微型声频定向系统理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型声频定向系统是一种将声音控制在狭窄区域内高指向性传播的新型扬声器,它以非线性声学参量阵理论为基础,通过微型换能器将调制有可听声成分的超声波发射至空气中,利用高指向性超声波在空气传播过程中的非线性交互效应,自解调出具备高度指向性的可听声。本文主要围绕微型声频定向系统换能器理论和低功耗高保真非线性信号处理理论展开探索性研究,为其在便携式多媒体设备中实现高指向性声音传播提供理论参考和实践依据。
     根据Helmhotlz非线性声学理论、Westervelt双频声学参量阵理论和Berktay宽带声学参量阵理论,本文首先阐明了声频定向系统工作原理和系统组成,运用拟线性理论对KZK非线性声波运动方程进行了求解,该方程充分考虑了声波在空气中传播时的非线性、吸收和散射效应,方程拟线性解表明声频定向系统产生的自解调可听声声压与已调制超声信号包络平方对时间的二次导数成正比关系。
     在微型声频定向系统的基础上,本文提出了以圆形多层薄膜层叠板为基本结构的微型声频定向换能器力学理论模型,模型以MEMS微机械加工工艺为基础,采用黏合层技术使镀有贵金属电极并沿厚度方向极化的PZT薄膜与绝缘衬底硅结合在一起。在理论模型的基础上,导出了压电多层板运动方程和换能器方程,明确了各薄膜层厚度和半径对换能器中心振幅、谐振频率、有效机电耦合系数的影响机理,探讨了阵元尺寸、阵元个数和阵元间距等参数对指向性的影响。根据理论模型研制出了正方形和六边形两种基于MEMS的微型换能器阵列,作为微型声频定向系统的发声部件。
     在单边带全载波调幅算法的基础上,本文提出了基于动态载波控制与n阶失真补偿的低功耗高保真非线性信号处理理论模型。根据KZK方程拟线性解和Berktay远场解理论,探讨了换能器尺寸及工作频率对远近场临界距离的影响、空气吸收衰减系数以及载波频率对声场指向性的影响。从理论上分析了双边带全载波调幅法、平方根法和单边带全载波调幅法等常见声频定向信号处理算法的输出功率和谐波失真,明确了各算法中声源面积、调制度、声波频率等参数对二者的影响机理。
     根据以上理论研究成果,本文以正方形MEMS微型换能器阵列作为发声部件,以D类微型功率放大器作为换能器驱动部件,使用DSP技术实现了基于动态载波控制和一阶失真补偿的单边带全载波调幅算法,研制出用于手机的微型声频定向系统样机,搭建了微型声频定向系统声学测试平台,对微型换能器阵列做了阻抗特性、声压级频率响应以及指向性测试,测试结果有效验证了本文提出的换能器理论模型的正确性,对样机做了自解调可听声频率响应、总谐波失真、指向性以及功耗测试,实验结果验证了本文提出的低功耗高保真非线性信号处理理论模型正确可行。
A micro audio directional system is presented as a novel loudspeaker which cangenerates audible sound in a narrow conical beam. Based on the theory of nonlinearacoustic parametric array, it emits an ultrasonic sound modulated by audible signal intothe air through a micro transducer array. Because of the nonlinear interactive effect inthe process of propagation, the ultrasonic sound is demodulated to produce the audiblesound beam. Micro transducer theory and nonlinear signal processing methods with lowpower consumption and high fidelity are explored to provide the theoretical andpractical experience for utilizing the sound propagation with high directivity in portablemultimedia devices as well as in mobile phone.
     The thesis begins with reviews of Helmholtz1`s nonlinear acoustics theory,Westervelt`s two-frequency acoustic parametric array theory and Berktay`s widebandparametric array theory. These solutions are used to explain the principle and structureof audio directional system. The general solution of KZK parabolic wave equation,which accounts for nonlinearity, absorption and diffraction, is derived by employingquasilinear theory. The quasilinear solution indicates that the sound pressure level of thedemodulated signal is proportional to the second derivative of the square of themodulated signal`s envelope.
     A piezoelectric micromachined ultrasonic transducer is structured as circularmultilayered thin film laminated elastic plate. The electroded PZT film with polarizationin the thickness-direction is adhered to SOI (Silicon-On-Insulator) wafer with an adherelayer. The governing equations and differential extension and bending equations of thetransducer are obtained for clarifying the radius and thickness effects of each layer.Those vibration characteristics effect include resonant frequency, electromechanicalcoupling coefficient and center flexural displacement. The directivity of the transducerarray effects due to element size, element quantity and element spacing distance arediscussed. Two micro transducer arrays, the hexagon and foursquare emitter of themicro directional loudspeaker, based on MEMS technology are designed and fabricated.
     A single side band modulation signal processing model is developed with dynamic carrier control and n order distortion compensation.By the quasilinear solution of KZKequation and Berktay`s far-filed solution, the primary ultrasonic sound field andsecondary demodulated audible sound filed are modeled to analyze the directivity of theaudio directional system. The transducer size and working frequency effects ontransition point between near-field and far-field, the effects of attenuation coefficient foratmospheric absorption and the sound frequency effects on the directivity areinvestigated. The output power and harmonic distortion of double side band full carriermethod, square-root method and single side band full carrier method are analyzed andcompared theoretically.
     A micro audio directional system prototype is constructed to be applied in mobilephone. The prototype consists of DSP signal processing platform, class D poweramplifier and micro MEMS-based transducer array et al. The single side band amplitudemodulation method with dynamic carrier control and one-order distortion compensationalgorithm is realized in the prototype by DSP technology. A testing platform isconfigured by employing the above theoretical results and research findings. Theimpedance, sound pressure frequency response and directivity of the transducer arrayare measured and analyzed to examine the availability of the theoretical model. It isdemonstrated that the testing results matches with the theoretical results. Thedemodulated audible sound pressure frequency response, total harmonic distortion,directivity and power consumption are tested and the results indicate that the signalprocessing model proposed in the dissertation is correct and meets the requirements ofthe micro audio directional system.
引文
[1] P.J.Westervelt. Parametric end-fire array. Journal of the Acoustical Society of America,1960,32(4):934-935
    [2] P.J.Westervelt. Parametric acoustic array. Journal of the Acoustical Society of America,1963,35(4):535-537
    [3] T.Kamakura, M.Yoneyama, K.Ikegaya. Developments of parametric loudspeaker for practicaluse. Proceedings of the10th International Symposium on Nonlinear Acoustics, Kobe, Japan,1984,147-150
    [4] D.Olszewski, F.Prasetyo, K.Linhard. Steerable highly directional audio beam loudspeaker.Proceedings of the9th European Conference on Speech Communication and Technology,Lisbon, Portugal,2005,137-140
    [5] J.James, J.O.Norris. HSS white paper. USA: American Technology Corporation,2005
    [6] M.Yoneyama, J.I.Fujimoto. The audio spotlight: an application of nonlinear interaction ofsound waves to a new type of loudspeaker design. Journal of the Acoustical Society of America,1983,73(5):1532-1536
    [7] A.L.Thuras, R.T.Jenkins, H.T.O'Neil. Extraneous frequencies generated in air carrying intensesound waves. Journal of the Acoustical Society of America,1935,6(1):173-180
    [8] L.J.Black. A physical analysis of distortion produced by the nonlinearity of the medium. Journalof the Acoustical Society of America,1940,12(2):266-267
    [9] P.J.Westervelt. Scattering of sound by sound. Journal of the Acoustical Society of America,1957,29:199-203
    [10] P.J.Westervelt. Scattering of sound by sound. Journal of the Acoustical Society of America,1957,29:934-935
    [11]钱祖文.非线性声学.北京:科学出版社,2009
    [12] J.L.S.Bellin, R.T.Beyer. Experimental investigation of an end-fire array. Journal of theAcoustical Society of America,1962,34:1051-1054
    [13] H.O.Berktay. Possible exploitation of non-linear acoustics in underwater transmittingapplications. Journal of Sound and Vibration,1965,2(4):435-461
    [14] M.F.Hamilton, D.T.Blackstock. Nonlinear acoustics. Boston: Academic Press.2008
    [15] M.B.Bennet, D.T.Blackstock. Parametric array in air. Journal of the Acoustical Society ofAmerica,1975,57(3):562-568
    [16]陈敏.声频定向系统理论与关键技术研究:[博士学位论文].成都:电子科技大学,2008
    [17] T.Kamakura, T.Yoneyama, K.Ikegaya. Studies for the realization of parametric loudspeaker.Journal of Acoustic Society of Japan,1985,41(6):378-385
    [18] F.J.Pompei. The use of airborne ultrasonics for generating audible sound beams. Proceedings ofthe Audio Engineering Society105th Convention, San Francisco, USA,1998,26-29
    [19] D.Yang, S.Flockton. Evolutionary algorithm for parametric array signal processing.Proceedings of the1995AISB Workshop on Evolutionary Computing, Sheffield, UnitedKingdom,1995,993:191
    [20] F.A.Karnapi, W.S.Gan, Y.K.Chong. FPGA implementation of parametric loudspeaker system.Microprocessors and Microsystems,2004,28:261-272
    [21] K.Lee, C.Mun, W.S.Gan. Bandwidth-efficient recursive pth-order equalization for correctingbaseband distortion in parametric loudspeakers. IEEE Transactions on Audio, Speech andLanguage Processing,2006,14(2):706-710
    [22] K.Aoki, T.Kamakura, Y.Kumamoto. A parametric loudspeaker-applied examples. TheElectronic Journal of Communication in Japan,1994,77(1):64-74
    [23] K.S.Tan, W.S.Gan, J.Yang, et al. Constant beamwidth beamformer for difference frequency inparametric array. Proceedings of IEEE International Conference on Acoustics, Speech andSignal Processing,2003,5:361-364
    [24] J.Yang, K.S.Tan, W.S.Gan, et al. Beamwidth control in parametric acoustic array. JapaneseJournal of Applied Physics, Part1: Regular Papers and Short Notes and Review Papers,2005,44(9):6817-6819
    [25] J.Yang, W.S.Gan, K.S.Tan, et al. Acoustic beamforming of a parametric speaker comprisingultrasonic transducers. Sensors and Actuators, A: Physical,2005,125(1):91-99
    [26] W.S.Gan, J.Yang, K.S.Tan, et al. A digital beamsteerer for difference frequency in a parametricarray. IEEE Transactions on Audio, Speech and Language Processing,2006,14(3):1018-1024
    [27] K.S.Tan, W.S.Gan, J.Yang, et al. An efficient digital beamsteering system for differencefrequency in parametric array. Proceedings of IEEE International Conference on Acoustics,Speech, and Signal Processing, Montreal, Que, Canada,2004(2):193-196
    [28] J.Yang, K.Sha, W.S.Gan, et al. Nonlinear wave propagation for a parametric loudspeaker.IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2004, E87-A (9):2395-2400
    [29] K.Sha, J.Yang, W.S.Gan. A complex virtual source approach for calculating the diffractionbeam field generated by a rectangular planar source. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2003,50(7):890-897
    [30] J.Yang, K.Sha, W.S.Gan, et al. Modeling of finite-amplitude sound beams: second order fieldsgenerated by a parametric loudspeaker. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,2005,52(4):610-618
    [31] T. Kamakura, K. Aoki, and Y. Kumamoto. Suitable modulation of the carrier ultrasound for aparametric loudspeaker. Acustica,1991,73:215-217
    [32]宋朝晖,鲍可进.参量扬声器系统的探索与研究.电声技术,2005,5:28-30+34
    [33]周荣冠.参量扬声器的原理及应用.电声技术,2008,32(1):29-33
    [34]姬培锋.指向性声源的理论与实验研究:[硕士学位论文].山东:山东科技大学,2005
    [35]朱海生.基于DSP的指向性声源的设计与实现:[硕士学位论文].山东:山东科技大学,2005
    [36]杨益,温周斌,冯海泓,等.超指向性扬声器的系统设计与测试.声学技术,2008,27(1):66-70
    [37]郑贤中.高指向性音频声波理论与控制研究:[博士学位论文].武汉:华中科技大学,2005
    [38] F.J.Pompei. Sound From Ultrasound: The parametric array as an audible sound source:[PhDDissertation]. Massachusettes: Massachusettes Institute of Technology,2002
    [39]纪鸣,吴亚锋,韩斌.声音定向传输中的失真分析.声学技术,2005,24(4):277-279
    [40]孙健,吴亚峰,薛惠君.超声调制声频定向传播性能研究.压电与声光.2010,32(2):184-186
    [41]孙健,吴亚峰,许应康.基于超声调制的声频定向传播实验.电声技术.2009,33(4):74-77
    [42] Min Chen. Dagui Huang, Limei Xu, et al. Research on a novel audio beam loudspeaker basedon digital signal processor. Proceedings of IEEE International Conference on Mechatronics andAutomation,2005,466-470
    [43] Shanmei Liu, Wei Yao, Jun Meng, et al. Hardware design of signal processing for a novel audiobeam loudspeaker based on DSP. IEEE Conference on Industrial Electronics and Applications,2006,1570-1573
    [44]刘珊梅,姚维,徐利梅.DSP在新型声频定向系统中的应用.电声技术,2007,31(3):27-30
    [45]李学生,徐利梅,陈敏,等.基于ADSP-BF533的声频定向算法实现.微计算机信息,2006,22(5-2):176-178
    [46]王莹,李学生,项多云,等.基于ADSP-BF533的音频处理系统设计.电声技术,2006,8:32-35
    [47] Min Chen, Da-gui Huang, Shouheng Xu, et al. An approximate realization method of the squareroot signal processing algorithm of audio directional loudspeaker. Proceedings of the2007IEEE International Conference on Mechatronics and Automation, Harbin, China,2007,641-646
    [48] Ying Wang, Zhe Zhou, Min Chen, et al. Defining the parameters of truncated square-rootingDSB for parametric loudspeaker. Proceedings of the2007IEEE International Conference onMechatronics and Automation, Harbin, China,2007,1689-1693
    [49] Min Chen, Limei Xu, Dagui Huang, et al. Experimental verification of the square rootingalgorithm for parametric loudspeaker with a PVDF film transducer. International Journal ofInnovative Computing, Information and Control,2008,4(8):1877-1886
    [50]陈敏,徐利梅,黄大贵.声频定向扬声器谐波失真测试.仪器仪表学报,2009,30(8):1591-1596
    [51]陈敏,徐利梅,黄大贵,等.声频定向扬声器DSB算法的谐波失真.电子科技大学学报,2008,37(6):955-958
    [52] Min Chen, Leon Xu, Yang Cao, et al. Research on an improved amplitude modulation methodof audio directional loudspeaker. International Conference on Audio, Language and ImageProcessing,2008,5-9
    [53] Min Chen, Xiao Qin, Leon Xu, et al. The distortion analysis of the single side band method forparametric loudspeaker based on orthogonal envelope detection.2nd International Symposiumon Systems and Control in Aeronautics and Astronautics,2008,1-5
    [54] F.J.Pompei. The use of airborne ultrasonics for generating audible sound beams. Journal ofAudio Engineering Society,1999,47(9):726-731
    [55] K.Aoki, T.Kamakura, Y.Kumamoto. Parametric loudspeaker-characteristics of acoustic fieldand suitable modulation of carrier ultrasound. Electronics and Communications in Japan, Part3,1991,74(9):76-80
    [56] Limei Xu, Jianfang Cao, Dagui Huang. Design and characterization of a PVDF ultrasonicacoustic transducer applied in audio beam loudspeaker. IEEE International Conference onMechatronics and Automation,2005,1992-1997
    [57]曹建芳,徐利梅,李辉.声频定向PVDF超声波传感器的设计与测试.实验科学与技术,2005,3:1-4
    [58]陈敏,徐利梅,黄大贵,等.谐振频率可调式PVDF膜声频定向换能器.压电与声光,2007,29(1):53-55
    [59]陈敏,徐利梅,黄大贵,等.声束扬声器的换能器方形阵列设计.电声技术,2006,1:26-29
    [60] F.J.Pompei, S.C.Wooh. Phased array element shapes for suppressing grating lobes. Journal ofthe Acoustical Society of America,2002,111(5I):2040-2048
    [61] T.Kamakura, M.Tani, Y.Kumamoto, et al. Parametric sound radiation from a rectangularaperture source. Acustica,1994,80:332-338
    [62] J.Yang, K.Sha, W.S.Gan, et al. Radiation impedance calculation for arbitrarily shaped piston.Japanese Journal of Applied Physics, Part1: Regular Papers and Short Notes and ReviewPapers,2004,43(9A):6274-6277
    [63] K.Sha, J.Yang, W.S.Gan. A simple calculation method for the self-and mutual-radiationimpedance of flexible rectangular patches in a rigid infinite baffle. Journal of Sound andVibration,2005,282(1-2):179-195
    [64] J.Huang, P.W.Que, J.H.Jin. A parametric study of beam control for ultrasonic linear phasedarray transducer. Defektoskopiya(In Russian),2004,4:46-53
    [65] Limei Xu, Hui Li, Jianfang Cao, et al. Influence of phased array pattern on beam directivity.International Journal of Innovative computing, information and Control,2006,2(2):449-456.
    [66]陈敏,徐利梅,黄大贵,等.基于MATLAB的换能器阵列指向性分析方法研究.电声技术,2006,5:25-28
    [67]陈敏,徐利梅,黄大贵,等.声束扬声器的声频定向换能器阵列指向性研究.压电与声光,2006,28(4):400-402
    [68]杨益,阎兆立,温周斌,等.超指向性扬声器的阵列设计与研究.声学技术,2008,27(3):433-438
    [69]杜华龙.基于声频定向系统的圆柱波纹壳PVDF压电换能器动力学特性研究:[硕士学位论文].成都:电子科技大学,2009
    [70] Y.Nakashima, T.Yoshimura, T.Ohya. Prototype of parametric array loudspeaker on mobilephone and its acoustical characteristics. Proceedings of Audio Engineering Society118thConvention, Barcelona, Spain,2005,205-209.
    [71]陈建人.微机电系统技术与应用.台湾:行政院国家科学委员会精密仪器发展中心,2003
    [72] S.S.Lee, R.P.Ried, R.M.White. Piezoelectric cantilever microphoneand microspeaker. Journalof Microelectromechanical Systems,1996,5(4):238-242
    [73]马腾.基于MEMS的压电超声微换能器的设计、仿真和实验:[硕士学位论文].成都:电子科技大学,2009
    [74]耿云龙.基于PZT材料的声频定向微型换能器建模与测试:[硕士学位论文].成都:电子科技大学,2010
    [75] C.H.Han, E.S.Kim. Micromachined piezoelectric ultrasonic transducers based on parylenediaphragm in silicon substrate. IEEE International Ultrasonics Symposium, San Juan, PuertoRico,2000,919-923
    [76] C.H.Han, E.S.Kim. Packaged parylene-diaphragm piezoelectric microspeaker. InternationalMechanical Engineering Congress and Exposition. Symposium on MicroelectromechanicalSystems, Orlando, USA,2000,2:111-115
    [77] C.H.Han, E.S.Kim. Parylene-diaphragm piezoelectric acoustic transducers. IEEE InternationalMicro Electro Mechanical Systems Conference, Miyazaki, Japan,2000,148-152
    [78] C.H.Han, E.S.Kim. Fabrication of piezoelectric acoustic transducers built on cantilever-likediaphragm. IEEE International Micro Electro Mechanical Systems Conference, Interlaken,Switzerland,2001,110-113
    [79] S.C.Ko, Y.C.Kim, S.S.Lee, et al. Micromachined piezoelectric membrane acoustic device.Sensors and Actuators, A,2003,103:130-134
    [80] S.H.Yi, E.S.Kim. Piezoelectric microspeaker with compressive nitride diaphragm. IEEEInternational Micro Electro Mechanical Systems Conference, LasVegas, USA,2002,260-263
    [81] S.H.Yi, E.S.Kim. Micromachined piezoelectric microspeakers. Japanese Journal of AppliedPhysics,2005,44:3836-3841
    [82] S.H.Yi, M.S.Yoon, S.C.Ur. Piezoelectric microspeakers with high compressive ZnO film andfloating electrode. Journal of Electroceramics,2008,1385-3449
    [83] K.W.Seo, J.S.Park, H.J.Kim, et al. Micromachined piezoelectric microspeakers fabricated withhigh quality AIN thin film. Journal of Integrated Ferroelectrics,2007,95:74-82
    [84] H.C.Cho, S.C.Ur, M.S.Yoon, et al. Dependence of material properties on piezoelectricmicrospeakers with AlN thin film. Proceedings of the3rd IEEE International Conference onNano/Micro Engineered and Molecular Systems, Sanya, China,2008,637-640
    [85] S.H.Yi, S.C.Ur, E.S.Kim. Performance of packaged piezoelectric microspeakers depending onthe material properties. IEEE International Micro Electro Mechanical Systems Conference,Sorrento, Italy,2009,765-768
    [86] I.Demir, A.L.Olson, J.L.Skinner, et al. High strain behavior of composite thin film piezoelectricmembranes. Journal of Microelectronic Engineering,2004,75:12-23
    [87] L.M.R.Eakins, B.W.Olson, C.D.Richards, et al. Influence of structure and chemistry onpiezoelectric properties of PZT in a MEMS power generation application. Journal of MaterialResearch,2003,18:2079-2086
    [88] P.Muralt, J.Baborowski. Micromachined ultrasonic transducers and acoustic sensors based onpiezoelectric thin films. Journal of Electroceramics,2004,12:101-108
    [89] P.Muralt, N.Ledermann, J.Baborowski, et al. Piezoelectric micromachined ultrasonictransducers based on PZT thin films. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,2005,52:2276-2288
    [90] G.Percin, B.T.Khuri-Yakub. Piezoelectrically actuated flextensional micromachined ultrasoundtransducers: I.Theory. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2002,49:573-584
    [91] G.Percin. Plate equations for piezoelectrically actuated flexural mode ultrasound transducers.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50:81-84
    [92] J.Cho, M.Anderson, R.Richards, et al. Optimization of electromechanical coupling for athin-film PZT membrane:I. Modeling. Journal of Micromechanics and Microengineering,2005,15(10):797-1803
    [93] J.Cho, M.Anderson, R.Richards, et al. Optimization of electromechanical coupling for athin-film PZT membrane:II. Experiment. Journal of Micromechanics and Microengineering,2005,15(10):1804-1809
    [94] Z.H.Wang, W.G.Zhu, J.M.Miao, et al. Micromachined thick film piezoelectric ultrasonictransducer array. Sensors and Actuators A: Physical,2006,130-131:485-490
    [95] Z.H.Wang, W.G.Zhu, J.M.Miao, et al. Micromachined thick film piezoelectric ultrasonictransducer array. Proceedings of13th International Conference Solid-State Sensors, Actuatorsand Microsystems,2005,1:883-886
    [96] Z.H.Wang, J.M.Miao, C.W.Tan, et al. Fabrication of piezoelectric MEMS devices-from thinfilm to bulk PZT wafer. Journal of Electroceramics,2010,24:25-32
    [97] Limei Xu, Hualong Du, Yuantai Hu, et al. Size optimization of a piezoelectric actuator on aclamped elastic plate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(9):2015-2022
    [98] Hui Li, Hualong Du, Limei Xu, et al. Analysis of multilayered thin-film piezoelecctrictransducer arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(11):2571-2577
    [99] Xuesheng Li, Hualong Du, Limei Xu, et al. Optimization of a circular thin-film piezoelectricactuator lying on a clamped multilayered elastic plate. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2009,56(7):1469-1475
    [100] Limei Xu, Ying Zhang, Hui Fan, et al. Theoretical analysis of a ceramic plate thickness-shearmode piezoelectric transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,2009,56(3):613-621
    [101] Limei Xu, Yunlong Geng, Yuantai Hu, et al. Thickness-shear vibration of an at-cut quartz platewith elliptic elctrodes and implications in optimal blank geometry. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,2009,56(4):875-879
    [102]中华人民共和国国家质量技术监督局.GB/T17247.1-2000.中华人民共和国国家标准-声学户外声传播衰减第1部分:大气声吸收的计算.北京:中国标准出版社,2000
    [103] M.J.Lighthill. On sound generated aerodynamically. Proceedings of the Royal Society ofLondon,1952, A211:564-587
    [104] E.A.Zabolotskaya, R.V.Khokhlov. Quasi-plane waves in the nonlinear acoustics of theconfined beams. Soviet Physics-Acoustics,1969,15:35-40
    [105] V.P.Kuznetsov. Equations of nonlinear acoustics. Soviet Physics-Acoustics,1971,16:467-470
    [106]陶超,马健,朱哲民,等.非线性超声束的冲击波形成研究.声学学报,2004,29(2):115-121
    [107] Y.D.Li, J.A.Zagzebski. Computer model for harmonic ultrasound imaging. IEEE TransactionsOn Ultrasonics, Ferroelectrics, and Frequency Control,2000,47(5):1259-1272
    [108] S.I.Aanonsen, T.Barkve, J.N.Tjotta. Distortion and harmonic generation in the nearfield of afinite amplitude sound beam. Journal of the Acoustical Society of America,1984,75:749-768
    [109] S.I.Aanonsen. Numerical computation of the nearfield of a finite amplitude sound beam.Technical Report73, Department of Mathematics, University of Bergen. Bergen, Norway,1983
    [110] Y.S.Lee, M.F.Hamilton. Time-domain modeling of pulsed finite-amplitude sound beams.Journal of the Acoustical Society of America,1994,97:906-917
    [111] M.F.Hamilton, J.N.Tjotta, S.Tjotta. Nonlinear effects in the farfield of a directive soundsource. Journal of the Acoustical Society of America,1985,78:202-216
    [112] A.C.Baker, K.Anastasiadis, V.F.Humphrey. The nonlinear pressure field of a plane circularpiston: Theory and experiment. Journal of the Acoustical Society of America,1988,84:1483-1487
    [113] T.Kamakura, M.Tani, Y.Kumamato. Harmonic generation in finite amplitude sound beamsfrom a rectangular aperture source. Journal of the Acoustical Society of America,1992,91:3144-3151
    [114] J.Berntsen, E.Vefring. Numerical computation of a finite amplitude sound beam. TechnicalReport81, Department of athematics, University of Bergen. Bergen, Norway,1986.
    [115] O.B.Rudenko. One exact analytical solution of KhZK equation. Journal of Acoustics,1975,21:311-316
    [116] Paulius Miskinis. New exact solutionsof Khokhlov-Zabolotskaya-Kuznetsov equation.Proceedings of Institute of Mathematics of NAS of Ukraine.2002,43(1):171-177
    [117]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵(修订版).第1版.北京:北京大学出版社,2005
    [118] T.R.Hsu. MEMS&Microsystems:Design and Manufacture. Columbus:McGraw-Hill,2001
    [119]林成鲁.SOI:纳米技术时代的高端硅基材料.合肥:中国科学技术大学出版社,2009
    [120] L.Q.Yao, L.Li, Z.H.Wang, et al. Exact solution of multilayered piezoelectric diaphragms.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50(10):1262-1271
    [121] H.F.Tiersten. Linear piezoelectric plate vibrations. New York: Plenum,1969
    [122] R.D.Mindlin, J.S.Yang. An introduction to the mathematical theory of vibrations of elasticplates. Singapore: World Scientific,2006
    [123] J.S.Yang. The mechanics of piezoelectric structures. Singapore: World Scientific,2006
    [124]杜功焕,朱哲民,龚秀芬.声学基础(第2版).南京:南京大学出版社,2001
    [125] E.K.Lawrence, R.F.Austin, B.C.Alan, et al. Fundamentals of acoustics. Hoboken: JohnWiley&Sons,2000
    [126]张海澜.理论声学.北京:高等教育出版社,2007
    [127] International Organization for Standardization. ISO9613-1. International standard Acoustics-Attenuation of sound during propagation outdoors-part1: Calculation of the absorption ofsound by the atmosphere. Switzerland: International Organization for Standardization,2000
    [128] Wayne Tomasi著,王曼珠等译.电子通信系统(第四版).北京:电子工业出版社,2002
    [129]马大猷,沈山豪.声学手册(修订版).北京:科学出版社,2006
    [130]中华人民共和国国家技术监督局.GB/T9396-1996.中华人民共和国国家标准-扬声器主要性能测试方法.北京:中国标准出版社,1997
    [131]张树京.单边带调幅通信.北京:中国铁道出版社,1985
    [132]曹志刚,钱亚生.现代通信原理.北京:清华大学出版社,2003
    [133]美国技术公司.用于参量阵列的动态载波系统.中国,发明专利,CN1640186A,2004
    [134] Analog Devices, Inc. ADSP-BF533Blackfin Processor hardware reference. Norwood: OneTechnology Way,2010
    [135] Analog Devices, Inc. ADSP-BF531/ADSP-BF532/ADSP-BF533Datasheet. Norwood: OneTechnology Way,2011
    [136]童诗白,华成英.模拟电子技术基础.北京:高等教育出版社,2006
    [137]杨利维.基于声频定向系统的D类数字功率放大器:[硕士学位论文].成都:电子科技大学,2008
    [138]林书玉.超声换能器的原理及设计.北京:科学出版社,2004
    [139] Standards Committee of the IEEE Ultrasonics, Ferroelectics, and Frequency Control Society.ANSI/IEEE Std176-1987. IEEE Standard on Piezoelectricity. New York: The Institute ofElectrical and Electronics Engineers, Inc,1988