible oscillating chemiluminescence with a luminol-H_2O_2-KSCN~-CuSO_4-NaOH system in batch reactor[J]. Luminescence, 2003, 18: 42-48.
    [53] Samadi-Maybodi. A.; Amiri, M. K. T., Studies of oscillating chemical in the H_2O_2- KSCN~- CuSO_4- NaOH system using a conductometry method[J]. Transition Mental Chemistry, 2004 , 29( 7) : 769-773.
    [54] Samadi-Maybodi, A.; Naseri, N.; Chaichi, M. J. Fluorimetry studies of oscillating chemiluminescence in the luminol H_2O_2- KSCN~- CuSO_4 -TMAOH system[J]. J. Fluor., 2005 15(2) 117-122.
    [55] Sorouraddin, M. H.; Iranifam, M. Oscillating chemiluminescence with thiosemicarbazide in a batch reactor[J]. Luminescence , 2008, 23: 303-308.
    [56] Sorouraddin, M. H.; Iranifam, M., Imani-Nabiyyi, A. Study of the enhancement of a new chemiluminescence reaction and its application to determination ofβ-lactam antibiotics [J]. Lumi-nescence, 2009, 24: 102-107.
    [57] Samadi-Maybodi, A.; Akhoondi, R. Luminol/ H_2O_2/ KSCN/ CuSO_4 oscillating chemilumine-scence system in the presence of complexing agents[J]. Z. Anorg. Allg. Chem., 2009, 635: 593-597.
    [58] Samadi-Maybodi, A.; Akhoondi, R. Studies of visible oscillating chemiluminescence in luminol-H_2O_2-KSCN~-CuSO_4 system using 2-hydroxyethyl trimethylammonium hydroxide[J]. Luminescence, 2008, 23: 42-48.
    [59]高庆宇,林娟娟,马克勤等. CSTR中H_2O_2-KSCN~-CuSO_4非线性反应体系的研究[J].物理化学学报, 1995, 11(6): 488-490.
    [60]高庆宇,薛万华,林娟娟等. H_2O_2-KSCN~-CuSO_4-NaOH非线性反应在封闭体系中的新现象[J].科学通报, 1996, 41(14): 1289-1292.
    [61] Gao, Q.; Xue, W.; Lin, J. et. al. New phenomena of H_2O_2-KSCN~-CuSO_4-NaOH nonlinear chemical reaction in a batch reactor[J]. Chin. Sci. Bull., 1996, 41(23): 40-42.
    [62]高庆宇,汪跃民,臧稚茄等.硫化合物与H_2O_2在非催化反应中的非线性行为[J].物理化学学报, 1996, 12(1): 1-3.
    [63] Orlik, M. Self-organization in nonlinear dynamical systems and its relation to the materials science [J]. J. Solid State Electrochem., 2009, 13: 245-261.
    [64] Field, R. J.; Koros, E.; Noyes, R. M. Oscillations in chemical systems.Ⅱ. through analysis of temporal oscillation in the bromate-cerium-malonic acid system[J]. J. Am. Chem. Soc., 1972, 94: 8649.
    [65] Epstein, I. R.; Kustin, K. Desigen of inorganic chemical oscillators[J]. Chem. Mater. Sci. 1984, 56: 1-33.
    [66] Schneider, F.W. Periodic pertubations of chemical oscillators experiments[J]. Ann. Rev. Phys. Chem.,1985, 36: 347-378.
    [67] Vidal, C.; Hanusse, P. Nonequilibrium behavior in isothermal liquid chemical–systems[J]. Int. Rev. Phys. Chem., 1986, 5(1): 1-55.
    [68] Noyes, R. M.; Field, R.; Koros, E. Oscillation in chemical systems. I. detailed mechanism in a system showing temporal oscillations[J]. J. Am. Chem. Soc., 1972, 94(4) : 1394-1395.
    [69] Luo, Y.; Orban, M.; Kustin, K. et. al. Mechanistic study of oscillations and bistability in the copper(Ⅱ)-catalyzed reaction between hydrogen peroxide and potassium thiocyanate[J]. J. Am. Chem. Soc., 1989, 111(13): 4541-4548.
    [70]贺占博.胶体溶液对振荡反应的影响及新型化学振荡器设计[D].北京大学, 1991.
    [71] Aziz, N.; Novotny, J.; Oborna, I. et. al. Comparison of chemiluminescence and flow cytometry in the estimation of reactive oxygen and nitrogen species in human semen[J]. Fertility and Sterility, 2010, 94(7): 2604-2608.
    [72] Min, L.; Chen, X.; Wu, X.Z. Comparison of chemiluminescence from luminol solution and luminol-TiO2 suspension after illumination of a 355 nm pulse laser[J]. Luminescence, 2010, 25(5): 355-359.
    [73] Kawata, Y.; Kodamatani, H.; Yamazaki, S. et. al. The catalysis of cobalt(Ⅲ) complexes in the chemiluminescent reaction of luminol[J]. Bunseki Kangku, 2010, 59(8): 665-671.
    [74] Garcia, S. F.; Navas, D.A.; Delgado,T. C. et. al. Determination of asulam by fast stopped-flow chemiluminescence inhibition of luminol/peroxidase[J]. Talanta, 2008, 77(1): 294-297.
    [75] Yang, P.; Chen, Y.; Zhu, Q. et. al. Sensitive chemiluminescence method for the determination of glutathione, L-cysteine and 6-mercaptopurine[J]. MicroChimica Acta, 2008, 163(3-4): 263-269.
    [76] Hu, Y.; Zhang, Z.; Yang, C. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method[J]. Ultrsonics Sonochem., 2008, 15(5): 665-672.
    [77] Mumbengegwi, D. R.; Li, Q.; Li, C. et. al. Evidence for a superoxide permeability pathway in endosomal membranes[J]. Mol. Cell. Bio., 2008, 28(11): 3700-3712.
    [78] Liu, Y. M.; Zheng, Y. L.; Cao, J. T. et. al. Sensitive detection of tumor marker CA15-3 in human serum by capillary electrophoretic immunoassay with chemiluminescence detection[J]. J. Sep. Sci., 2008, 31(6-7): 1151-1155.
    [79] Sassolas, A.; Blum, L.J.; Leca-Bouvier, B. D. Electrogeneration of polyluminol andchemiluminescence for new disposable reagentless optical sensors[J]. Anal. Bioanal. Chem. 2008, 390(3): 865-871.
    [80] Hu, Y.; Zhang, Z.; Yang, C. A sensitive chemiluminescence method for the determination of H_2O_2 in exhaled breath condensate[J]. Anal. Sci. 2008, 24(2): 201-205.
    [81] Navas, D.; Bracho, V.; Algarra, M. et. al. Chemiluminometric determination of the pesticide pirimicarb by a flow injection analysis assembly[J]. Anal. Lett., 2008, 41(17): 3210-3220.
    [82] Nakamura, H.; Abe, Y.; Koizumi, R. et. al. A chemiluminescence biochemical oxygen demand measuring method[J]. Anal. Chim. Acta, 2007, 602(1): 94-100.
    [83] Tao, O.; Wang, Z.; Zhao, H. et.al. Direct chemiluminescent imaging detection of human serum proteins in two-dimensional polyacrylamide gel electrophoresis[J]. Proteomics, 2007, 7(19): 3481-3490.
    [84] Ando, Y.; Niwa, K.; Yamada, N. et. al. Development of a quantitative bio/chemiluminescence spectrometer determining quantum yields: Reexamination of the aqueous luminol chemiluminescence standard[J]. Photochem. Photobio., 2007, 83(5): 1205-1210.
    [85] Wingert, P. A.; Mizukami, H.; Ostafin, A. E. Enhanced chemiluminescent resonance energy transfer in hollow calcium phosphate nanoreactors and the detection of hydrogen peroxide[J]. Nanotechology, 2007, 18(29): 295707.
    [86] Tahirovic, A.; Copra, A.; Omanovic-Miklicanin, E. et. al. A chemiluminescence sensor for the determination of hydrogen peroxide[J]. Talanta, 2007, 72(4): 1378-1385.
    [87] Nakayama, M.; Saito, K.; Sato, E. et. al. Radical generation by the nonenzymatic reaction of methylglyoxal and hydrogen peroxide[J]. Redox Report, 2007, 12(3): 125-133.
    [88] Souza, J. G.; Tomei, R. R.; Kanashiro, A. et. al. Ethanolic crude extract and flavonoids isolated from Alternanthera maritima: Neutrophil chemilummescence inhibition and free radical scavenging activity[J]. Zeitschrift, 2007, 62(5-6): 339-347.
    [89] Yannis, D.; Yannis, L. L. Effect of the luminol signal enhancer selection on the curve parameters of an immunoassay and the chemiluminescence intensity and kinetics[J]. Talanta, 2007, 71(2): 906-910.
    [90]刘军利.化学振荡反应研究进展[J].化学通报, 1987, 11: 1-4.
    [91]孙传庆,商韬,刘卫兵.化学振荡反应及其应用[J].陕西师范大学学报(自然科学版), 2004 , 32: 95-98.
    [92]秦永惠.化学振荡反应的应用[J].大学化学, 1991, 6(1): 56-57.
    [93] Zhang, K.; Ma, W. H.; Cai, R.X. et. al. Determination of riboflavin by perturbation of active oxygen on a chemical oscillating reaction [J].Anal. Chim. Acta , 2000 , 413(1): 115-123.
    [94] Jimenez-Prieeto, R.; Sliva, M.; Pere-Bendito, D. Appliation of oscillating reaction baseddetermination to the analysis of real samples[J]. Analyst, 1997, 122: 287-292.
    [95] Gao, J. Z.; Li, Q. Z.; Wang, W. et. al. Determination of L-valine based on an oscillating chemical reaction[J]. Electroanalysis, 2002, 14 (17): 1191-1196.
    [95] Ren, J.; Gao, J. Z.; Suo, H. et. al. Determination of heroin based on analyte pulse perturbation to an oscillating chemical reaction[J]. Chem. Res. Chin. Univ., 2004, 20(5): 534-538.
    [97] Gao, J.; Yang, H ; Liu, X. H.; et. al. Determination of glutamic acid by an oscillating chemical reaction using the analyte pulse perturbation technique[J]. Talanta, 2002, 57(1): 105-114.
    [98]孙涛,郭洪瑞许环麟等.牛血清白蛋白对Cu~(2+)-SCN~-H_2O_2化学振荡系统影响作用的初步研究[J].高等学校化学学报, 2007, 28(5) : 856-858.
    [99] Gao, J.; Lv, D.; Sun, H.; et. al. Determination of L-aspartic acid by using the Cu(Ⅱ)-catalyzed oscillating reaction[J]. J. Barzilian Chem. Soc. 2009, 20(10): 1827-1832.
    [100] Gao, J. Z.; Sun, K. J. ; Yang, W. et. al. Determination of p-nitrobenzene-azo-naphthol by an oscillating chemical reaction using the analyte pulse perturbation technique[J]. Centr. Eur. J. Chem. 2005, 3(3): 502-510.
    [101] Keresztessy, A.; Nagy, I. P.; Bazsa, G. Traveling waves in the iodate-sulfite and bromate-sulfite systems[J]. J. Phys. Chem., 1995, 99 (15): 5379-5384.
    [102] Toth, A.; Gaspar, V.; Showalter, K. Signal transmission in chemical systems: propagation of chemical waves through capillary tubes[J]. J. Phys. Chem., 1994, 98 (2): 522-531.
    [103] Zakin, A.N.; Zhabotinsky, A.M. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system[J]. Nature, 1970, 225: 535.
    [104] Ouyang, Q.; Boissonnade, J.; Roux, J.C. Sustained reaction-diffusion structures in an open reactor[J]. Phys. Lett. A , 1989, 134(5): 282-286.
    [105] Noszticzius, Z.; Horsthemke, W.; Mccormick, W.D. Sustained chemical waves in an annular gel reactor– a chemical pinwheel[J]. Nature, 1987, 329(6140) : 619-620.
    [106] Castets, V.; Dulos, E.; Boissonade, J. et. al. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern[J]. Phys. Rev. Lett., 1990, 64: 2953-2956.
    [107]Ouyang, Q.; Flessellesn, J. M. Transition from spirals to defect turbulence driven by a convective instability[J]. Nature, 1996, 379: 143-146.
    [108] Tam, W. Y.; Vastano, J. A.; Swinney, H. L. et. al. Regular and chaotic chemical spatiotemporal patterns[J]. Phys. Rev. Lett., 1988, 61: 2163-2166.
    [109] Míguez, D. G.; Pérez-Villar V.; Munuzuri, A. P. Turing instability controlled by spatiotemporal imposed dynamics[J]. Phys. Rev. E., 2005, 71: 066217.
    [110] Bansagi, T.; Jr. Sama, A. S.; Epstein, I. R. et. al. Rearrangement dynamics of fishbonelike Turing patterns generated by spatial periodic forcing[J]. Phys. Rev. E., 2010, 81: 066207.
    [111] Szalai, I.; Gauffre, F.; Labrot, V. et. al.; Spatial bistability in a pH autocatalytic system: from long to short range activation[J]. J. Phys. Chem. A., 2005, 109 (35): 7843-7849.
    [112] Szalai, I.; De Kepper, P. Spatial bistability oscillations and excitability in the Landolt reaction[J]. Phys. Chem. Chem. Phys., 2006, 8: 1105-1110.
    [113] Szalai, I.; De Kepper, P. Turing patterns: spatial bistability and front instabilities in a reaction-diffusion system[J]. J. Phys. Chem. A , 2004, 108 (25): 5315-5321.
    [114] Blanchedeau, P.; Boissonade, J.; De Kepper, P. Theoretical and experimental studies of spatial bistability in the chlorine-dioxide–iodide reaction[J]. Physica D, 2000, 147(3-4): 283-299. 115 Fuentes, M.; Kuperman, M. N.; Boissonade, J. et al. Dynamical effects induced by long range activation in a nonequilibrium reaction-diffusion system[J]. Phys. Rev. E., 1991, 66: 56205.
    [116] Kshirsagar, G.; Noszticzius, Z.; McCormick, W. D. Swinney, H. L. Spatial patterns in a uniformly fed membrane reactor[J]. Physica D: 1991, 49(1-2): 5-12.
    [117] Park, J. S.; Lee, K. J. Line defects mediated complex oscillatory spiral waves in a chemical system[J]. Phys. Rev. E., 2006, 73: 066219.
    [118] Ouyang, Q.; Swinney, H. L. Transition from a uniform state to hexagonal andatriped Turing patterns[J]. Nature, 1991, 352(6336): 610-612.
    [119] Marts, B.; Martinez, K.; Lin, A. L. Front dynamics in an oscillatory bistable Belousov-Zhabotinsky chemical reaction[J]. Phys. Rev. E., 2004, 70: 056223.
    [120] Berenstein, I.; Dolnik, M.; Zhabotinsky, A.M. et. al. Spatial periodic perturbation of Turing pattern development using a striped mask[J]. J. Phys. Chem. A, 2003, 107(22): 4428-4435.
    [121] Berenstein, I.; Yang, L.; Dolnik, M.; et. al. Superlattice Turing structures in a photosensitive reaction-diffusion system[J]. Phys. Rev. Lett., 2003, 91(5) : 058302.
    [122] Nosztius, Z.; Qi, O. Y.; Mccormick, W. D. Effect of Turing pattern indicators on CIMA oscillatiors [J]. J. Phys. Chem., 96(15): 6302-6307.
    [123] Prypsztejn, H. E.; Stratton, D. Chemiluminescent oscillating demonstrations: the chemical buoy, the lighting wave and the ghostly cylinder[J]. J. Chem. Educ., 2005, 82 (1): 53-55.
    [124] Pek?ala, K.; Jurczakowski, B.; Lewera, A. et. al.. Luminescent chemical waves in the Cu(Ⅱ)-catalyzed oscillatory oxidation of SCN- ions with hydrogen peroxide[J]. J. Phys. Chem. A, 2007, 111 (18): 3439-3442.
    [125] Pekala, K.; Wisniewski, A.; Jurczakowski, R. et.al. Monitoring of spatiotemporal patterns in the oscillatory chemical reactions with the infrared camera: experiments and model interpretation[J]. J. Phys. Chem. A, 2010, 114 (30): 7903-7911.
    [126] Malomo, S. O.; Ore, A.; Yakubu, M. T. In vitro and in vivo antioxidant activities of the aqueous extract of celosia argentea leaves[J] Ind. J. pharm., 2011, 43(3): 278-285.
    [127] Sancy, M.; Pavez, J.; Gulppi, M. A.; et. al. Optimizing the electrocatalytic activity of surface confined comacrocyclics for the electrooxidation of thiocyanate at pH 4[J]. Electroanalysis, 2011, 23(3): 711-718.
    [128] Wojciechowski, G.; Huang, L. S.; de Montellano, P. R. O. Autocatalytic modification of the prosthetic heme of horseradish but not lactoperoxidase by thiocyanate oxidation products. A role for heme-protein covalent cross-linking[J]. J. Am. Chem. Soc., 2005, 127(45): 15871-15879.
    [129] Kahani, S. A.; Sabeti, M. The mechanochemical oxidation of thiocyanate to polythiocyanogen SCNn using peroxydisulphate[J] J. Inorg. Org. Metal., 2011, 21(3): 458-453.
    [130] Sokolowska, M.; Niedzielska, E.; Iciek, M. et. al. The effect of the uremic toxin cyanate on anaerobic cysteine metabolism and oxidative processes in the rat liver: a protective effect of lipoate[J] Toxicology Mechanisms and Methods, 2011, 21(6): 473-478.
    [131] Chinake, C. R.; Mambo, E.; Simoyi, R. H. Complex oligooscillatory behavior in the reaction of chlorite with thiocyanate[J]. J. Phys. Chem., 1994, 98: 2908-2916.
    [132] Doona, C. J. Influences of catalytic metal ions on oligooscillations in the chlorite-thiocyanate reaction[J]. J. Phys. Chem., 1995, 99: 17059-17060.
    [133] Alamgir, M.; Epstein, I.R. Systematic design of chemical oscillators. part 31. new chlorite oscillators: chlorite-bromide and chlorite-thiocyanate in a CSTR[J]. J. Phys Chem., 1985, 89: 3611-3614.
    [134] Wilson, I.R.; Harris, G. W. The oxidation of thiocyanate ion by hydrogen peroxide.Ⅰ. the pH-independent reaction[J]. J. Am. Chem. Soc., 1960, 82 (17): 4515-4517.
    [135] Wilson, I.R.; Harris, G. W. The oxidation of thiocyanate ion by hydrogen peroxide.Ⅱ. the pH-independent reaction[J]. J. Am. Chem. Soc., 1961, 83 (2): 286-289.
    [136] Figlar, J. N.; Stanbury, D. M. Kinetics and a revised mechanism for the autocatalytic oxidation of SCN- by ClO2[J]. J. Phys. Chem. A, 1999, 103 (29): 5732-5741.
    [137] Figlar, J. N.; Stanbury, D. M. Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution[J]. Inorg. Chem., 2000, 39 (22): 5089-5094.
    [138] Barnett, J. J.; Stanbury, D. M. Formation of trithiocyanate in the oxidation of aqueous thiocyanate[J]. Inorg. Chem., 2002, 41(2): 164-166.
    [139] Barnett, J. J.; McKee, M. L.; Stanbury, D. M. Acidic aqueous decomposition of thiocyanogen[J] Inorg. Chem., 2004, 43 (16): 5021-5033.
    [140] Nagy, P.; Lemma, K.; Ashby, M. T. Kinetics and mechanism of the comproportionation of hypothiocyanous acid and thiocyanate to give thiocyanogen in acidic aqueous solution[J]. Inorg. Chem., 2007, 46 (1): 285-292.
    [141] Rayson, M. S.; Mackie, J. S. ; Kennedy, M. E. et. al. Experimental study of decomposition ofaqueous nitrosyl thiocyanate[J]. Inorg. Chem., 2011, 50 (16): 7440-7452.
    [142] Christry, A. A.; Egeberg, P. K. Oxidation of thiocyanate by hydrogen peroxide a reaction kinetic study by capillary electrophoresis[J]. Talanta, 2000, 51(6): 1049-1058.
    [143] Ashby, M. T.; Aneetha, H.; Carlson, A. C. et. al. Bioorganic chemistry of hypothiocyanite[J]. Phosphorus, Sulfur, and Silicon, 2005, 180: 1369–1374.
    [144] Tenovuo, J.; Pruitt, K. M.; Mansson-Rahemtulla, B. et. al., Products of thiocyanate peroxidation: properties and reaction mechanisms[J]. Biochim Biophys Acta, 1986, 870: 377–384.
    [145] Nagy, P.; Alguindigue, S. S.; Ashby, M. T. Lactoperoxidase catalyzed oxidation of thiocyanate by hydrogen peroxide: a reinvestigation of hypothiocyanite by nuclear magnetic resonance and optical spectroscopy. Biochemistry, 2006, 45: 12610-12616.
    [146] Wit, J. N., van Hooydonk, A. C. M. Structure, functions and applications of lactoperoxidase in natural antimicrobial systems[J]. Neth Milk Dairy J., 1996, 50: 227-244.
    [147] Reiter, B., Harnulv, G. Lactoperoxidase antibacterial system natural occurrence biological functions and practical applications[J]. J. Food Protect., 1984, 47: 724-732.
    [148] Seifu, E.; Buys, E. M.; Donkin, E. F. Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review[J]. Trends Food Sci. Technol., 2005, 16: 137-154.
    [150] Hawkins, C. L. The role of hypothiocyanous acid (HOSCN) in biological systems[J]. Free Radical Res., 2009, 43(12): 1147-1158.
    [151] Nagy, P.; Beal, J. L.; Ashby, M. T. Thiocyanate is an efficient endogenous scavenger of the phagocytic killing agent hypobromous acid[J]. Chem. Res. Toxicol., 2006, 19: 587-593.
    [152] Ashby, M. T.; Carlson, A. C.; Scott, M. J. Redox buffering of hypochlorous acid by thiocyanate in physiologic fluids[J]. J. Am. Chem. Soc., 2004, 126: 15976-15977.
    [153] Hawkins, C. L.; Pattison, D. I.; Stanley, N. R.et.al. Tryptophan residues are targets in hypothiocyanous acid-mediated protein oxidation[J]. Biochem. J. 2008, 416: 441-452.
    [154] Wang, J. G.; Mahmud, S. A.; Nguyen, J. et. al. Thiocyanate dependent induction of endothelial cell adhesion molecule expression by phagocyte peroxidases: a novel HOSCN specific oxidant mechanism to amplify inflammation[J]. J. Immunol. 2006, 177: 8714-8722.
    [155] Slungaard, A.; Mahoney, J.R. Thiocyanate is the major substrate for eosin Phil peroxidase in physiologic fluids. Implications for cytotoxicity[J]. J. Biol. Chem., 1991, 266: 4903-4910.
    [156] Pruitt, K.M.; Tenovuo, J.; Andrews, R.W. et.al. Lactoperoxidase- catalyzed oxidation of thiocyanate: polarographic study of the oxidation products[J]. Biochemistry, 1982, 21: 562-567.
    [157] Arlandson, M.; Decker, T.; Roongta, V. A. et. al. Eosinophil peroxidases oxidation of thiocyanate-characterization of major reaction products and a potential sulf-hydryl-targeted cytotoxicity system[J]. J. Biol. Chem. 2001, 76: 215-224.
    [158] Ashby, M. T., Aneetha, H. Reactive sulfur species: aqueous chemistry of sulfenyl thiocyanates[J]. J. Am. Chem. Soc., 2004, 126: 10216-10217.
    [159] Ihalin, R.; Loimaranta, V.; Tenovuo, J. Origin, structure, and biological activities of peroxidases in human saliva[J]. Arch. Biochem. Biophys. 2006, 445(2): 261-268.
    [160] Husgafvel-Pursiainen, K.; Sorsa, M.; Engstrom, K. et. al. Passive smoking at work: biochemical and biological mea sures of exposure to environmental tobacco smoke[J]. Int. Arch. Occup. Environ. Health, 1987, 59: 337-345.
    [161] Arnhold, J.; Monzani, E.; Furtmuller, P. G. et.al. Kinetics and thermodynamics of halide and nitrite oxidation by mammalian heme peroxidases[J]. Eur. J. Inorg. Chem., 2006, 3801-3811.
    [162] Tahboub, Y. R., Galijasevic, S., Diamond, M. P., et. al. Thiocyanate modulates the catalytic activity of mammalian peroxidases[J]. J. Biol. Chem., 2005, 280: 26129–26136.
    [163] Modi, S.; Deodhar, S. S.; Behere, D.V. et. al. Lactoperoxidase-catalyzed oxidation of thiocyanate by hydrogen peroxide: nuclear 15N magnetic resonance and optical spectral studies[J]. Biochemistry, 1991, 30: 118-124.
    [164] Furtmuller, P. G.; Burner, U.; Obinger, C. Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate[J]. Biochemistry, 1998, 37: 17923-17930.
    [165] Furtmuller, P. G; Burner, U.; Regelsberger, G. et.al. Spectral and kinetic studies on the formation of eosinophil peroxidase compound I and its reaction with halides and thiocyanate[J]. Biochemistry, 2000, 39: 15578-15584.
    [166] Furtmuller, P. G.; Jantschko, W.; Regelsberger, G. et. al. Reaction of lactoperoxidase compound I with halides and thiocyanate[J]. Biochemistry, 2002; 41: 11895-11900.
    [167] Nord, G.; Pedersen, B.; Farver, O. Outer-sphere oxidation of iodide and thiocyanate by tris(2,2-bipyridyl)- and tris(1,10-phenanthroline)osmium(Ⅲ) in aqueous solutions[J]. Inorg. Chem., 1978, 17: 2233-2238.
    [168] Furtmuller, P. G.; Arnhold, J.; Jantschko, W. et. al. Redox properties of the couples compoundⅠ/ compoundⅡand compoundⅡ/ native enzyme of human myeloperoxidase[J]. Biochem. Biophys. Res. Commun. 2003, 301: 551-557.
    [169] Furtmuller, P. G.; Arnhold, J.; Jantschko, W. et. al. Standard reduction potentials of all couples of the peroxidase cycle of lactoperoxidase[J]. J. Inorg. Biochem., 2005, 99: 1220-1229.
    [170] Pruitt, K. M.; Tenovuo, J. Kinetics of hypothiocyanite production during peroxidase-catalyzed oxidation of thiocyanate[J]. Biochim. Biophys. Acta, 1982, 704: 204-214.
    [171] Thomas, E. L. Lactoperoxidase catalyzed oxidation of thiocyanate: equilibria between oxidized forms of thiocyanate[J]. Biochemistry, 1981, 20: 3273–3280.
    [172] Nagy, P.; Alguindigue, S. S.; Ashby, M. T. Lactoperoxidase catalyzed oxidation of thiocyanateby hydrogen peroxide: a reinvestigation of hypothiocyanite by nuclear magnetic resonance and optical spectroscopy[J]. Biochemistry, 2006, 45: 12610-12616.
    [173] Pollock, J. R., Goff, H. M. Lactoperoxidase-catalyzed oxidation of thiocyanate ion: a carbon-13 nuclear magnetic resonance study of the oxidation products[J]. Biochim. Biophys. Acta, 1992, 1159: 279-285.
    [174] Arlandson, M.; Decker, T.; Roongta, V. A. et. al. Eosinophil peroxidase oxidation of thiocyanate characterization of major reaction products and a potential sulfhydryl targeted cytotoxicity system[J]. J. Biol. Chem., 2001, 276: 215-224.
    [175] Aune, T. M.; Thomas E. L. Oxidation of protein sulfhydryls by products of peroxidase catalyzed oxidation of thiocyanate ion[J]. Biochemistry, 1978, 17: 1005-1010.
    [176] Exner, M.; Hermann, M.; Hofbauer, R. et. al. Thiocyanate catalyzes myeloperoxidase initiated lipid oxidation in LDL[J]. Free Radic. Biol. Med., 2004, 37: 146-155.
    [177] Lovaas, E. Free radical generation and coupled thiol oxidation by lactoperoxidase/ SCN~-/ H_2O_2[J]. Free Radic. Biol. Med., 1992, 13: 187-195.
    [178] Nagy, P.; Wang, L. K.; Ashby, M. T. Reactive sulfur species: hydrolysis of hypothiocyanite to give thiocarbamate-S-oxide[J]. J. Am. Chem. Soc., 2007, 129: 15756-15757.
    [179] Wang, X. G.; Ashby, M. T. Reactive sulfur species: kinetics and mechanism of the reaction of thiocarbamate-S-oxide with cysteine[J]. Chem. Res. Toxicol., 2008, 21: 2120-2126.
    [180] Nagy, P.; Beal, J. L.; Ashby, M. T. Thiocyanate is an efficient endogenous scavenger of the phagocytic killing agent hypobromous acid[J]. Chem. Res. Toxicol, 2006, 19: 587-593.
    [181]张明玉,侯世耀.从脱硫脱氰废液中回收硫氰酸铵[J].煤化工, 1994, 68(3): 28-34.
    [182]苏永祥,姚巧玲,薛万新等.硫氰酸铵-氯化钠-溴化十六烷基吡啶鎓水体系浮选分离锌[J].河南理工大学学报, 2006, 25(1): 76-78.
    [183]梁奇峰,温欣荣.硫氰酸铵-罗丹明B的液固体系浮选分离铜的研究[J].理化检验-化学分册, 2006, 42(7): 567-568, 571.
    [184]马万山,康宏伟.溴化四丁基按-硫氰酸按-水体系浮选分离钯(Ⅱ)的研究[J].冶金分析, 2007, 27(6): 51-54.
    [185]涂常青,温欣荣.氯化铵-硫氰酸铵-十二烷基三甲基溴化铵-水体系浮选分离汞[J].理化检验-化学分册, 2006, 45(5): 583-585.
    [186]曹书勤,郭鹏,马万山.溴化十六烷基吡啶-硫氰酸铵-氯化钠体系浮选分离铂的研究[J],冶金分析, 2007, 27(8): 58-61.
    [187] Conner, G. E.; Wijkstrom-Frei, C.; Randell, S. H. et. al. The lactoperoxidase system links anion transport to host defense in cystic fibrosis[J]. FEBS Lett., 2007, 581: 271-278.
    [188] Ashby, M. T. Inorganic chemistry of defensive peroxidases in the human oral cavity[J]. J. Dent.Res., 2008: 87: 900-914.
    [189] Xu, Y.; Szep, S.; Lu, Z. The antioxidant role of thiocyanate in the pathogenesis of cystic fibrosis and other inflammation-related diseases[J]. PNAS, 2009, 106(48): 20515-20519.
    [190] Imad, A. G.; Khoo, N. K. H.; Knaus U. G. et. al. Oxidases and peroxidases in cardiovascular and lung disease: New concepts in reactive oxygen species signaling[J] Free Radical Biology and Medicine, 2011, 51(7): 1271-1288.
    [191] Lorentzen, D.; Durairaj, L.; Pezzulo, A. A. et. al. Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions[J]. Free Radical Biology and Medicine, 2011, 50(9): 1144-1150.
    [192] Bodas, M.; Min, T.; Mazur, S. et. al. Critical modifier role of membrane cystic fibrosis transmembrane conductance regulator dependent ceramide signaling in lung injury and emphysema[J]. J. Immunology, 2011, 186(1): 602-613.
    [193] Bozonet S. M.; Scott A. P.; Nagy, P. et. al. Hypothiocyanous acid is a potent inhibitor of apoptosis and caspase 3 activation in endothelial cells[J]. Free Radical Biology and Medicine, 2010, 49(6): 1054-1063.
    [194] ElHiani, Y.; Linsdell, P. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel[J]. J. Bio. Chem., 2010, 285(42): 32126-32140.
    [195] Thomson, E.; Brennan, S.; Senthilmohan, R. et. al. Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis[J]. Free Radical Biology and Medince, 2010, 49(9): 1354-1360.
    [196] Bodas, M.; Min, T. Critical role of CFTR-dependent lipid rafts in cigarette smoke induced lung epithelial injury[J]. Am. J. Physiology, 2011, 300(6): L811-L820.
    [197] Moses, C. O.; Nordstrom, D. K.; Mills, A. L. Sampling and analyzing mixtures of sulfate, sulfite, thiosulfate, and polythionate[J]. Talanta, 1984, 31: 331-339.
    [198] Kamyshny, A.; Zilberbrand, M.; Ekeltchik, I. et. al. Speciation of polysulfides and zerovalent sulfur in sulfide-rich water wells in southern and central Israel[J]. Aquatic Geochem., 2008, 14(2): 171-192.
    [199] Holman, D. A.; Thompson, A.W.; Bennett, D. W. et. al. Quanitative-determination of sulfur-oxgen anion concentrations in aqueous solution-muticoponent analysis of attenuated total reflectance infrared spectra[J]. Anal. Chem., 1994, 66(9): 1378-1384.
    [200] Dias, D.; Nascimento, P. C.; Cristiane, L. et. al. Voltammetric determination of low molecular weight sulfur compounds in hydrothermal vent fluids studies with hydrogen sulfide, methanethiol, ethanethiol and propanethiol[J]. Electroanalysis, 2010, 22(10): 1066-1071.
    [201] Bunz, S. C.; Weinmann, W.; Neusuess, C. The selective determination of sulfates, sulfonates andphosphates in urine by CE-MS[J]. Electrophoresis, 2010, 31(7):1274-1281.
    [202] Buldini, P. L.; Tonelli, D.; Valentini, F. Ion chromatographic analysis of hydroxyapatite[J]. Anal. Lett., 2009, 42(3): 483-491.
    [203] Iguchi, A. The separation of polythionates with anion-exchange resins[J]. Bull. Soc. Jpn., 1958, 31: 597-600.
    [204] Iguchi, A. The separation of sulfate, sulfite, thiosulfate, and sulfide ions with anion-exchange resins [J]. Bull. Soc. Jpn., 1958, 31: 600-605.
    [205] Pollard, F. H.; Nickless, G.; Glover, R. B. Chromatographic studies on sulfur compounds. IV. The decomposition of acidified thiosulfate and polythionate solutions [J]. J. Chromatogr. A, 1964, 15, 518-532.
    [206] O’Reilly, J. W.; Dicinoski, G. W.; Shaw, M. J. et. al. Chromatographic and electro-phoretic separation of inorganic sulfur and sulfur–oxygen species[J]. Anal. Chim. Acta, 2001, 432(2): 165-192.
    [207] Miura, Y.; Saitoh, A.; Koh, T. Determination of sulfur oxyanions by ion chromatography on a silica ODS column with tetrapropylammonium salt as an ion-pairing reagent[J]. J. Chromatogr. A, 1997, 770: 157-163.
    [208]陈义.毛细管电泳技术及应用(第二版)[M].北京:化学工业出版社, 2006.
    [209]陆永超.反应过程中硫氧化合物的检测和动力学分析[D].中国矿业大学, 2010.
    [210] Padarauskas, A.; Paliulionyte, V.; Ragauskas, R. et. al. Capillary electrophoretic determination of thiosulfate and its oxidation products[J]. J. Chromatogr. A, 2000, 879: 235-243.
    [211] Masselter, S. M.; Zemann, A. J.; Bonn, G. K. Determination of inorganic anions in Kraft pulping liquors by capillary electrophoresis[J]. J. High Res. Chromatogr. 1996, 19(3): 131-136.
    [212] Hissner, F; Mattusch, J; Heinig, K. Determination of sulfur containing inorganic anions by dual ion chromatography and capillary electrophoresis application to the characterization of bacterial sulfur degradation [J]. Fresenius J. Anal. Chem., 1999, 165(8): 647-653.
    [213]徐丽,郑菊花,胡影等.高效液相色谱法分离检测亚氯酸盐与硫氧化合物混合物[J].分析化学, 2010, 38(4): 537-541.
    [214]孙艳艳,孟强,范金豹等.高效液相色谱法研究H_2O_2氧化Na_2S_2O_3的反应动力学[J].分析试验室, 2008, 27(增刊): 335-338.
    [215]颜贻本.碱性含钒溶液中硫化物硫代硫酸盐和亚硫酸盐的测定[J].过程工程学报, 1983, 4: 13-17.
    [216]李原,康仁华,廖永胜.重稠油非烃馏分含氮硫氧化合物的综合色谱分离方法[J].沉积学报, 2001, 19(2): 276-281.
    [217] Badocco, D.; Pastore, P.; Favaro, G. et. al. Effect of eluent composition and chemiluminescent reagent pH on ion chromatographic selectivity and luminol based chemiluminescence detection ofCo~(2+), Mn~(2+) and Fe~(2+) at trace levels[J]. Talanta, 2007, 72: 249-255.
    [218] Merenyi, G.; lind, J. Chemiluminescent substances through hydroxylation in analytical applications of bioluminescence and chemiluminescence[M], (Eds: Kricka LJ, Stanley PE, Thorpe GHG, Whitehead TP.), Academic Press Orlando, USA, London, 1984, 569-572.
    [219] Lind, J.; Merenyi, G.; Eriksen, T. E. Chemiluminescence mechanism of cyclic hydrazides such as luminol in aqueous solutions[J]. J. Am. Chem. Soc., 1983, 105: 7655-7661.
    [220] Merenyi, G.; Lind, J.; Eriksen, T. E. Luminol chemiluminescence chemistry, excitation, emitter[J]. J. Bioluminescence chemiluminescence, 1990, 5: 53-56.
    [221] Xu, X.; Shi H.; Ma, L. et. al.. Determination of trace amounts of dopamine by flow injection analysis coupled with luminol Ag(Ⅲ) complex chemiluminescence detection[J]. Luminescence, 2011, 26(2): 93-100.
    [222] Han, J. N.; Jang, J.; Kim, B. K. et. al. Detection of hydrogen peroxide with luminol electro-generated chemiluminescence at mesoporous platinum electrode in neutral aqueous solution[J]. J. Electroanal. Chem., 2011, 660(1): 101-107.
    [223] Sun, H.; Lia, L.; Wu, Y. Dysprosium-sensitized chemiluminescence reactions: their mechanism and application to the determination of synthetic quinolone antibiotics[J]. J. Anal. Chem., 2011, 66(8): 720-727
    [224] Liu, C.; Li, B. Silver nanoparticle initiated chemiluminescence reaction of luminol AgNO3 and its analytical application[J]. Anal. Bioanal. Chem., 2011, 401(1): 229-235
    [225]杨发树.温度对鲁米诺-过氧化氢体系化学发光的影响及牛血清白蛋白的测定研究[D].四川大学, 2007.