棉铃虫Cry1Ac抗性相关钙粘蛋白基因突变的鉴定与检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉铃虫Helicoverpa armigera Hubner属鳞翅目夜蛾科,是一种重要的农业害虫。曾经在我国棉花上大面积暴发,造成严重的经济损失。20世纪80年代以来化学杀虫剂的广泛应用,使棉铃虫抗药性得到快速发展。棉铃虫对杀虫剂的抗性,特别是对拟除虫菊酯的抗性剧增是导致20世纪90年代初我国北方棉区棉铃虫大爆发的主要因素之一。随着Bt棉在我国的大面积种植,棉铃虫的发生量得到了有效地控制。但Bt棉在整个生长发育期内都表达Bt毒素,且在我国种植已超过10年。棉铃虫种群如此长时间处于Bt毒素筛选压力之下,对Bt毒素产生抗性的风险日益加大。
     目前已有多个棉铃虫品系经室内筛选对Bt毒素产生了抗性,如果田间棉铃虫对Bt毒素产生抗性将影响Bt棉的种植寿命。对棉铃虫抗性机理的研究将会为田间棉铃虫抗性治理提供重要依据。钙粘蛋白是Bt毒素作用过程中的一个重要受体,钙粘蛋白的变异将会导致害虫对Bt毒素产生抗性,目前至少已有3种害虫钙粘蛋白的变异被证实与其对Bt毒素的抗性有关。棉铃虫GYBT抗性品系钙粘蛋白基因缺失突变导致其氨基酸在429位提前终止,产生截短蛋白,使Bt毒素失去特异性结合受体。
     本文对棉铃虫室内抗性品系和田间种群Cry1Ac抗性相关的钙粘蛋白基因突变进行鉴定和检测,评价钙粘蛋白在抗性形成及Bt作用机理中的作用。研究结果不仅对于明确Cry1Ac毒杀棉铃虫的分子机理、进而预测棉铃虫潜在的抗性机理具有重要意义,还有利于了解田间棉铃虫的抗性基因的发展状况,为田间棉铃虫的抗性监测提供技术支持,为棉铃虫对Bt棉花的抗性治理提供重要理论依据。
     一、棉铃虫室内Cry1Ac抗性品系钙粘蛋白基因突变的鉴定和检测
     对室内棉铃虫Cry1Ac抗、感品系钙粘蛋白基因组DNA进行克隆和测序,结果显示室内敏感品系GY钙粘蛋白(cadherin, Ha_BtR)基因组DNA (GenBank登录号为DQ523166)全长全长16.4 kb,编码区含有34个外显子、33个内含子。棉铃虫抗性品系GYBT(对Cry1Ac的抗性>500倍)钙粘蛋白Ha_BtR r1等位基因(GenBank登录号为DQ523167)共有8.9 kb。与Ha_BtR野生型s相比在第8外显子和第25外显子之间缺失大约8.8 kb。5’剪切位点位于第8外显子末端,3’剪切位点位于第25外显子前的内含子处。融合区域由第8外显子大部分(88 bp)、第25外显子前内含子部分(120 bp)及第25外显子组成。这一缺失产生了提前终止密码子(TAA),使抗性品系中钙粘蛋白不能完整表达,从而导致抗性产生。针对r1等位基因建立了基于DNA的分子检测方法,这将有利于监测田间棉铃虫种群钙粘蛋白基因r1等位基因的频率。
     二、田间棉铃虫钙粘蛋白基因突变的鉴定与检测
     通过F1筛选法对2005年我国河南安阳田间棉铃虫种群及2009年河北廊坊田间种群与Cry1Ac抗性相关钙粘蛋白基因突变进行了筛选、鉴定。在采自2005年我国河南安阳田间棉铃虫种群中我们成功发现了与Cry1Ac抗性相关的钙粘蛋白新的等位基因r2和r3.r2和r3分别在Ha-BtR的第8外显子的相同位置插入了逆转座子(HaRT1)长末端重复(LTR)和完整的逆转座子HaRT1。这导致了钙粘蛋白截短,缺失跨膜区域和毒素结合区。这是首次在田间棉铃虫种群中发现与Cry1Ac抗性相关的钙粘蛋白基因突变,表明钙粘蛋白基因变异可能是田间棉铃虫抗性产生的重要途径。本研究还表明,含这两个抗性等位基因的棉铃虫幼虫在Bt棉上能完成发育过程。钙粘蛋白基因位点应成为田间棉铃虫抗性检测的重要靶标基因之一。
     同样,通过F1筛选法对2009年河北廊坊地区棉铃虫对Cry1Ac的抗性进行筛查,选出候选单对10对,可疑候选单对4个。对候选单对系F1代抗性个体中来自田间亲本的钙粘蛋白基因全长cDNA进行克隆、测序,发现了5个新的钙粘蛋白基因突变类型。与敏感品系钙粘蛋白基因相比:117#单对系田间亲本钙粘蛋白基因发生插入突变导致在氨基酸754-755间插入30个氨基酸或在氨基酸751处终止;239#在碱基4393-5097位缺失705 bp,导致EC11-CYT处235个氨基酸的缺失;234#发生可变剪接,在碱基1194-2752之间缺失1530 bp,导致EC2-6缺失;256#在碱基2403-1414位缺失导致4个氨基酸缺失(YTIT,802-805位);124#在碱基4825-4989间缺失165bp,导致在氨基酸1609-1663位间55个氨基酸缺失(CYT部分)。这些突变体的发现表明,与Cry1Ac抗性相关的钙粘蛋白基因突变在田间种群中具有多样性,田间棉铃虫钙粘蛋白不同形式的变异均可能导致抗性的产生,这将增加分子检测钙粘蛋白变异基因频率进而预测抗性发展状况的难度。
     三、棉铃虫钙粘蛋白近等基因系的构建和交互抗性
     通过GYBT品系与SCD品系杂交后经多次回交并辅助分子标记筛选将等位基因r1植入SCD品系建立近等基因系SCD-r1.对棉铃虫钙粘蛋白近等基因系SCD与SCD-r1的正反交分析表明SCD-r1对Cry1Ac的抗性是完全隐性、常染色体遗传。抗性品系SCD-r1对Cry1Ac的抗性为高水平抗性(>430倍);对Cry1Aa、Cry1Ab有中等水平的交互抗性,对Cry2Aa和Cry2Ab2没有交互抗性。原毒素Cry1AcPro和Cry1AbPro分别比胰蛋白酶活化毒素Cry1Ac和Cry1Ab对SCD-r1毒力效果好,SCD-r1品系对原毒素Cry1AcPro和Cry1AbPro的抗性明显低于对胰蛋白酶活化毒素Cry1Ac和Cry1Ab的抗性。修改毒素Cry1AcMod和Cry1AbMod分别比胰蛋白酶活化毒素Cry1Ac和Cry1Ab对SCD-r1毒力效果好,Cry1AcMod和Cry1AbMod都能显著克服棉铃虫对Cry1Ac和Cry1Ab的抗性。这表明钙粘蛋白在与不同毒素及同一毒素不同形式存在不同的相互作用,对Bt毒素进行人工修饰能够克服基于钙粘蛋白基因变异产生的抗性,修饰的Bt毒素基因可能成为转基因抗虫作物的候选基因。
     四、我国田间棉铃虫对Cry1Ac的敏感性监测
     用毒素涂表法对我国2006-2008年主要棉区的棉铃虫对Cry1Ac的敏感性进行了监测。2006-2008年监测的12个田间种群对Cry1Ac敏感性变异小于6倍。采自黄河流域棉区的10个棉铃虫田间种群对Cry1Ac活化毒素的敏感性(LC50:0.063~0.162μg cm-2)略低于采自新疆棉区的2个田间种群(LC50:0.027~0.049μg cm-2).尽管这几年我国主要棉区棉铃虫对Cry1Ac的敏感性没有发生明显变化,但是棉铃虫Bt抗性的检测工作必须加强,开发可靠的抗性基因频率检测技术尤为重要。
Cotton bollworm. Helicoverpa armigera (Hubner) (Lepidioptera: Noctuidae) is one of the most important agricultural pests in the old world including China. The serious outbreaks of cotton bollworm in the cotton areas in China caused tremendous economic losses. Since 1980s, the massive use of chemical insecticides resulted in serious resistance problem in cotton bollworm. The resistance of cotton bollworm, especially to pyrethroids was one of the reasons for the outbreaks of cotton bollworm in Northern China during 1990s. Cotton bollworm has been controlled effectively since the Bt cotton was planted in China. But continuous expression of Bt toxin in the whole development time of cotton plant and more than ten-year planting of Bt cotton will impose the cotton bollworm under a strong selection pressure by Bt toxin and increase the risk of resistance of cotton bollorm to Bt cotton.
     Under selection in the lab, many strains of cotton bollworm developed resistance to Bt toxins. Evolution of Bt resistance by cotton bollworm in the field will affect the longevity of Bt cotton. The studies on the mechanisms of Bt resistance could provide guidance on the management of cotton bollworm. Cadherin is one of the important receptors in Bt action and the mutation of cadherin may cause the resistance of pests to Bt toxin. So far, at least in 3 pests the mutations of cadherin were associated with the resistance to Bt toxin. Particularly, disruption of the cadherin gene (Ha_BtR) by a premature stop codon was associated with a high level of Cry1Ac resistance in H. armigera.
     In this study, the mutations of cadherin involved in Cry1Ac resistance were researched in both the laboratory-selected GYBT strain and field-collected populations of H. armigera. The study will facilitate understanding of the molecular mechanism of Cry1Ac action in cotton bollworm and prediction of the mechanism of resistance of cotton bollworm to Cry1Ac. The work will also provide technical support on Bt resistance monitoring and resistance management in cotton bollworm.
     1. Identification and detection of a mutated cadherin allele in the laboratory-selected GYBT strain of H. armigera
     The genomic organization of Ha_BtR was compared from both the susceptible and resistant strains and a deletion was found to be responsible for a truncated cadherin protein in the resistant GYBT strain. Determination of the genomic DNA sequences of Ha_BtR gene showed that the wild type Ha_BtR coding sequence (Genbank No:DQ523166) is comprised of 34 exons. A deletion between Exon 8 and Exon 25 was found to be responsible for a truncated cadherin (Genbank No:DQ523167) in the Cry1Ac-resistant GYBT strain of H. armigera. A DNA-based detection method specific to the r1 allele was developed. This study will facilitate the monitoring of cadherin mutant frequency in field populations of H. armigera.
     2. Identification and detection of Ha_BtR mutations in field populations of H. armigera
     A deletion mutation allele (r1) of a cadherin gene (Ha_BtR) was previously identified as genetically linked with Cry1Ac resistance in a laboratory-selected strain of H.armigera. Using a biphasic screen strategy, we successfully trapped two new cadherin alleles (r2 and r3) associated with Cry1Ac resistance from a field population of H.armigera collected from Anyang, Henan province of China in 2005. The r2 and r3 alleles, respectively, were created by inserting the long terminal repeat of a retrotransposon (designated HaRT1) and the intact HaRT1 retrotransposon at the same position in exon 8 of Ha_BtR, which results in a truncated cadherin containing only two ectodomain repeats in the N terminus of Ha_BtR. This is the first time that the Bt resistance alleles of a target insect of Bt crops have been successfully detected in the open field. This study also demonstrated that bollworm larvae carrying two resistance alleles can complete development on Bt cotton. The cadherin locus should be an important target for intensive DNA-based screening of field populations of H.armigera.
     Using an F1 screen method,10 candidate and 4 putative candidate single-pair families were selected for Ha_BtR mutation analyses from a field population of H. armigera collected from Langfang, Hebei Province of China in 2009. Through cloning and sequencing of cadherin alleles, at least 5 new mutated alleles of Ha_BtR were found compared with the wild cadherin.117#:an insertion resulting in 30 animo acid insertion at 754aa or premature stop at 751aa; 239#:705bp deletion caused 235 animo acid deletion in the EC11-CYT domain; 234#:alternative splicing caused deletion of the EC2-6 domain; 256#:4 animo acid YTIT deletion; 124#:165bp deletion resulting in deletion of 55 animo acids in the CYT domain. These five mutations associated with Cry1Ac resistance can impair the normal fuction of cadherin. Cadherin alleles with amino acid substitutions were also found to be associated with Cry1Ac resistance. The role of the animo acid substitutions should be investigated in future. In conclusion, the mutation diversity of Ha_BtR will complicate resistance allele frequency monitoring in H. armigera.
     3. Construction of a pair of near-isogenic strains with and without Ha_BtR r1 allele and its cross resistance pattern
     The r1 allele of Ha_BtR was introgressed into a susceptible SCD strain by crossing the GYBT strain to the SCD strain, followed by repeated backcrossing to the SCD strain and molecular marker assisted family selection. The introgressed strain (designated as SCD-r1, carrying homozygous r1 allele) obtained 438-fold resistance to Cry1Ac,> 41-fold resistance to Cry1Aa and 31-fold resistance Cry1Ab compared with the SCD strain; however, there was no significant difference in susceptibility to Cry2Aa between the integrated and parent strains. It confirms that the loss of function mutation of Ha_BtR alone can confer medium to high levels of resistance to the three Cry1A toxins in H. armigera. Reciprocal crosses between the SCD and SCD-r1 strains showed that resistance to CrylAc in the SCD-r1 strain was completely recessive.
     Modified toxin Cry1AcMod, CrylAbMod and the protoxin CrylAcPro and Cry1AbPro countered the resistance in the resistant SCD-r1 strain. Resistance to Cry1AcMod, Cry1AbMod, Cry1AcPro and Cry1AbPro was significantly reduced when compared with resistance to the activated Cry1Ac and Cry1Ab respectively. These modified toxins which can counter cadherin-based resistance may become the candidate genes engineering into the transgenic cotton.
     4. Susceptibility monitoring of field populations of H. armigera to Cry1Ac
     Using the toxin overlay method, susceptibilities of H. armigera populations from main cotton areas of China were monitored during 2006-2008. Limited variation (less than 6-fold) in Cry1Ac susceptibility was found in the 12 field populations sampled during 2006-2008. Ten populations (LC50:0.063~0.162μg cm-2) collected from Yellow River cotton area showed less susceptibility than that of two populations (LC50:0.027~0.049μg cm-52) collected from Xinjiang cotton area. Although there are no signifianct changes in Cry1Ac susceptibility in the field populations of H. armigera colleted in this study, we should keep an eye on resistance evolution of H. armigera to Bt cotton in China. Development of effective techniques for resistance gene frequency detection should be a priority for Bt resistance research in H. armigera.
引文
[1]陈海燕.棉铃虫田间种群对Cry1Ac抗性基因频率的估算及钙粘蛋白基因突变的鉴定[D].南京:南京农业大学,2005
    [2]崔峰,徐洪富,许永玉,等.抗虫棉研究的进展、问题与对策[J].植物保护学报,2002,29(4):371-375
    [3]崔学芬,董双林,夏敬源,等.棉铃虫对Bt毒蛋白(Cry1Ac)抗性品系的选育[J].棉花学报,2001,13(4):213-215
    [4]郭三堆,崔洪志,夏兰芹,等.双价抗虫转基因棉花研究[J].中国农业科学,1999,32(3):1-7
    [5]郭予元.棉铃虫的研究[M].北京:中国农业出版社,1998
    [6]何丹军,沈晋良,周威军,等.应用单雌系F2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率[J].棉花学报,2001,13(2):105-108
    [7]贾士荣,郭三堆,安道昌.转基因棉花[M].北京:科学出版社,2001
    [8]李国平,吴孔明,何运转,等.昆虫对Bt作物抗性监测技术[J].昆虫知识,2003,40(4):299-302
    [9]梁革梅,谭维嘉,郭予元.棉铃虫对Bt的抗性筛选及交互抗性研究[J].中国农业科学,2000,33(4):46-53
    [10]卢美光,赵建周,范贤林,等.华北地区棉铃虫对Bt杀虫蛋白的抗性监测[J].棉花学报,2000,12(4):180-183
    [11]慕立义.棉铃虫大暴发主导因素及对策[J].昆虫知识,1994,31(6):332-335
    [12]芮昌辉.棉铃虫对Bt抗虫棉的抗药性监测及预测[C].转基因生物与环境学术研讨会,2002
    [13]沈晋良,吴益东.棉铃虫抗药性及其治理[M].北京:中国农业出版社,1995
    [14]沈晋良,周威君,吴益东,等.棉铃虫对Bt生物农药早期抗性及与转Bt基因棉抗虫性的关系[J].昆虫学报,1998,41(1):8-14
    [15]涂松林,施爱明.我国转基因棉花研究与应用进展[J].江西棉花,2001,23(1):9-13
    [16]王武刚,戴小枫,梁革梅.棉铃虫特大发生原因和治理对策探讨[J].农业科学集刊,1993,1:35-39
    [17]王伟,朱桢,高越峰,等.双价抗虫基因陆地棉转化植株的获得[J].植物学报,1999,41(4):384-388
    [18]谢道昕,范云六,倪万潮,等.苏云金芽孢杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株[J].中国科学,1991,4:376-373
    [19]喻子牛.苏云金杆菌[M].北京:科学出版社,1990
    [20]赵建周,卢美光,花贤林,等.转Bt基因棉花对棉铃虫不同龄期幼虫的杀虫活性和抑制生 长作用[J].昆虫学报,1998,41(4):354-358
    [21]张宝红.害虫对转Bt基因抗虫棉的抗性及对策[J].棉花学报,2000,12(3):164-168
    [22]张天真,唐灿明.转Bt基因抗虫棉品种的推广利用与棉铃虫的抗性治理[J].中国农业科学,2000,45(2):119-127
    [23]周威君,沈晋良(译).生物农药的抗性潜在性及考虑对策[J].农药译丛,1992,14(5):40-44
    [24]Abdullah M A.Moussa S,Taylor M D,et al. Manduca sexta (Lepidoptera: Sphingidae) cadherin fragments function as synergists for Cry1A and Cry1C Bacillus thuringiensis toxins against noctuid moths Helicoverpa zea, Agrotis ipsilon and Spodoptera exigua[J].Pest Management Science,2009,65(10):1097-1103
    [25]Ahmad M, McCaffery A R. Resistant to insecticides in a Tailand strain of Heliothis armigera (Lepidoptera: Noctuidae) [J].Journal of Economic Entomology,1988,8 1(1):45-48
    [26]Akhurst R J,James W, Bird L J.et al. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae)[J].Journal of Economic Entomology.2003,96(4):1290-1299
    [27]Ali M I, Luttrell R G.Susceptibility of bollworm and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein[J].Journal of Economic Entomology.2007,100(3):921-931
    [28]Ali M I.Luttrell R G,Young S Y 3rd. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera:Noctuidae) populations to CrylAc insecticidal protein[J].Journal of Economic Entomology,2006,99(1):164-175
    [29]Angst B D, Marcozzi C and Magee A I. The cadherin superfamily:diversity in form and function [J].Journal of Cell Science.2001,114(Pt4):629-641
    [30]Anilkumar K J,Rodrigo-Simon A,Ferre J,et al. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie)[J].Applied and Environmental Microbiology.2008.74(2):462-469
    [31]Araki Y,Tomita S,Yamaguchi H,et al. Novel cadherin-related membrane proteins, alcadeins, enhance the Xll-like protein-mediated stabilization of amyloid β-protein precursor metabolism[J].The Journal of Biological Chemistry.2003.278(49):49448-49458
    [32]Ashfaq M,Young S Y,McNew R W. Development of Spodoptera exigua and Helicoverpa zea (Lepidoptera: Noctuidae) on transgenic cotton containing Cry1Ac insecticidal protein[J].Journal of Entomological Science.2000,35(4):360-372
    [33]Banks D J,Hua G,Adang M J. Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells[J].Insect Biochemistry and Molecular Biology,2003.33(5): 499-508
    [34]Banks D J.Jurat-Fuentes J L.Dean D H.et al. Bacillus thuringiensis Cry1Ac and Cry1Fa delta-endotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated[J].Insect Biochemistry and Molecular Biology,2001,31(9): 909-918
    [35]Bauce E.Carisey N.Dupont A.et al. Bacillus thuringiensis subsp. kurstaki aerial spray prescriptions for balsam fir stand protection against spruce budworm (Lepidoptera: Tortricidae)[J].Journal of Economic Entomology,2004,97(5):1624-1634
    [36]Becker N. Bacterial control of verctor-mosquitoes and black flies[C].In:Charles J F,Delecluse A,Nielsen-LeRoux C(Eds.).Entomopathogenic Bactria: From laboratory to Field Application. Kluwer Academic Publishers,Dordrecht,2000:383
    [37]Benedict J, Altman D W. Commercialization of transgenic cotton expressing insecticidal crystal protein [C]. In Jenkins J, Saha S(eds). Genetic Improvement of Cotton:Emerging Technologies. Science Publications, Enfield,New Hampshire,USA.2001,8:137-201
    [38]Bird L J,Akhurst R J. Relative fitness of Cryl A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on conventional and transgenic cotton[J].Journal of Economic Entomology,2004,97(5):1699-1709
    [39]Bird L J,Akhurst R J. Fitness of Cryl A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on transgenic cotton with reduced levels of Cry1Ac[J].Journal of Economic Entomology.2005,98(4):1311-1319
    [40]Blanco C A,Andow D A,Abel C A.et al. Bacillus thuringiensis Cry1Ac resistance frequency in tobacco budworm (Lepidoptera: Noctuidae)[J].Journal of Economic Entomology.2009.102(1): 381-387
    [41]Bravo A. Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains[J].Journal of Bacteriology,1997,179(9):2793-2801
    [42]Bravo A.Gomez I,Conde J,et al. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains[J].Biochimica et Biophysica Acta.2004.1667(1):38-46
    [43]Carriere Y.Ellers-Kirk C,Liu Y B,et al. Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae)[J].Journal of Economic Entomology.2001.94(6):1571-1576
    [44]Carriere Y.Ellers-Kirk C.Patin A L,et al. Overwintering cost associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae)[J].Journal of Economic Entomology.2001.94(4):935-941
    [45]Casal J.Struhl G.Lawrence P A. Developmental compartments and planar polarity in Drosophila[J].Current Biology.2002.12(14):1189-1198
    [46]Chae J, Kim M J.Goo J H.et al. The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family [J].Development,1999,126(23):5421-5429
    [47]Chandrashekar K,Gujar G T. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm,Helicoverpa armigera (Hubner)[J]. Indian Journal of Experimental Biology,2004.42(2):164-173
    [48]Chen J,Hua G,Jurat-Fuentes J L,et al. Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin[J].Proceedings of the National Academy of Sciences of the United States of America.2007,104(35):13901-13906
    [49]Cheng G,Lieu. Cotton bollworm resistance and its development in northern cotton region of China 1984-1985[J].Resistant Pest management Newsletter,1996,8(1):32-33
    [50]Ciani L,Patel A, Allen N D,et al. Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype[J]. Molecular and Cellular Biology,2003.23(3):3575-3582
    [51]Coates B S,Sumerford D V,Hellmich R L,et al. Sequence variation in the cadherin gene of Ostrinia nubilalis:a tool for field monitoring[J].Insect Biochemistry and Molecular Biology,2005,35(2):129-139
    [52]Cowles E A,Yunovitz H,Charles J F,et al. Comparison of toxin overlay and solid-phase binding assays to identify diverse CryⅠA(c) toxin-binding proteins in Heliothis virescens midgut[J]. Applied and Environmental Microbiology,1995,61(7):2738-2744
    [53]Cox B,Hadjantonakis A K,Collins J E,et al. Cloning and expression throughout mouse development of mfat1, a homologue of the Drosophila tumour suppressor gene fat [J].Developmental Dynamics,2000,217(3):233-240
    [54]Crickmore N, Zeigler D R, Schnepf E,et al. Bacillus thuringiensis toxin nomenclature.2010. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/
    [55]Curtin J A, Quint E, Tsipouri V,et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse[J].Current Biology.2003.13(13):1129-1133
    [56]de Maagd R A,Kwa M S,van der Klei H,et al. Domain Ⅲ substitution in Bacillus thuringiensis delta-endotoxin CryⅠA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition[J].Applied and Environmental Microbiology,1996,62(5): 1537-1543
    [57]Dong K, Scott J G. Linkage of kdr-type resistance and the para-homologous sodium channel gene in German cockroach (Blattella germanica) [J].Insect Biochemistry and Molecular Biology, 1994,24(7):647-654
    [58]Dorsch J A,Candas M,Griko N B,et al. CrylA toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis[J].Insect Biochemistry and Molecular Biology,2002,32(9):1025-1036
    [59]Dow AgroSciences. Personal communication.2002
    [60]Dunne J,Hanby A M,Poulsom R,et al. Molecular-cloning and tissue expression of FAT, the human homolog of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule[J].Genomics,1995,30(2):207-223
    [61]Fabrick J,Oppert C,Lorenzen M D,et al. A novel tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis CRY3Aa toxin[J].The Journal of Biological Chemistry, 2009,284(27):18401-18410
    [62]Fanto M,Clayton L, Meredith J,et al. The tumor-suppressor and cell adhesion molecule Fat controls planar polarity via physical interactions with Atrophin, a transcriptional co-repressor[J]. Development,2003,130(4):763-774
    [63]Ferre J,Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis[J]. Annual Review of Entomology,2002,47:501-533
    [64]Flannagan R D,Yu C G,Mathis J P,et al. Identification, cloning and expression of a CrylAb cadherin receptor from European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae)[J].Insect Biochemistry and Molecular Biology,2005,35(1):33-40
    [65]Forrester N W, Cahill M, Bird L J,et al. Management of pyrethriod and endosulfan resistance in Heliothios armigera (Lepidoptera: Noctuidae) in Australia[J].Bulletin of Entomological Research: Supplement Series,1993,1:132
    [66]Franklin M T,Nieman C L,Janmaat A F,et al. Modified Bacillus thuringiensis toxins and a hybrid B. thuringiensis strain counter greenhouse-selected resistance in Trichoplusia ni[J].Applied and Environmental Microbiology,2009,75(17):5739-5741
    [67]Frisch M,Melchinger A E. Selection theory for marker-assisted backcrossing[J].Genetics 2005.170(2):909-917
    [68]Gahan L J,Gould F,Heckel D G. Identification of a gene associated with Bt resistance in Heliothis virescens[J].Science,2001.293(5531):857-860
    [69]Gahan L J,Gould F,. Lopez Jr J D,et al. A polymerase chain reaction screen of field populations of Heliothis virescens for a retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin[J].Journal of Economic Entomology.2007.100(1):187-194
    [70]Gao Y L,Feng H Q,Wu K M. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting[J].Transgenic Research,2009,Doi:10.1007/s11248-009-9337-1
    [71]Gazit E,La Rocca P,Sansom M S,et al. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an "umbrella-like" structure of the pore[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(21):12289-12294
    [72]Gerber D,Shai Y. Insertion and organization within membranes of the delta-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide[J].The Journal of Biological Chemistry,2000,275(31):23602-23607
    [73]Girard F,Vachon V,Prefontaine G,et al. Helix alpha 4 of the Bacillus thuringiensis Cry1Aa toxin plays a critical role in the postbinding steps of pore formation[J].Applied and Environmental Microbiology.2009,75(2):359-365
    [74]Girard F,Vachon V,Prefontaine G,et al. Cysteine scanning mutagenesis of alpha4, a putative pore-lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa[J].Applied and Environmental Microbiology,2008,74(9):2565-2572
    [75]Glaser J A,Matten S R. Sustainability of insect resistance management strategies for transgenic Bt corn[J]. Biotechnology Advances.2003.22(1-2):45-69
    [76]Gomez I,Miranda-Rios J.Rudino-Pinera E.et al. Hydropathic complementarity determines interaction of epitope (869)HITDTNNK(876) in Manduca sexta Bt-R(1) receptor with loop 2 of domain Ⅱ of Bacillus thuringiensis Cry1A toxins[J].The Journal of Biological Chemistry.2002, 277(33):30137-30143
    [77]Gomez I,Oltean D I,Gill S S.et al. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display[J].The Journal of Biological Chemistry,2001,276(31):28906-28912
    [78]Gomez I,Sanchez J,Miranda R,et al. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain Ⅰ and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin[J].FEBS Letters,2002,513(2-3):242-246
    [79]Gould F,Anderson A R,Bumgarner L,et al. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins[J].Journal of Economic Entomology,1995,88(6):1545-1559
    [80]Gould F,Anderson A,Jones A,et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens[J].Proceedings of the National Academy of Sciences of the United States of America,1997,94(8):3519-3523
    [81]Gould F,Martinez-Ramirez A,Anderson A,et al. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens[J].Proceedings of the National Academy of Sciences of the United States of America,1992,89(17):7986-7990
    [82]Griko N,Zhang X,Ibrahim M,et al. Susceptibility of Manduca sexta to Cry1Ab toxin of Bacillus thuringiensis correlates directly to developmental expression of the cadherin receptor BT-R(1)[J]. Comparative Biochemistry and Physiology B Biochemistry and Molecular Biology,2008,151(1): 59-63
    [83]Grochulski P,Masson L,Borisova S,et al. Bacillus thuringiensis CryⅠA(a) insecticidal toxin: crystal structure and channel formation[J].Journal of Molecular Biology,1995.254(3):447-464
    [84]Gunning R V,Dang H T,Kemp F C,et al. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin[J].Applied and Environmental Microbiology,2005.71 (5):2558-2563
    [85]Gutierrez A P, Ponsard S, Physiologically based demographics of Bt cotton-pest interactions:Ⅰ. Pink bollworm resistance, refuges and risk[J].Ecological Modelling,2006,191(3-4):346-359
    [86]Hannay C L,Fitz-James P. The protein crystals of Bacillus thuringiensis Berliner[J].Canadian Journal of Microbiology,1955, 1(8):694-710
    [87]Hara H,Atsumi S,Yaoi K.et al. A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae[J]. FEBS Letters.2003.538(1-3):29-34
    [88]Heckel D G,Gahan L J,Daly J C,et al. A genomic approach to understanding Heliothis and Helicoverpa resistance to chemical and biological insecticides[J].Philosophical transactions of the Royal Society of London B,1998,353(1376):1713-1722
    [89]Heckel D G, Gahan L J,Gould F,et al. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budworm (Lepidoptera: Noctuidae) [J].Journal of Economic Entomology,1997,90(1):75-86
    [90]Hill E, Broadbent I D,Chothia C,et al. Cadherin superfamily proteins in Caenorhabditis elegans and Drosophila melanogaster[J].Journal of Molecular Biology.2001,35(5):1011-1024
    [91]Hodgman T C,Ellar D J. Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis[J].DNA Sequence,1990,1(2):97-106
    [92]Hua G,Jurat-Fuentes J L,Adang M J. Bt-Rla extracellular cadherin repeat 12 mediates Bacillus (huringiensis Cry1Ab binding and cytotoxicity[J].The Journal of Biological Chemistry.2004. 279(27):28051-28056
    [93]Hua G,Jurat-Fuentes J L,Adang M J. Fluorescent-based assays establish Manduca sexta Bt-R(1a) cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells[J]. Insect Biochemistry and Molecular Biology,2004.34(3):193-202
    [94]Hua G,Zhang R,Abdullah M A,et al. Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCadl synergizes toxicity[J]. Biochemistry,2008,47(18):5101-5110
    [95]Ihara H,Uemura T,Masuhara M,et al. Purification and partial amino acid sequences of the binding protein from Bombyx mori for CryⅠAa delta-endotoxin of Bacillus thuringiensis[J]. Comparative Biochemistry and Physiology B Biochemistry and Molecular Biology,1998,120(1): 197-204.
    [96]Ingle S S,Trivedi N,Prasad R,et al. Aminopeptidase-N from the Helicoverpa armigera (Hubner) brush border membrane vesicles as a receptor of Bacillus thuringiensis crylac delta-endotoxin[J]. Current Microbiology,2001.43(4):255-259
    [97]Janmaat A F,Myers J H. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage looper, Trichoplusia ni[J].Proceeding of the Royal Society London B Biological Sience.2003.270(1530):2263-2270
    [98]James C. Global Review of Commercialized Transgenic Crops: 1998.ISAAA Brief No.8. ISAAA:Ithaca, NY,1998
    [99]James C. Global Review of Commercialized Transgenic Crops:2001. ISAAA Brief No.24. ISAAA:Ithaca, NY,2001
    [100]James C. Global Review of Commercialized Transgenic Crops:2001 Feature Bt cotton. ISAAA Brief No.29. ISAAA: Ithaca, NY,2002
    [101]James C. Global Status of Commercialized Biotech/GM Crops:2003. ISAAA Brief No.30. ISAAA:Ithaca, NY.2003
    [102]James C. Global Status of Commercialized Biotech/GM Crops:2004 ISAAA Brief No.32. ISAAA:Ithaca, NY,2004
    [103]James C. Global Status of Commercialized Biotech/GM Crops:2006. ISAAA Brief No.34. ISAAA:Ithaca, NY,2005
    [104]James C. Global Status of Commercialized Biotech/GM Crops: 2006. ISAAA Brief No.35. ISAAA:Ithaca, NY,2006
    [105]James C. Global Status of Commercialized Biotech/GM Crops:2007. ISAAA Brief No.37. ISAAA: Ithaca, NY,2007
    [106]Jaume Torres X L. Panadda Boonserm. A trimeric building block model for in vitro ion 3 channel formation of cry toxins[J].Biochimica et Biophysica Acta,2008,1778(2):392-397
    [107]Jia S R. Development of resistance management strategies for commercial cultivation of Bt cotton in China[C].In Proceedings of 5th International Symposium. The Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms, Braunschweig,Germany,6-10 September 1998
    [108]Jurat-Fuentes J L,Adang M J. Importance of Cry1 delta-endotoxin domain Ⅱ loops for binding specificity in Heliothis virescens (L.)[J].Applied and Environmental Microbiology.2001,67(1): 323-329
    [109]Jurat-Fuentes J L,Adang M J. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae[J].European Journal of Biochemistry.2004, 271(15):3127-3135
    [110]Jurat-Fuentes J L,Adang M J. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae[J].Journal of Invertebrate Pathology,2006,92(3):166-171
    [111]Jurat-Fuentes J L, Adang M J. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins[J]. Biochemistry,2006,45(32):9688-9695
    [112]Jurat-Fuentes J L,Gahan L J,Gould F L,et al. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens[J]. Biochemistry,2004, 43(44):14299-14305
    [113]Jurat-Fuentes J L,Gould F L,Adang M J. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance[J].Applied and Environmental Microbiology,2003,69(10):5898-5906
    [114]Jurat- Fuentes J L, Valaitis A P,Valaitis A P. Characterization of the cadlherin from Lymantria dispar as Cry1A toxin receptor[C]. Abstr.38th Annu. Meet. Soc. Invertebr.Pathol. Abstr.,7-11,Aug.2005 Anchorage, Alaska USA,2005,17.
    [115]Keeton T P,Francis B R,Maaty W S,et al. Effects of midgut-protein-preparative and ligand binding procedures on the toxin binding characteristics of BT-R1, a common high-affinity receptor in Manduca sexta for Cry1A Bacillus thuringiensis toxins[J].Applied and Environmental Microbiology,1998,64(6):2158-2165
    [116]Knowles B H, Knight P J, Ellar D J. N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis[J].Proceeding Biological Sciences.1991.245(1312):31-35
    [117]Kranthi K R,Dhawad C S,Naidu S R,et al. Inheritance of Resistance in Indian Helicoverpa armigera(Hubner)to Cry1Ac Toxin of Bacillus thuringiensis[J].Crop Protection,2006.25(2):119-124
    [118]Kranthi K R,Kranthi S,Ali S,et al. Resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in a laboratory selected strain of Helicoverpa armigera (Hubner)[J].Current Science,2000,78(8): 1001-1004
    [119]Krishnamoorthy M,Jurat-Fuentes J L,McNall R J.et al. Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic ana1yses[J].Insect Biochemistry and Molecular Biology.2007,37(3):189-201
    [120]Kruger M,Van Rensburg J B J, Van den Berg J. Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa[J].Crop Protection,2009,28(8):684-689
    [121]Lebel G,Vachon V.Prefontaine G,et al. Mutations in Domain Ⅰ Interhelical Loops Affect the Rate of Pore Formation by the Bacillus thuringiensis Cry1Aa Toxin in Insect Midgut Brush Border Membrane Vesicles[J].Applied and Environmental Microbiology,2009,75(12):3842-3850
    [122]Lee M K,Rajamohan F,Gould F,et al. Resistance to Bacillus thuringiensis Cry1A delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration[J].Applied and Environmental Microbiology,1995,61(11):3836-3842
    [123]Lee R C, Clandinin T R, Lee C H,et al. The protocadherin Flamingo is required for axon target selection in the Drosophila visual system[J].Natrue Neuroscience.2003.6(6):557-563
    [124]Li J D, Carroll J,Ellar D J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution[J].Nature,1991.353(6347):815-821
    [125]Liang G M,Wu K M,Yu H K,et al. Changes of inheritance mode and fitness in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin[J].Journal of Invertebrate Pathology,2008,97(2):142-149
    [126]Liao C,Trowell S C,Akhurst R. Purification and characterization of Cry1Ac toxin binding proteins from the brush border membrane of Helicoverpa armigera midgut[J].Current Microbiology.2005,51 (6):367-371
    [127]Liu C,Gao Y,Ning C,et al. Antisera-mediated in vivo reduction of Cry1Ac toxicity in Helicoverpa armigera[J]. Journal of Insect Physiology,2010.56(7):718-724
    [128]Liu C,Wu K,Wu Y,et al. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment[J].Journal of Insect Physiology, 2009.55(8):686-693
    [129]Liu Y B,Tabashnik B E,Dennehy T J,et al. Development time and resistance to Bt crops[J]. Nature,1999,400(6744):519
    [130]Liu Y B,Tabashnik B E,Dennehy T J,et al. Effects of Bt cotton and crylac toxin on survival and development of pink bollworm (Lepidoptera:Gelechiidae)[J].Journal of Economic Entomology, 2001,94(5):1237-1242
    [131]Liu Y B,Tabashnik B E.Meyer S K,et al. Genetics of pink bollworm resistance to Bacillus thuringiensis toxin CrylAc[J].Journal of Economic Entomology.2001,94(1):248-252
    [132]Lu M G,Rui C H,Zhao J Z,et al. Selection and heritability of resistance to Bacillus thuringiensis subsp kurstaki and transgenic cotton in Helicoverpa armigera (Lepidoptera: Noctuidae)[J].Pest Management Science,2004,60(9):887-893
    [133]Luo K,Sangadala S,Masson L,et al. The Heliothis virescens 170 kDa aminopeptidase functions as "receptor A" by mediating specific Bacillus thuringiensis Cry1A delta-endotoxin binding and pore formation[J].Insect Biochemistry and Molecular Biology,1997.27(8-9):735-743
    [134]Luo S,Wu K,Tian Y.et al. Cross-resistance studies of Cry1Ac-resistant strains of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry2Ab[J].Journal of Economic Entomology.2007,100(3): 909-915.
    [135]Ma D,Yang C H, McNeill H,et al. Fidelity in planar cell polarity signalling[J].Nature,2003.421 (6922):543-547.
    [136]Maclntosh S C,Stone T B,Jokerst R S,et al. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens[J].Proceedings of the National Academy of Sciences of the United States of America,1991,88(20):8930-8933
    [137]Mahon R J,Olsen K M. Limited survival of a Cry2Ab-resistant strain of Helicoverpa armigera (Lepidoptera: Noctuidae) on Bollgard Ⅱ[J].Journal of Economic Entomology.2009,102(2): 708-716.
    [138]Mahon R J,Olsen K M,Downes S. Isolations of Cry2Ab resistance in Australian populations of Helicoverpa armigera (Lepidoptera: Noctuidae) are allelic[J].Journal of Economic Entomology,2008,101(3):909-914
    [139]Mahon R J,Olsen K M.Garsia K A,et al. Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia[J].Journal of Economic Entomology,2007,100(3):894-902
    [140]Matten S R,Head G P,Quemada H D. How governmental regulation can help or hinder the integration of Bt crops within IPM programs[C], In Romeis J,Shelton A M,Kennedy G G(eds.), Integration of insect resistant genetically modifed crops within IPM programs. Springer, New York.2008:27-39
    [141]McConnell E, Richards A G. The Production by Bacillus thuringiensis Berliner of a heat stable substance toxic for insects[J].Canadian Journal of Microbiology.1959,5(2):161-168
    [142]McKenzie J A. Whitten M J. Adena M A. The effect of genetic background on the fitness of the diazinon resistance genotypes of the Australian sheep blowfly Lucilia cuprina[J].Heredity,1982, 49(1):1-9
    [143]McNall R J, Adang M J. Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomic analysis[J].Insect Biochemistry and Molecular Biology,2003.33(10):999-1010
    [144]Meng F.Shen J.Zhou W.et al. Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae)[J].Pest Management Science,2004.60(2):167-172
    [145]Midboe E G.Candas M, Bulla Jr LA. Expression of a midgut-specific cadherin BT-R1 during the development of Manduca sexta larva[J],Comparative Biochemistry and Physiology B Biochemistry and Molecular Biology.2003,135(1):125-137
    [146]Mitsui K,Nakajima D.Ohara O.et al. Mammalian fat3:a large protein that contains multiple cadherin and EGF-like motifs[J],Biochemical and Biophysical Research Communications. 2002,290(4):1260-1266
    [147]Moar W J.Pusztai-Carey M,Van Faassen H,et al. Development of Bacillus thuringiensis CrylC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae)[J].Applied and Environmental Microbiology,1995.61 (6):2086-2092
    [148]Monsanto. Monsanto technology showcase tour previews pipeline innovations for Farmers.2007. Available from:
    [149]Morin S.Biggs R W,Sisterson M S,et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm[J].Proceedings of the National Academy of Sciences of the United States of America,2003.100(9):5004-5009
    [150]Morin S.Henderson S,Fabrick J A.et al. DNA-based detection of Bt resistance alleles in pink bollworm[J].Insect Biochemistry and Molecular Biology.2004,34(11):1225-1233
    [151]Nagamatsu Y.Koike T.Sasaki K.et al. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CrylAa toxin[J]. FEBS Letters.1999.460(2):385-390
    [152]Nagamatsu Y,Toda S.Koike T.et al. Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal Cry1A(a) toxin[J].Bioscience, Biotechnology, and Biochemistry.1998,62(4):727-734
    [153]Nagamatsu Y,Toda S,Yamaguchi F,et al. Identification of Bombyx mori midgut receptor for Bacillus thuringiensis insecticidal CryⅠA(a) toxin[J].Bioscience, Biotechnology, and Bioch-emistry,1998,62(4):718-726
    [154]Nair M S,Dean D H. All domains of Cry1A toxins insert into insect brush border membranes[J]. The Journal of Biological Chemistry,2008,283(39):26324-26331
    [155]Nair M S,Liu X S,Dean D H. Membrane insertion of the Bacillus thuringiensis Cry1Ab toxin: single mutation in domain Ⅱ block partitioning of the toxin into the brush border membrane[J]. Biochemistry,2008,47(21):5814-5822
    [156]Nakayama M,Nakajima D, Yoshimura R.et al. MEGF1/fat2 proteins containing extraordinarily large extracellular domains are localized to thin parallel fibers of cerebellar granule cells[J]. Molecular Cellular Neurosciences,2002,20(4):563-578
    [157]Oda H, Tsukita S. Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins[J].Developmental Biology,1999.216(1): 406-422.
    [158]Oda H,Wada H,Tagawa K,et al. A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny[J]. Evolution and Development,2002,4(6):426-434
    [159]Oddou P,Hartmann H,Geiser M. Identification and characterization of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis delta-endotoxins[J].European Journal of Biochemistry,1991,202(2):673-680
    [160]Pacheco S,Gomez I,Gill S S,et al. Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation[J]. Peptides.2009.30(3):583-588
    [161]Park Y,Abdullah M A,Taylor M D,et al. Enhancement of Bacillus thuringiensis Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin[J]. Applied and Environmental Microbiology,2009,75(10):3086-3092
    [162]Park Y,Hua G,Abdullah M A,et al. Cadherin fragments from Anopheles gambiae synergize Bacillus thuringiensis Cry4Ba's toxicity against Aedes aegypti larvae[J].Applied and Environmental Microbiology,2009,75(22):7280-7282
    [163]Patel S D, Chen CS,Bahna F,et al. Cadherin-mediated cell-cell adhesion:sticking together as a family[J].Current Opinions in Structural Biology,2003,13(6):690-698
    [164]Peck S L,Gould F,Ellner S P. Spread of resistance in spatially extended regions of transgenic cotton:implications for management of Heliothis virescens (Lepidoptera: Noctuidae)[J].Journal of Economic Entomology.1999.92(1):1-16
    [165]Perez C J, Tang J D,Shelton A M, Comparison of leaf-dip and diet bioassay for monitoring Bacillus thuringiensis resistance in field population of diamondback moth (Lepidoptera: Plutellidae)[J].Journal of Economic Entomology,1997,90(1):94-101
    [166]Pettitt J. The cadherin superfamily.WormBook.ed. The C. elegans Research Community, 2005,WormBook, doi/10.1895/wormbook.1.50.1, http://www.wormbook.org.
    [167]Peng D,Xu X,Ye W,et al. Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation[J].Applied Microbiology and Biotechnology, 2010,85(4):1033-1040
    [168]Perera O P,Willis J D,Adang M J,et al. Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens[J].Insect Biochemistry and Molecular Biology.2009,39(4):294-302
    [169]Perlak F J,Oppenhuize M,Gustafson K,et al. Development and commercial use of Bollgard(?) cotton in the USA-Early promises versus today's reality[J].The Plant Journal,2001.27(6): 489-501.
    [170]Pigott C R,Ellar D J.Role of receptors in Bacillus thuringiensis crystal toxin activity [J]. Microbiology and Molecular Biology Reviews,2007,71(2):255-281
    [171]Ponassi M,Jacques T S.Ciani L.et al. Expression of the rat homologue of the Drosophila fat tumour suppressor gene [J].Mechanisms of Development.1999,88(1):127
    [172]Pray C E,Huang J,Hu R.et al. Five years of Bt cotton in China-the benefits continue[J].The Plant Journal.2002,31 (4):423-430
    [173]Rajagopal R.Arora N,Sivakumar S,et al. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin[J].The Biochemical Journal.2009,419(2):309-316
    [174]Rajamohan F.Alcantara E.Lee M K.et al. Single amino acid changes in domain Ⅱ of Bacillus thuringiensis CrylAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles[J] Journal of Bacteriology,1995.177(9):2276-2282
    [175]Rajamohan F.Cotrill J A.Gould F,et al. Role of domain Ⅱ. loop 2 residues of Bacillus thuringiensis CrylAb delta-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens[J].The Journal of Biological Chemistry,1996.271(5):2390-2396
    [176]Rajamohan F.Hussain S R,Cotrill J A.et al. Mutations at domain Ⅱ, loop 3, of Bacillus thuringiensis CryⅠAa and CryⅠAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts[J].The Journal of Biological Chemistry,1996,271 (41):25220-25226
    [177]Rawls A S, Guinto J B,Wolff T. The cadherins fat and dachsous regulate dorsal/ventral signaling in the Drosophila eye[J].Current Biology.2002,12(2):1021-1026
    [178]Roush R T,Daly J C. The role of population genetics in resistance research and management.in Roush R T,Tabashnik B E. (Eds) Pesticide Resistance in Arthropods.London, Chapman and Hall. 1990:97-152
    [179]Roush R T, Wolfenbarger D A. Inheritance of resistance to methomyl in the tobacco budworm (Lepidoptera :Noctuidae)[J].Journal of Economic Entomology,1985,78(5):1020-1022
    [180]Russel D A,Kranthi K R. Cotton bollworm control in small-scale cotton production systems[M]. Handbook Common Fund for Commodities. Amsterdam. Eds,2006
    [181]Samir N,Weemen-Hendriks M,Dukiandjiev S,et al. Bacillus thuringiensis Delta -Endotoxin Cry1 Hybrid Proteins with Increased Activity against the Colorado Potato Beetle[J].Applied and Environmental Microbiology,2001,67(1):5328-5330
    [182]Saraswathy N,Kumar P A. Protein engineering of δ-endotoxins of Bacillus thuringiensis[J]. Electronic Journal of Biotechnology,2004,7(2):178-188
    [183]Sarkar A,Hess D,Mondal H A,et al. Homodimeric alkaline phosphatase located at Helicoverpa armigera midgut, a putative receptor of Cry1Ac contains alpha-Ga1NAc in terminal glycan structure as interactive epitope[J].Journal of Proteome Research,2009,8(4):1838-1848
    [184]Schnepf E,Crickmore N,Van Rie J,et al. Bacillus thuringiensis and Its Pesticidal Crystal Proteins[J]. Microbiology and Molecular Biology Reviews,1998,62(3):775-806
    [185]Shanahan G J. Genetics of diazinon resistance in larva of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) [J].Bulletin of Entomological Research,1979,69(2):225-228
    [186]Sivakumar S,Rajagopal R,Venkatesh G R.et al. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac[J].The Journal of Biological Chemistry,2007.282(10):7312-7319
    [187]Soberon M,Pardo-Lopez L,Lopez I,et al. Engineering modified Bt toxins to counter insect resistance[J].Science.2007,318(5856):1640-1642
    [188]Stone B F. Aformula for determining degree of dominance in case of monofactorial inheritance of resistance to chemicals[J].Bulletin of the World Health Organization,1968.38(2):325-326
    [189]Strutt, H., and Strutt, D. Nonautonomous planar polarity patterning in Drosophila:dishevelled independent functions of frizzled[J].Developmental Cell,2002,3(6):851-863
    [190]Syngenta. Personal communication.2002
    [191]Tabashnik B E,Biggs R W.Higginson D M.et al. Association between resistance to Bt cotton and cadherin genotype in pink bollworm[J].Journal of Economic Entomology.2005,98(3):635-644
    [192]Tabashnik B E.Dennehy T J.Carriere Y. Delayed resistance to transgenic cotton in pink bollworm[J].Proceedings of the National Academy of Sciences of the United States of America.2005.102(43):15389-15393
    [193]Tabashnik B E.Fabrick J A.Henderson S,et al. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure[J].Journal of Economic Entomology.2006, 99(5):1525-1530
    [194]Tabashnik, B. E., N. Finson, F. R. Groeters, et al. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella[J].Proceedings of the National Academy of Sciences of the United States of America,1994.91 (10):4120-4124
    [195]Tabashnik B E,Johnson K W,Engleman J T,et al. Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet[J].Journal of Invertebrate Pathology.2000.76(1):81-83
    [196]Tabashnik B E.Liu Y B.de Maagd R A.et al. Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins[J].Applied and Environmental Microbiology,2000, 66(10):4582-4584
    [197]Tabashnik B E, Liu Y B,Malvar T,et al. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis[J].Proceedings of the National Academy of Sciences of the United States of America,1997.94(24):12780-12785
    [198]Tabashnik B E. Liu Y B.Unnithan D C.et al. Shared genetic basis of resistance to Bt toxin CrylAc in independent strains of pink bollworm[J].Journal of Economic Entomology.2004,97(3): 721-726
    [199]Tabashnik B E,Patin A L.Dennehy T J,et al. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm[J].Proceedings of the National Academy of Sciences of the United States of America.2000,97(24):12980-12984
    [200]Tabashnik B E, Van Rensburg J B, Carriere Yves J. Field-evolved insect resistance to Bt crops: definition, theory, and data[J] Journal of Economic Entomology,2009,102(6):2011-2025
    [201]Tanabe K, Takeichi M,Nakagawa S. Identification of a nonchordate-type classic cadherin in vertebrates:Chicken Hz-cadherin is expressed in horizontal cells of the neural retina and contains a nonchordate-specific domain complex [J]..Developmental Dynamics,2004.229(4):899-906
    [202]Thomas S, Burke D, Gale M,et al. The use of genetically modified crops in developing countries. London:Nuffield Council on Bioethics.2003.Available on the World Wide Web: http://www.nuffieldbioethics.org/go/ourwork/gmcrops/publication_313.html
    [203]Tsuda Y,Nakatani F,Hashimoto K,et al. Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm)[J].The Biochemical Journal,2003,369(Pt3):697-703
    [204]USEPA-SAP(US Environmental Protection Agency-Scientific Advisory Panel). Subpanel on insect resistance management (October 18-20,2000) Report, Washington:US Environmental Protection Agency,2001:5-33
    [205]USEPA-SAP.The enviromental protection angency's white paper on Bacillus thuringiensis plant-pesticide resistance management.Washington:US Environmental Protection Agency,1998: 20-50
    [206]Usui T,Shima Y,Shimada,Y,et al. A Seven-Pass Transmembrane Cadherin, Regulates Planar Cell Polarity under the Control of Frizzled[J].Cell,1999,98(5):585-595
    [207]Vadlamudi R K,Weber E,Ji Let al. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis[J]. The Journal of Biological Chemistry,1995,270(10):5490-5494
    [208]van Frankenhuyzen K. Application of Bacillus thuringiensis in forestry[C]. In:Charles J F,Delecluse A,Nielsen-LeRoux C.(Eds.). Entomopathogenic Bactria: From laboratory to Field Application. Kluwer Academic Publishers,Dordrecht,2000:371
    [209]van Frankenhuyzen K. Insecticidal activity of Bacillus thuringiensis crystal proteins[J].Journal of Insect Physiology,2009,101 (1):1-16
    [210]Van Rie J,McGaughey W H.Johnson D E,et al. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis[J].Stience,1990,247(4938):72-74
    [211]Valaitis A P,Mazza A, Broussau R,et al. Interaction analyses of Bacillus thuringiensis Cry la toxins with two aminopeptidases from gypsy moth midgut brush border membranes[J].Insect Biochemistry and Molecular Biology.1997,27(6):529-539
    [212]Vogt L,Schrimpf S P,Meskenaite V,et al. Calsyntenin-1, a proteolytically processed postsynaptic membrane protein with a cytoplasmic calcium-binding domain[J].Molecular and Cellular Neuroscience,2001,17(1):151-166
    [213]Von Tersch M A.Slatin S L,Kulesza C A,et al. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryⅢB2 and CryⅢB2 domain Ⅰ peptide[J].Applied and Environmental Microbiology,1994,60(10):3711-3717
    [214]Walters F S,Slatin S L,Kulesza C A.et al. Ion channel activity of N-terminal fragments from CrylA(c) delta-endotoxin[J].Biochemical and Biophysical Research Communications,1993,196 (2):921-926
    [215]White N D G, Bell R J. Inheritance of malathion resistance in a strain of Tribolium castaneum (Coleoptera: Tenebrionidae) and effects of resistance genotypes on fecundity and larval survival in malathion-treated wheat[J].Journal of Economic Entomology,1988,81(1):381-386
    [216]Wright D J,Iqbal M,Granero F,et al. A Change in a Single Midgut Receptor in the Diamondback Moth (Plutella xylostella) Is Only in Part Responsible for Field Resistance to Bacillus thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai[J].Applied and Environmental Microbiology,1997,63(5):1814-1819
    [217]Wu K,Guo Y. Changes in susceptibility to conventional insecticides of a Cry1Ac-selected population of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae)[J].Pest Management Science,2004,60(7):680-684
    [218]Wu K M,Lu Y H,Feng H Q,et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J].Science,2008,321(5896):1676-1678
    [219]Wu X,Huang F,Rogers Leonard B,et al. Inheritance of resistance to Bacillus thuringiensis CrylAb protein in the sugarcane borer (Lepidoptera: Crambidae)[J].Journal of Invertebrate Pathology,2009.102(1):44-49
    [220]Wu Y,Vassal J M,Royer M,et al. A single linkage group confers dominant resistance to Bacillus thuringiensis delta-endotoxin Cry1Ac in Helicoverpa armigera[J].Journal of Applied Entomology,2009,133(5):375-380
    [221]Xie R,Zhuang M,Ross L S,et al. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins[J].The Journal of Biological Chemistry,2005,280(9):8416-8425
    [222]Xu X,Yu L,Wu Y. Disruption of a cadherin gene associated with resistance to Cry1Ac {delta}-endotoxin of Bacillus thuringiensis in Helicoverpa armigera[J].Applied and Environmental Microbiology,2005.71 (2):948-954
    [223]Yang Y,Chen H,Wu S,et al. Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera[J].Insect Biochemistry and Molecular Biology,2006,36(9):735-740
    [224]Yang Y,Chen H,Wu Y,et al. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac[J].Applied and Environmental Microbiology,2007,73(21):6939-6944
    [225]Zhang S,Cheng H,Gao Y,et al. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin[J].Insect Biochemistry and Molecular Biology,2009,39(7):421-429
    [226]Zhang X,Candas M,Griko N B,et al. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells[J].Cell Death and Differentiation,2005,2(11):1407-1416
    [227]Zhang X,Candas M,Griko N B,et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(26): 9897-9902
    [228]Zhang X,Griko N B,Corona S K,et al. Enhanced exocytosis of the receptor BT-R(1) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death[J]. Comparative Biochemistry and Physiology B Biochemistry and Molecular Biology,2008,149(4): 581-588
    [229]Zhao J Z,Grafius E. Assessment of different bioassay techniques for resistance monitoring in the diamondback moth[J].Journal of Economic Entomology,1993,86(4):995-1000
    [230]Zhuang M,Oltean D I,Gomez I,et al. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation[J].The Journal of Biological Chemistry,2002,277(16):13863-13872