犬诱导发情及发情期体内生殖激素的测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
犬属单次发情动物,其间情期和乏情期较长,生殖活动和繁殖率也具有一定的不稳定性,由于犬的特殊生殖生理特性,制约了养犬业的发展及犬繁殖控制技术的发展。2005年底公布的犬全基因组图谱显示,犬与人的基因相似度比人与鼠高,犬的疾病研究发现,许多疾病与人类疾病相似,如心脏病、癌症和免疫性神经系统疾病等。因此犬作为研究人类遗传疾病的动物模型具有很大的潜力,目前是国内外学者研究的热点。
     母犬的发情周期受体内生殖激素的调控,因此研究母犬体内生殖激素的相互作用情况及内分泌规律,可为提高良种犬的繁殖率及犬在生物医学领域中的应用提供理论依据。本研究选用外源激素诱导犬发情,观察犬的发情率及配种后的产仔率;并采集发情期内犬末梢血液,用放射免疫法和化学发光免疫法测定末梢血中的生殖激素雌二醇(E_2)、孕酮(P)和促黄体生成激素(LH)的浓度。同时,收集发情母犬的粪便,通过烘烤、混合及提取等步骤,用放射免疫法测定P变化规律。本研究通过对不同年龄、不同品种犬的诱导发情及发情周期内生殖激素的变化规律和不同检测方法的研究,旨在探讨有效诱导犬发情的外源激素及简单,快速的激素检测方法。
     1.比格犬发情期中生殖激素变化规律研究
     采集10只自然发情的成年雌性比格犬末梢血,用放射免疫法测定E_2、LH、P的分泌规律。研究发现LH在发情前期开始后8~10d达到最高浓度7.42±0.49mIU/mL;E_2在发情前期浓度为32.0±3.98pg/mL,之后逐渐升高,在发情前期开始后的7~9d达到最高值80.65±5.73pg/mL,之后迅速下降,在2~3d内降至12.12±2.86pg/mL并维持在这一浓度, 80%的母犬E_2峰值出现在LH峰值前24 h;P在发情前期浓度为3.04±1.08ng/mL,在发情前期开始后的8~12d初次升高到14.16±2.52ng/mL,并将这一浓度维持在3~5d,之后继续升高,在LH峰值之后的第17d达到最高值37.06±1.76ng/mL,其中80%的母犬在LH峰值之前P浓度开始初次升高,同时E_2浓度开始下降。所有试验犬均在E_2峰值后及P浓度逐渐升高时开始接受交配。研究表明,犬体内E_2对LH峰值的出现具有负反馈调节作用,E_2:P浓度比的下降促使LH峰值出现,并且与母犬发情的行为特征有关。
     2.犬的诱导发情研究
     选用PGF+PMSG+hCG外源激素,对不同年龄和不同品种犬诱导发情,并对PGF+PMSG+hCG和PGF+FSH+hCG两种不同激素组方诱导犬发情效果进行了比较。结果表明,在不同年龄犬诱导发情实验中,PGF+PMSG+hCG可诱导青年比格犬发情,经人工配种后,青年比格犬配种成功并产仔,发情率及产仔率均为100%;虽然老龄比格犬诱导后也出现发情征兆,但接受配种后并未产仔,可能是由于老龄犬体内生殖激素分泌不足,生殖器官功能下降所致。在对不同品种犬诱导发情实验中,PGF+PMSG+hCG可有效诱导青年比格犬和青年贵宾犬发情,诱导后的雌性犬发情率及产仔率均为100%。为比较不同的外源激素对犬的诱导效果,选用PGF+PMSG+hCG和PGF+FSH+hCG两种组方对青年犬诱导发情试验。显示,PGF+PMSG+hCG激素组方诱导犬发情后的2~3d,5只母犬均出现了发情现象,人工配种后产仔,发情率及产仔率均为100%; PGF+FSH+hCG激素组方诱导的5只青年贵宾犬均未出现发情现象。
     3.化学发光免疫分析法检测比格犬发情期中的生殖激素
     目前,测定动物体内激素时常应用放射免疫分析法,该法对操作人员具有一定放射性危害,并且对实验室防护设备要求较高。化学发光酶免疫分析法是将化学发光分析与免疫分析相结合,相比于放射免疫分析法,其具有无放射性污染、标记物容易制备、稳定性较高、检测速度快、准确度和灵敏度高等优点。本实验采用化学发光酶免疫分析法测定成年雌性比格犬发情期中血清LH、E_2和P的浓度水平,并与RIA测定结果进行比较,结果显示两者显著相关(P<0.0001),CLEIA与RIA检测血清LH、E_2和P浓度的相关系数分别为r= 0.964,0.987,0.9997,说明可以使用CLEIA代替RIA测定犬体内各生殖激素的含量,研究犬生殖激素的内分泌规律。
     4.犬粪便孕酮检测方法的建立
     母犬体内孕酮变化在发情鉴定、生殖力鉴定、胚胎死亡的判断、早孕诊断等方面显示了非常重要的作用。目前对犬生殖激素研究主要是采用静脉采血的方法,该方法会引起犬应激反应,影响犬体内正常的激素分泌情况,为减少外界因素对犬造成的应激反应和静脉采血对犬造成的痛苦,本实验在母犬发情期内定时收集粪便,通过烘烤、混合及有机溶剂提取等步骤从粪便中提取P,用放射免疫法测定P的含量及变化规律,结果表明,粪便中P含量在发情前期为47.88±11.93ng/mL,在发情前期开始后初次升高到139.95±25.89ng/mL,此浓度维持在3~4d,之后继续升高达到最高值(357.68±23.14ng/mL)。与末梢血中P检测方法比较得知,母犬粪便中P的浓度与血液中P的浓度显著相关(P<0.0001),两者浓度的变化趋势基本一致,说明粪便P的含量能很好地反映血液中P的含量,因此可以采用粪便样本检测母犬体内P浓度的变化情况。
Canine, a mono-estrous species, its dioestrus and anestrus are considerably long and the productive activities and productive rate of bitches are also instability. Canine special characteristics of the reproduction and physiology above have restricted the development of kennel business and canine reproductive regμLation technology. The dog genome map published in the end of year 2005 showed that the genetic similarity between canine and human was higher than that between human and mouse. Many diseases in dog are very similarly to that in human, such as heart diseases, cancer and autoimmune nervous system diseases. So dogs as the animal models of study human genetic diseases have great potential, and now it is the hot research studied by many domestic and foreign scholars.
     Since the estrous cycle of the canine is regμLated by reproductive hormones in vivo, the study of canine secretion and relationships between internal reproductive hormones can improve the canine reproductive rate and can also provide the theoretical basis of canine application in the biological and medical fields. In this study, we used exogenous hormones to induce of bitches estrus and observed the oestrous and pregnant rates after mating. We collected the feces and blood samples at regμLar time during the oestrus in beagle bitches, extracted progesterone from feces samples by roasting and mixing feces with water and using organics solvent, then used RIA and CLEIA to detect the concentrations of plasma LH, E_2, P and fecal P. We aimed to investigate the effective hormone prescriptions in use of estrus induction of bitches and to find the simple and fast methods of hormone detection.
     1. Levels of plasma reproductive hormones in oestrous beagle bitches
     In all ten experiment bitches during the nature estrous cycle, pre-ovμLatory LH surge was observed and the plasma LH reached the peak level (7.42±0.49mIU/mL) during 8-10 days after proestrus. The concentration of estradiol in proestrus was 32.0±3.98pg/mL, then it increased gradually and got to the peak level (80.65±5.73pg/mL) during 7-9 days after the starting of proestrus, after that the concentration of estradiol dropped sharply to 12.12±2.86pg/mL in 2-3 days and maintained at this concentration. The highest concentration of plasma estradiol occurred at 24h before the LH peak in 80% experiment beagle bitches. The progesterone in proestrus was 3.04±1.08ng/mL, then it initially increased to 14.16±2.52ng/mL during 8-12 days after the starting of proestrus and kept in this concentration for 3-5 days, after that the progesterone continued to rise and reached the peak level 37.06±1.76ng/mL at day 17 after the LH peak. The initial rise of progesterone occurred before LH peak, meanwhile the concentration of estradiol began to drop in 80% experiment beagle bitches. All experiment bitches accept the mating after the peak level of estradiol and the initial rise of progesterone. It can be concluded that estradiol had a negative feedback on LH secretion, and the peak level of LH and the estrous behaviors of bitch were involved in the decrease of E_2:P ratio.
     2. Induction of bitches estrus
     The hormone prescriptions of PGF+PMSG+hCG have been selected in the experiment to the use of estrus induction of bitches of different ages and different species. The resμLts confirmed that the hormone prescriptions of PGF+PMSG+hCG were effective to the induction of estrus of young bitches, and the oestrous and pregnant rates were both 100%. Althoμgh old beagle bitches appeared the estrous phenomenon after the injection of hormone prescriptions of PGF+PMSG+hCG, finally they failed to whelp after mating. The reasons may be that the old dogs have low homone levels and the dysfunction of reproductive organs. The hormone prescriptions of PGF+PMSG+hCG were also effective to the induction of estrus of young beagle bitches and poodle bitches, and the oestrous and pregnant rates were also both 100%. The two hormone prescriptions of PGF+PMSG+hCG and PGF+FSH+hCG have been chosen in this experiment to induce bitches to begin estrus. The resμLts show that they all began to proestrus during 2-3 days after injection of the PGF+PMSG+hCG hormone prescriptions and the oestrous and pregnant rates were both 100%. Moreover the hormone prescriptions of PGF+FSH+hCG were ineffective to the induction of estrus.
     3. Detection of plasma reproductive hormones in oestrous beagle bitches used CLEIA
     The radioimmunoassay (RIA) as the common use of detecting animal reproductive hormones has several drawbacks, such as the radiological hazards to operators, radioactive contamination of the environment and the high demand of laboratory protective equipment. The chemiluminescence enzyme immunoassay (CLEIA), combination of chemiluminescence and immunoassay, has many advantages compared with radioimmunoassay. It has no radioactive contamination, easy preparation of makers, high stability, rapid detection and high accuracy and sensitivity. This experiment used CLEIA to detect the plasma concentrations of LH, estradiol and progesterone in beagle bitches during the estrus. There was a significant positive correlation (P<0.0001) between the resμLts of CLEIA and RIA, and the correlation coefficients of the plasma concentrations of LH, estradiol and progesterone used CLEIA and RIA were 0.964,0.987,0.9997 respectively. The resμLts show that we can use CLEIA instead of RIA to detect the canine reproductive hormones in vivo and to study the secretion of reproductive hormones in the future.
     4. The method of detecting canine fecal progesterone
     The detection of canine progesterone is very importance in the identification of canine estrous cycle, fertility, death of embryo and early pregnancy. Measuring blood levels of sex steroid hormones is the common means of investigating the canine estrous cycle, but taking daily blood samples is not convenience and the stress caused by taking daily blood invasively can affect normal hormone levels in the blood. In order to reduce the negative impact described above, we collected the feces samples at regμLar time in this experiment during the estrus of beagle bitches, extracted progesterone from feces samples followed by roasting feces, mixing feces with water and using organics solvent to extract, then detected the level of fecal P used RIA. The resμLts showed that the concentration of fecal progesterone remained at mean 47.88±11.93ng/mL level during the proestrus, then began to initial arise after the beginning of proestrus and remained this level (139.95±25.89ng/mL) for 3-4 days, afterwards reached the peak concentration (357.68±23.14ng/mL). There was a significant positive correlation (P<0.0001) between plasma progesterone concentration and fecal progesterone concentration and the fluctuation of fecal progesterone was consistent to the plasma progesterone. The conclusion confirms that the progesterone levels in feces well reflect the progesterone levels in blood, so we can use fecal samples to investigate the changes of canine progesterone levels instead of blood samples in the further.
引文
[1]刘海军.犬的发情诱导[J].畜牧兽医杂志, 1994, 2: 54-57.
    [2]马文芝.母犬的发情周期及排卵时间的确定[J].中国兽医杂志, 2003, 39(8): 40-43.
    [3]谢建华.乏情期犬诱导发情试验[硕士论文].雅安:四川农业大学, 2008.
    [4]邢华.创建转基因犬的相关基础研究[硕士论文].扬州:扬州大学, 2008.
    [5] De Gier J, Kooistra H S, Djajadiningrat-Laanen S C, et al. Temporal relations between plasma concentrations of luteinizing hormone, follicle-stimulating hormone, estradiol-17 beta, progesterone, prolactin, and alpha-melanocyte-stimulating hormone during the follicular, ovulatory, and early luteal phase in the bitch [J]. Theriogenology, 2006, 65(7): 1346-1359.
    [6]余道伦. Beagle犬诱导发情、人工授精和输卵管胚胎移植技术的研究[硕士论文].扬州:扬州大学, 2006.
    [7]李厚达.试验动物学(第二版).北京:中国农业出版社, 2003: 265.
    [8]潘寿文,徐汉坤.狼种犬发情期生理特性变化规律的研究[J].畜牧与兽医, 1997, 29(3): 115-116.
    [9] Shimatsu Y, Yuzawa H, Aruga K, et al. Effect of time for mating and gestation length on reproductive efficiency in dogs [J]. Reprod Domest Anim, 2007, 42(6): 664-665.
    [10] Verstegen-Onclin K and Verstegen J. Endocrinology of pregnancy in the dog: a review [J]. Theriogenology, 2008, 70(3): 291-299.
    [11]王新蕾.自然发情母犬的雌孕激素变化规律初探[J].中国比较医学杂志, 2008, 18(2): 28-31.
    [12] Hoffmann B, Busges F, Engel E, et al. Regulation of corpus luteum-function in the bitch [J]. Reprod Domest Anim, 2004, 39(4): 232-240.
    [13] Gudermuth D F, Concannon P W, Daels P F, et al. Pregnancy-specific elevations in fecal concentrations of estradiol, testosterone and progesterone in the domestic dog (Canis familiaris) [J]. Theriogenology, 1998, 50(2): 237-248.
    [14] Gunzel-Apel A R, Zabel S, Bunck C F, et al. Concentrations of progesterone, prolactin and relaxin in the luteal phase and pregnancy in normal and short-cycling German Shepherd dogs [J]. Theriogenology, 2006, 66(6-7): 1431-1435.
    [15] Purswell B J. Management of apparent luteal insufficiency in a bitch [J]. J Am Vet Med Assoc, 1991, 199(7): 902-903.
    [16] Veronesi M C, Battocchio M, Marinelli L, et al. Correlations among body temperature, plasma progesterone, cortisol and prostaglandin F2alpha of the periparturient bitch [J]. J Vet Med A Physiol Pathol Clin Med, 2002, 49(5): 264-268.
    [17] Luz M R, Bertan C M, Binelli M, et al. Plasma concentrations of 13,14-dihydro-15-keto prostaglandin F2-alpha (PGFM), progesterone and estradiol in pregnant and nonpregnant diestrus cross-bred bitches [J]. Theriogenology, 2006, 66(6-7): 1436-1441.
    [18] Klonisch T, Hombach-Klonisch S, Froehlich C, et al. Canine preprorelaxin: nucleic acid sequence and localization within the canine placenta [J]. Biol Reprod, 1999, 60(3): 551-557.
    [19] Steinetz B G, Goldsmith L T, Hasan S H, et al. Diurnal variation of serum progesterone, but not relaxin, prolactin, or estradiol-17 beta in the pregnant bitch [J]. Endocrinology, 1990, 127(3): 1057-1063.
    [20] Concannon P W. Biology of gonadotrophin secretion in adult and prepubertal female dogs [J]. J Reprod Fertil Suppl, 1993, 47: 3-27.
    [21] Onclin K and Verstegen J P. In vivo investigation of luteal function in dogs: effects of cabergoline, a dopamine agonist, and prolactin on progesterone secretion duringmid-pregnancy and -diestrus [J]. Domest Anim Endocrinol, 1997, 14(1): 25-38.
    [22] De Gier J, Beijerink N J, Kooistra H S, et al. Physiology of the canine anoestrus and methods for manipulation of its length [J]. Reprod Domest Anim, 2008, 43 Suppl 2: 157-164.
    [23] Concannon P W. Endocrinologic control of normal canine ovarian function [J]. Reprod Domest Anim, 2009, 44 Suppl 2: 3-15.
    [24] Concannon P W, Tsutsui T and Shille V. Embryo development, hormonal requirements and maternal responses during canine pregnancy [J]. J Reprod Fertil Suppl, 2001, 57: 169-179.
    [25] Mihm M and Evans A C. Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women [J]. Reprod Domest Anim, 2008, 43 Suppl 2: 48-56.
    [26] England G C, Russo M and Freeman S L. Follicular dynamics, ovulation and conception rates in bitches [J]. Reprod Domest Anim, 2009, 44 Suppl 2: 53-58.
    [27] Hatoya S, Torii R, Kumagai D, et al. Expression of estrogen receptor alpha and beta genes in the mediobasal hypothalamus, pituitary and ovary during the canine estrous cycle [J]. Neurosci Lett, 2003, 347(2): 131-135.
    [28] Okkens A C and Kooistra H S. Anoestrus in the dog: a fascinating story [J]. Reprod Domest Anim, 2006, 41(4): 291-296.
    [29] Kowalewski M P, Mutembei H M and Hoffmann B. Canine prostaglandin F2alpha receptor (FP) and prostaglandin F2alpha synthase (PGFS): molecular cloning and expression in the corpus luteum [J]. Anim Reprod Sci, 2008, 107(1-2): 161-175.
    [30] Concannon P W, England G, Verstegen J, et al. Fertility and Infertility in Dogs, Cats and other Carnivores [J]. J Reprod Fertil Suppl, 1993, 47: 1-564.
    [31] Kowalewski M P, Michel E, Gram A, et al. Luteal and placental function in the bitch: spatio-temporal changes in prolactin receptor (PRLr) expression at dioestrus, pregnancy and normal and induced parturition [J]. Reprod Biol Endocrinol, 2011, 9: 109.
    [32] Aiudi G, Albrizio M, Caira M, et al. Apoptosis in canine corpus luteum during spontaneous and prostaglandin-induced luteal regression [J]. Theriogenology, 2006, 66(6-7): 1454-1461.
    [33] Luz M R, Cesario M D, Binelli M, et al. Canine corpus luteum regression: apoptosis and caspase-3 activity [J]. Theriogenology, 2006, 66(6-7): 1448-1453.
    [34] Baan M, Taverne M A, De Gier J, et al. Hormonal changes in spontaneous and aglepristone-induced parturition in dogs [J]. Theriogenology, 2008, 69(4): 399-407.
    [35] Fieni F, Martal J, Marnet P G, et al. Hormonal variation in bitches after early or mid-pregnancy termination with aglepristone (RU534) [J]. J Reprod Fertil Suppl, 2001, 57: 243-248.
    [36] Lee W M, Kooistra H S, Mol J A, et al. Ovariectomy during the luteal phase influences secretion of prolactin, growth hormone, and insulin-like growth factor-I in the bitch [J]. Theriogenology, 2006, 66(2): 484-490.
    [37] Tsutsui T, Kirihara N, Hori T, et al. Plasma progesterone and prolactin concentrations in overtly pseudopregnant bitches: a clinical study [J]. Theriogenology, 2007, 67(5): 1032-1038.
    [38] Becher A, Wehrend A, Goericke-Pesch S. Luteal insufficiency in the bitch - Symptoms, diagnosis, consequences and therapy. A review of the literature [J]. Tierarztliche Praxis Ausgabe K: Kleintiere - Heimtiere, 2010, 38(6): 389-396.
    [39]北京农业大学.家畜繁殖学(第二版).北京:中国农业出版社, 2000: 118-119.
    [40] Johnston S D, Kamolpatana K, Root-Kustritz M V, et al. Prostatic disorders in the dog [J]. Anim Reprod Sci, 2000, 60-61: 405-415.
    [41]北京农业大学.家畜繁殖学(第二版).北京:中国农业出版社, 2000: 239.
    [42]秦晓庆.外源性激素诱导犬同期发情效果试验[硕士论文].哈尔滨:东北农业大学, 2009.
    [43]王强.诱导犬发情激素组方及应用效果的研究[硕士论文].哈尔滨:东北农业大学, 2004.
    [44] Kutzler M A. Induction and synchronization of estrus in dogs [J]. Theriogenology, 2005, 64(3): 766-775.
    [45] Ithaca N Y. Biology of gonadotrophin secretion in adult and female dog [J]. International Veterinary information Service, 2001, 9(12): 102-104.
    [46] Cain. J. Incduction of ovulation in bitches using subcutaneous injection of GnRH analog [J]. Animal Breeding Abstracts, 1989, 58(6): 563.
    [47] Rota A, Mollo A, Marinelli L, et al. Evaluation of cabergoline and buserelin efficacy for oestrous induction in the bitch [J]. Reprod Domest Anim, 2003, 38(6): 440-443.
    [48] Kutzler M A, Wheeler R, Lamb S, et al. Deslorelin implant administration beneath the vulvar mucosa for the induction of synchronous estrus in bitches. [J]. Proc Ann Meet Eur Vet Soc Small Anim Reprod, 2002, [abstract]
    [49] Volkmann D H, Kutzler M A, Wheeler R, et al. The use of deslorelin implants for the synchronization of estrous in diestrous bitches [J]. Theriogenology, 2006, 66(6-7): 1497-1501.
    [50] Fontaine E, Mira F, Vannier F, et al. Induction of fertile oestrus in the bitch using Deslorelin, a GnRH agonist [J]. Theriogenology, 2011, 76(8): 1561-1566.
    [51] Concannon P W, Castracane V D, Temple M, et al. Endocrine control of ovarian function in dogs and other carnivores [J]. Anim. Reprod., 2009, 6(1): 172-193.
    [52] Verstegen J, Onclin K, Silva L, et al. Termination of obligate anoestrus and induction of fertile ovarian cycles in dogs by administration of purified pig LH [J]. J Reprod Fertil, 1997, 111(1): 35-40.
    [53] Valiente C, Romero G G, Corrada Y, et al. Interruption of the canine estrous cycle with a low and a high dose of the GnRH antagonist, acyline [J]. Theriogenology, 2009, 71(3): 408-411.
    [54] Concannon P W, Temple M, Montanez A, et al. Effects of dose and duration of continuous GnRH-agonist treatment on induction of estrus in beagle dogs: competing and concurrent up-regulation and down-regulation of LH release [J]. Theriogenology, 2006, 66(6-7): 1488-1496.
    [55] Shille V M, Thatcher M J, Simmons K J. Efforts to induce estrus in the bitch, using pituitary gonadotropins [J]. Am Vet Med Assoc, 1984, 184: 1469-1473.
    [56] Chaffaux S, Locci D, Pontois M, et al. Induction of ovarian activity in anoestrous beagle bitches [J]. Br Vet J, 1984, 140(2): 191-195.
    [57] Weilenmann R, Arnold S, Dobeli M, et al. Estrus induction in bitches by the administration of PMSG and HCG] [J]. Schweiz Arch Tierheilkd, 1993, 135(8): 236-241.
    [58]张玉西,卓炳德. PMSG对母犬诱发发情的作用及效果观察[J].中国兽医杂志, 2007, 43(7): 62-63.
    [59]朱海东.犬的发情诱导[J].吉林畜牧兽医, 2007, 4: 56-57.
    [60]余道伦,邢华,朱德建.犬辅助生殖技术研究进展[J].安徽农业科学, 2006, 34:1591-1592,1594.
    [61] Cirit U, Bacinoglu S, Cangul I T, et al. The effects of a low dose of cabergoline on induction of estrus and pregnancy rates in anestrous bitches [J]. Anim Reprod Sci, 2007, 101(1-2): 134-144.
    [62] Volkmann D H, Kutzler M A, Wheeler R, et al. Failure of hCG to support luteal function in bitches after estrus induction using deslorelin implants [J]. Theriogenology, 2006, 66: 1502-1506.
    [63]邢华,余道伦.毕格犬诱导发情的研究[J].实验动物与比较医学, 2006, 26(3): 160-164.
    [64]王禄华,朱丽丽,庞海涛等. PMSG诱导犬发情的初步试验[J].黑龙江畜牧兽医, 2008, 98-99.
    [65]谭建华,安铁沫. PGF、eCG及hCG3种生殖激素联用对母犬发情、卵泡发育及胚胎着床的影响[J].中国兽医学报, 2002, 22(4): 394-396.
    [66]孙兆增,曾林,洪宝庆等.乙烯雌酚对间情期比格犬发情的诱导[J].中国比较医学杂志, 2008, 18:36-38, 43.
    [67] Kutzler M A. Estrus induction and synchronization in canids and felids [J]. Theriogenology, 2007, 68(3): 354-374.
    [68] Sontas H B, Dokuzeylu B, Turna O, et al. Estrogen-induced myelotoxicity in dogs: A review [J]. Can Vet J, 2009, 50(10): 1054-1058.
    [69] Gobello C, Castex G, Corrada Y. Use of cabergoline to treat primary and secondary anestrus indogs [J]. J Am Vet Med Assoc, 2002, 220: 1653-1654.
    [70] Beijerink N J, Dieleman S J, Kooistra H S, et al. Low doses of bromocriptine shorten the interestrous interval in the bitch without lowering plasma prolactin concentration [J]. Theriogenology, 2003, 60(7): 1379-1386.
    [71] Zoldag L, Fekete S, Csaky I, et al. Fertile estrus induced in bitches by bromocryptine, a dopamine agonist: a clinical trial [J]. Theriogenology, 2001, 55(8): 1657-1666.
    [72]李小慧,杨利国.乏情母犬用溴隐亭处理后的发情表现与血清中孕酮和雌二醇水平变化[J].畜牧与兽医, 2004, 36(11): 1-3.
    [73]兰天. ELISA法测定粪样中性激素含量的应用前景[J].现代农业科技, 2010, 6: 31-32.
    [74]沈丽芳.标记免疫分析实验方法学进展[J].标记免疫分析与临床, 2007, 14(4): 268-270.
    [75]郑喜邦.野生动物尿和粪中类固醇激素的研究进展[J].青海畜牧兽医杂志, 1998, 28(3): 31-34.
    [76]黄英,胡德夫,刘树强等.川金丝猴粪样内3种类固醇激素保存时效分析[J].动物学杂志, 2010, 45(6): 64-70.
    [77]王晓明,张洪海,乔征磊等.半散养雌性东北虎繁殖期粪样中雌二醇和孕酮含量的变化[J].东北林业大学学报, 2009, 37(5): 95-97.
    [78]郎冬梅,刘文华,胡德夫等.圈养林麝粪便类固醇激素保存时效性研究[J].四川动物, 2011, 30(3): 357-361.
    [79] Schwarzenberger F. The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species [J]. Int. Zoo Yb., 2007, 41(1): 52-74.
    [80]章竹君,张书圣,张新荣.偶合反应化学发光酶联免疫分析测定人血清甲胎蛋白[J].分析化学, 1994, 22(6): 539-542.
    [81]钮心怡,路晟,孙旭东等. C肽化学发光免疫诊断分析方法的建立及临床应用[J].中国卫生检验杂志, 2007, 17(2): 219.
    [82]刘佳宁,刘一兵,贾娟娟等.促黄体生成激素酶促化学发光免疫分析方法的建立[J].同位素, 2010, 23(1): 28-33.
    [83]杨超一,韩世泉,张雪峰等.促卵泡激素酶促化学发光免疫分析试剂盒的研制[J].同位素, 2009, 22(1): 34-39.
    [84]农天雷.常用化学发光免疫分析技术及其特点[J].现代医药卫生, 2011, 27(14): 2156-2158.
    [85]张志华,林安仲,吴丙新等.母狒狒生殖周期之卵巢、生殖道与生殖内泌素变化[J].台北动物园学报, 1996, 8: 17-38.
    [86]夏东坡.野生雄性黄山短尾猴性腺激素与性行为关系研究[硕士论文].安徽:安徽大学, 2007.
    [87] Terio K A, Brown J L, Moreland R, et al. Comparison of different drying and storage methods on quantifiable concentrations of fecal steroids in the cheetah [J]. Zoo Biology, 2002, 21(3): 215-222.
    [88]李春,魏辅文,李明等.粪便类固醇激素研究简史及其在野生动物研究中的应用[J].四川动物, 2003, 22(4): 272-276.
    [89] Isobe N, Akita M, Nakao T, et al. Pregnancy diagnosis based on the fecal progesterone concentration in beef and dairy heifers and beef cows [J]. Anim Reprod Sci, 2005, 90(3-4): 211-218.
    [90] Capezzuto A, Chelini M O, Felippe E C, et al Correlation between serum and fecal concentrations of reproductive steroids throughout gestation in goats. [J]. Anim Reprod Sci, 2008, 103(1-2): 78-86.
    [91] Togashi M, Tsujimoto T, Yamauchi K, et al. Plasma and fecal sex steroid hormone profiles during the estrous cycle in a Japanese serow (Capricornis crispus) [J]. J Reprod Dev, 2009, 55(4): 412-417.
    [92] Millspaugh J J, Washburn B E, Milanick M A, et al. Effects of heat and chemical treatments onfecal glucocorticoid measurements: implications for sample transport [J]. Wildlife Society Bulletin, 2003, 31(2): 399-406.
    [93] Teresa Abáigar, Miguel A Domené, Francisco Palomares.Effects of fecal age and seasonality on steroid hormone concentration as a reproductive parameter in field studies [J]. Eur Wildl Res, 2010, 56(5): 781-787.
    [94] Galama W T, Graham L H, Savage A. Comparison of fecal storage methods for steroid analysis in black rhinoceroses(Diceros bicornis) [J]. Zoo Biology, 2004, 23(4): 291-300.
    [95] Hunt K E and Wasser S K. Effect of long-term preservation methods on fecal glucocorticoid concentrations of grizzly bear and African elephant [J]. Physiol Biochem Zool, 2003, 76(6): 918-928.
    [96] Khan M Z, Altmann J, Isani S S, et al. A matter of time: evaluating the storage of fecal samples for steroid analysis [J]. Gen Comp Endocrinol, 2002, 128(1): 57-64.
    [97] Terio K A, Brown J L, Moreland R, et al. Comparison of different drying and storage methods on quantifiable concentrations of fecal steroids in the cheetah. [J]. Zoo Biology, 2002, 21(3): 215-222.
    [98] Lynch J W, Khan M Z, Altmann J, et al. Concentrations of four fecal steroids in wild baboons: short-term storage conditions and consequences for data interpretation [J]. Gen Comp Endocrinol, 2003, 132(2): 264-271.
    [99] Cerda-Molina A L, Hernandez-Lopez L, Paez-Ponce D L, et al. Seasonal variations of fecal progesterone and 17beta-estradiol in captive female black-handed spider monkeys (Ateles geoffroyi) [J]. Theriogenology, 2006, 66(8): 1985-1993.
    [100] Pereira R J, Polegato B F, De Souza S, et al. Monitoring ovarian cycles and pregnancy in brown brocket deer (Mazama gouazoubira) by measurement of fecal progesterone metabolites [J]. Theriogenology, 2006, 65(2): 387-399.
    [101] Takahashi T, Hamanaka S, Imai K, et al. Fecal progesterone analysis by time-resolved fluoroimmunoassay (TR-FIA) for monitoring of luteal function in the sika doe (Cervus nippon centralis) [J]. J Vet Med Sci, 2002, 64(7): 565-569.
    [102] Macchi E, Cucuzza A S, Badino P, et al. Seasonality of reproduction in wild boar (Sus scrofa) assessed by fecal and plasmatic steroids [J]. Theriogenology, 2010, 73(9): 1230-1237.
    [103] Chelini M O, Souza N L, Rocha A M, et al. Quantification of fecal estradiol and progesterone metabolites in Syrian hamsters (Mesocricetus auratus) [J]. Braz J Med Biol Res, 2005, 38(11): 1711-1717.
    [104] Muhlbauer M, Duarte D P, Gilmore D P, et al. Fecal estradiol and progesterone metabolite levels in the three-toed sloth (Bradypus variegatus) [J]. Braz J Med Biol Res, 2006, 39(2): 289-295.
    [105]李春,魏辅文,李明等.粪便类固醇激素研究简史及其在野生动物研究中的应用[J].四川动物, 2003, 22(4): 272-276.
    [106] Santymire R M, Brown J L, Stewart R A, et al. Reproductive gonadal steroidogenic activity in the fishing cat (Prionailurus viverrinus) assessed by fecal steroid analyses [J]. Anim Reprod Sci, 128(1-4): 60-72.
    [107] Kinoshita K, Inada S, Seki K, et al. Long-term monitoring of fecal steroid hormones in female snow leopards (Panthera uncia) during pregnancy or pseudopregnancy [J]. PLoS One, 6(5): e19314.
    [108] Kinoshita K, Ohazama M, Ishida R, et al. Daily fecal sex steroid hormonal changes and mating success in captive female cheetahs (Acinonyx jubatus) in Japan [J]. Anim Reprod Sci, 2011, 125(1-4): 204-210.
    [109] Adachi I, Kusuda S, Nagao E, et al. Fecal steroid metabolites and reproductive monitoring in a female Tsushima leopard cat (Prionailurus bengalensis euptilurus) [J]. Theriogenology, 2010, 74(8): 1499-1503.
    [110] Superina M, Carreno N and Jahn G A. Characterization of seasonal reproduction patterns in female pichis Zaedyus pichiy (Xenarthra: Dasypodidae) estimated by fecal sex steroidmetabolites and ovarian histology [J]. Anim Reprod Sci, 2009, 116(3-4): 358-369.
    [111] Kinoshita K, Inada S, Seki K, et al. Long-term monitoring of fecal steroid hormones in female snow leopards (Panthera uncia) during pregnancy or pseudopregnancy [J]. PLoS One, 2011, 6(5): e19314.
    [112] Santymire R M, Brown J L, Stewart R A, et al. Reproductive gonadal steroidogenic activity in the fishing cat (Prionailurus viverrinus) assessed by fecal steroid analyses [J]. Anim Reprod Sci, 2011, 128(1-4): 60-72.
    [113] Derrien M, Jarde E, Gruau G, et al. Extreme variability of steroid profiles in cow feces and pig slurries at the regional scale: implications for the use of steroids to specify fecal pollution sources in waters [J]. J Agric Food Chem, 2011, 59(13): 7294-7302.
    [114] Scarlata C D, Elias B A, Godwin J R, et al. Characterizing gonadal and adrenal activity by fecal steroid analyses in pygmy rabbits (Brachylagus idahoensis) [J]. Gen Comp Endocrinol, 2011, 171(3): 373-380.
    [115] Santymire R M and Armstrong D M. Development of a field-friendly technique for fecal steroid extraction and storage using the African wild dog (Lycaon pictus) [J]. Zoo Biol, 2010, 29(3): 289-302.
    [116]马大君.母犬发情周期及注意事项[J].中国工作犬业, 2005, 6: 19-20.
    [117] Onclin K, Murphy B and Verstegen J P. Comparisons of estradiol, LH and FSH patterns in pregnant and nonpregnant beagle bitches [J]. Theriogenology, 2002, 57(8): 1957-1972.
    [118] Concannon P W, Castracane V D, Temple M, et al. Endocrine control of ovarian function in dogs and other carnivores [J]. Anim. Reprod., 2009, 6: 172-194.
    [119] Ashley R L, Clay C M, Farmerie T A, et al. Cloning and characterization of an ovine intracellular seven transmembrane receptor for progesterone that mediates calcium mobilization [J]. Endocrinology, 2006, 147(9): 4151-4159.
    [120]王强,朱海东,葛铭等. FSH和PMSG对犬发情诱导效果比较[J].黑龙江畜牧兽医, 2003, 11: 57.
    [121] Quan Y, Zhang Y, Wang S, et al. A rapid and sensitive chemiluminescence enzyme-linked immunosorbent assay for the determination of fumonisin B1 in food samples [J]. Anal Chim Acta, 2006, 580(1): 1-8.
    [122] Carosi M, Heistermann M and Visalberghi E. Display of proceptive behaviors in relation to urinary and fecal progestin levels over the ovarian cycle in female tufted capuchin monkeys [J]. Horm Behav, 1999, 36(3): 252-65.