剪力墙结构构件变形指标的研究及计算平台开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剪力墙结构是高层建筑主要结构体系之一,其侧向刚度大,抗震性能好。在罕遇地震作用下,通过合理构造的连梁,梁端形成塑性铰,表现出较好耗散能力。因此在结构抗震概念设计中提出“强墙肢、弱连梁”的思想。随着抗震理论研究的发展,基于性能的抗震设计方法成为抗震领域的研究热点。本文将基于性能的抗震设计思想应用于剪力墙结构。基于剪力墙及连梁构件试验和有限元分析,得到剪力墙和连梁构件在不同地震水准作用下的变形性能指标。最后将该变形性能指标应用于剪力墙结构的基于性能抗震设计方法中。
     本文的研究工作主要包括以下内容:
     (1)基于面向对象技术,提出建立结构弹塑性分析平台的方法,并编制弹塑性分析程序MESAP。该平台适用于单元及材料的二次开发。基于该平台能够更好地进行构件变参数的弹塑性计算,为剪力墙构件,连梁构件的弹塑性分析提供了分析手段。
     (2)基于MESAP平台建立考虑压弯耦合的剪力墙宏观单元(MVLEM单元),通过受弯控制的剪力墙构件试验的校正表明,该单元适用于受弯控制剪力墙的弹塑性分析;
     (3)基于MESAP平台建立考虑压弯剪耦合的平面单元(MCFT单元),通过受剪控制的剪力墙构件试验校正表明,该单元适用于受剪控制剪力墙的弹塑性分析;
     (4)根据中国规范设计一批受弯控制的剪力墙构件,综合考虑不同配筋、不同轴压比、不同尺寸的影响。采用MESAP的MVLEM模型对构件进行弹塑性分析,分析得到剪力墙的力-位移骨架曲线,通过骨架曲线形状计算剪力墙构件的屈服变形与极限变形,从而推导出受弯控制的剪力墙构件在小震、中震与大震作用下的变形性能指标。
     (5)根据中国规范设计一批受剪控制的剪力墙构件,综合考虑不同配筋率、不同配箍率、不同轴压比、不同尺寸、不同高宽比的影响。采用MESAP的MCFT单元模型批量进行弹塑性分析,得到剪力墙的力-位移骨架曲线,通过骨架曲线计算剪力墙构件的极限变形,从而推导出受剪控制的剪力墙构件在小震、中震与大震作用下的变形性能指标。
     (6)根据中国规范设计一批受剪控制的连梁构件,综合考虑不同的截面尺寸、跨高比、配筋及配箍情况的影响。采用MESAP的MCFT单元模型对其进行弹塑性分析,分析得到受剪控制连梁的极限变形,从而推导出受剪控制的连梁构件的大震、中震、小震的变形性能指标。根据中国规范设计一批受弯控制的连梁构件,采用MESAP的基于柔度法的纤维模型对其进行弹塑性分析,确定构件屈服变形与极限变形,从而推导出受
     弯控制的连梁构件大震、中震、小震作用下的变形性能指标。(7)通过对弹塑性分析软件Perform-3D进行二次开发,建立基于性能的抗震设计方法的分析手段,并且嵌入了上述章节论证的剪力墙及连梁构件的变形性能指标。
     (8)以一个剪力墙结构算例为基础,详细论述基于性能抗震分析方法的实现过程及变形性能指标的应用。最后通过实际工程算例论证基于性能抗震设计方法在超限高层建筑结构设计中的应用情况,反映基于性能抗震设计方法及剪力墙性能指标研究的工程意义。
Shear wall structure is a main structural system of high-rise building structure. It has larger stiffness and better seismic performance (compared to frame structure). The shear wall structure can dissipate the earthquake energy well by the plastic hinges of coupling beams, which are reasonable designed and constructed. So the concept“Strong wall piers and week coupling beams”is proposed in structural seismic design approach. Along with the development of seismic theory research, performance based seismic design (PBSD) approach is became one of the most popular topics in seismic research field. PBSD which is applied to the shear walls structure is presented in this paper. The author gain the deformation limit values under different earthquake levels of shear walls and coupling beams from component test and finite element analysis, and applied these deformation limit to the seismic design of a shear wall structure.
     The main research include of several parts:
     (1) Based on objected-oriental technology, the approach of setting up structural elastic-plastic analysis platform is proposed, and elastic-plastic analysis program MESAP is built. This platform is appropriate for the secondary development of element models and material models. A large number of components with different parameters can be analyzed by this platform. The platform can be used as an nonlinear analysis tool for shear walls and coupling beams.
     (2) A macro shear wall element (MVLEM) which can consider the interaction of axial-flexure deforamtion of shear wall is developed in MESAP platform. According to the verification of the flexure-controlled shear wall test, the element is appropriate for elastic-plastic analysis of flexure-controlled shear walls.
     (3) A plane element (MCFT) which can consider the interaction of axial-shear-flexure deforamtion of shear wall is developed in MESAP platform. According to the verification of the shear-controlled shear wall test, the element is appropriate for elastic-plastic analysis of shear-controlled shear walls.
     (4) According to Chinese codes, a number of flexure-controlled shear wall specimens are designed, which consider the influence of different reinforcements, different axial force level and different dimensions. MVLEM element of MESAP is used for the elastic-plastic analysis of these specimens. Force-deformation skeleton curve (F-D curve) of shear walls is gained. By these curves the yield deformation and ultimate deformation are computed. Based on above calculation results, the deformation limit state of flexure-controlled shear walls under frequent earthquake, moderate earthquake and severe earthquake is deduced.
     (5) According to Chinese codes, a number of shear-control shear wall specimens are designed, which consider the influence of different reinforcements, different axial force level, different dimensions and different height-width ratio. MCFT element of MESAP is used for the elastic-plastic analysis of these specimens. By F-D curves ultimate deformation are computed. Based on above calculation results, the deformation limit state of shear-controlled shear walls under frequent earthquake, moderate earthquake and severe earthquake is deduced.
     (6) According to Chinese codes, a number of shear-controlled coupling beam specimens are designed, which consider the influence of different reinforcements, different stirrup ratios, different span-depth ratios and different dimensions. MCFT element of MESAP is used for the elastic-plastic analysis of these specimens. By F-D curves the ultimate deformation are computed. Based on above calculation results, the deformation limit state of shear-controlled coupling beams under frequent earthquake, moderate earthquake and severe earthquake is deduced.
     According to Chinese codes, a number of flexure-controlled coupling beam specimens are designed. The flexibility based fiber element of MESAP is used for the elastic-plastic analysis of these specimens. By F-D curves the yield and ultimate deformation are computed. Based on above calculation results, the deformation limit state of flexure -controlled coupling beams under frequent earthquake, moderate earthquake and severe earthquake is deduced.
     (7) The secondary development of Perform-3D is preceded in this paper. The secondary development program can be a tool for PBSD approach. The deformation limit state of shear walls and coupling beams which are discussed in this paper are built in the program.
     (8) Based on shear walls structure example, this paper discuss the operation process of PBSD and the application of the deformation limit state. Finally, the paper shows how to use PBSD approach in the high-rise building structure, which exceeds the limitation of Chinese codes. The application indicated the significance of the research of PBSD and deformation limit state of shear wall components.
引文
[1] M A Sozen. Review of earthquake response of RC buildings with a view to drift control: State of the Art in earthquake Engineering[M], Ankara,1981.
    [2] Wolfgram C, Rothe D, Wilson P, Sozen M, and Wight JK. Earthquake simulation tests of three one-tenth scale models[M]. Publication SP-American Concrete Institute, 1985.
    [3] Pan Austin, Moehle J P. Lateral displacement ductility of reinforced concrete flat plates[J]. ACI Journal, 1989, 86(3):250-258.
    [4] Moehle J P. Displacement Based design of RC structure [C]. Proceeding of the10th World Conference on Earthquake Engineering, Mexico, 1992.
    [5] SEAOC Vision 2000 Committee. Performance-Based Seismic Engineering of Building [S], Report Prepared by Structural Engineers Association of California, Sacramento, California, USA, 1995.
    [6] ATC-34. A Critical Review of Current Approaches to Earthquake-Resistant Design [R].Applied Technology Council, Redwood City, USA, 1995.
    [7] ATC-40.Seismic Evaluation and Retrofit of Concrete Buildings[S].Applied Technology Council. Red Wood City, USA, 1996.
    [8] FEMA 273.NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings[S]. Federal Emergency management Agency, Washington D C, USA, 1996.
    [9] FEMA274.NEHRP Guidelines for the Rehabilitation of Buildings[S].Federal Emergency Management Agency, Washington, D.C. 1996.
    [10] FEMA356.Prestandard and commentary for the seismic rehabilitation of buildings[S]. Federal Emergency Management Agency, Washington D.C., 2000.
    [11] ASCE-41, American Society of Civil Engineers. Seismic rehabilitation of buildings[S]. Applied Technology Council, Redwood City, 2006.
    [12] Los Angeles Tall Buildings Structural Design Council An alternative procedure for seismic analysis and design of tall buildings located in the Los Angeles region[S]. 2005 Edition.
    [13] Los Angeles Tall Buildings Structural Design Council An alternative procedure for seismic analysis and design of tall buildings located in the Los Angeles region[S]. 2002 Edition.
    [14] Structural Engineers Association of Northern California. Recommended administrative bulletin on the seismic design& review of tall buildings using non-prescriptive procedures [S]. 2007.
    [15] Building Center of Japan. Report of development of new engineering framework for building structures(in Japanese).Integrated Development Project, Ministry of construction, 1996,1997 and 1998
    [16] Otani S.Recent Developments in Seismic Design Criteria in Japan[C].Proceedings of 11thWCEE, Mexico,1996
    [17] Otani S. Development of Performance-based Design Methodology in Japan[R].Proceedings of Workshop on Seismic Design methodologies for Next Generation Codes. Bled, Slovenia, June 24-26,1997
    [18] EC8 (2003) Eurocode 8:Design of structures for earthquake resistance[S],British Standards Institution,London, 2003.
    [19]建筑抗震设计规范(GBJ11-89),中华人民共和国国家标准,1989.
    [20]建筑抗震设计规范(GB50011-2001),中华人民共和国国家标准,2002.
    [21]建筑抗震设计规范(GB50011-2010),中华人民共和国国家标准,2010.
    [22]全国超限高层建筑工程抗震设防审查专家委员会抗震设防专项审查办法[Z],建设部网站, http://www. cin.gov. cn. 2003.
    [23]超限高层建筑工程抗震设防专项审查技术要点[Z].建设部网站:http://www. cin. gov. cn, 2003.
    [24]徐培福.关于超限高层建筑抗震设防审查的若干讨论[J].土木工程学报. 2004, 37 (1):1-12.
    [25]吕文,钱稼茹,方鄂华.钢筋混凝土剪力墙延性的试验和计算[J].清华大学学报(自然科学版), 1999, 39(4):55-91.
    [26]陈勤,钱稼茹,李耕勤.剪力墙受力性能的宏模型静力弹塑性分析[J].土木工程学报, 2004, 37(3):35-43.
    [27]李宏男,李兵,钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报, 2004, 25(5):35-42.
    [28]李宏男等.大连国际贸易大厦型钢(钢筋暗柱)斜支撑钢筋混凝土剪力墙抗震性能试验报告[R].大连:大连理工大学土木水利学院抗震研究所, 2004.
    [29]蒋欢军,吕西林.沿竖向耗能剪力墙的低周反复荷载试验研究[J].工程力学, 2007, 24(Sup1):649-654
    [30]章红梅,吕西林,鲁亮等.边缘约束构件对钢筋混凝土剪力墙抗震性能的影响[J].地震工程与工程振动, 2007, 27(1): 92-98
    [31]章红梅,吕西林,杨雪平等.边缘构件配箍对钢筋混凝土剪力墙抗震性能的影响[J].结构工程师, 2008, 24(5): 100-104.
    [32]曹万林,王敏,王绍合等.矩形钢管混凝土边框组合剪力墙及筒体结构抗震研究[J].工程力学, 2008, 25(sup1):58-70.
    [33]曹万林,吴定燕,杨兴民等.双向单排配筋混凝土低矮剪力墙抗震性能试验研究[J].世界地震工程, 2008 24(4):19-24
    [34]曹万林,吴定燕,杨兴民等.双向单排配筋中高剪力墙抗震性能试验研究[J].地震工程与工程振动, 2009 29(1):103-108
    [35]曹万林,孙天兵,杨兴民等.双向单排配筋混凝土高剪力墙抗震性能试验研究[J].世界地震工程, 2008 24(3):14-29
    [36]曹万林,王洪星等.带X形暗支撑设暗竖缝剪力墙抗震性能试验研究[J].世界地震工程, 2001, 17(2):39-42
    [37] Alessandro Dazio, Katrin Beyer, Hugo Bachmann. Quasi-static cyclic tests and plastic hinge analysis of RC structural walls [J]. Engineering Structures, 2009, 31(7):1556-1571
    [38] Lefas, Ioannis D., Kotsovos et al. Behavior of Reinforced Concrete Structural Walls: Strength, Deformation, Characteristics, and Failure Mechanism[J]. ACI Structural Journal. 1990,87(1):23-31.
    [39] Wood and S. L. Shear Strength of Low-Rise Reinforced Concrete Walls[J]. ACI Structural Journal. 1990. 87(1):99-107.
    [40] Farrar, C. R. and Baker, W. E. Experimental Assessment of Low-aspect-ratio Reinforced Concrete Shear Wall Stiffiness[J]. Earthquake Engineering and Structural Dynamics. 1993.22(5):373-387.
    [41] Cheng, F. Y., Mertz, G. E., Shue, M. S. et al. Computed versus Observed Inelastic Seismic Low-Rise RC Shear Walls[J]. Journal of Structural Engineering ASCE. 1993.119(11):3255-3275.
    [42] Eberhard, M. O. and Sozen, M. A. Behavior-based Method to Determine Design Shear in Earthquake-resistant Walls[J]. Journal of Structural Engineering ASCE. 1993.119(2). 619-640.
    [43] Colotti, V. Shear Behavior of RC Structural Walls[J]. Journal of Structural Engineering ASCE. 1993.119(3):728-746.
    [44] Mickleborough, Neil C., Ning, Feng, and Chan, Chun-Man. Prediction of Stiffness of Reinforced Concrete Shear Walls under Service Loads[J]. ACI Journal. 1999 . 96(6):1018-1026.
    [45] Paulay, T., Priestley, M. J. N., and Synge, A. J. Ducility in Earthquake Resisting Squat Shear Walls[J]. Journal of the American Concrete Institute. 1982, 79(4):257-269.
    [46] Mansour, M. and Hsu, T. T. C. Behavior of Reinforced Concrete Elements under Cyclic Shear: Part 1– Experiments[J]. Journal of Structural Engineering ASCE. 2005, 131(1):44-53..
    [47] Sittipunt, C., Wood, S. L., Lukkunaprasit, P. et al. Cyclic Behavior of Reinforced Concrete Structural Walls with Diagonal Web Reinforcement[J]. ACI Structural Journal. 2001.98(4):554-562.
    [48] Salonikios, Thomas N., Kappos, Andreas J., Tegos, Ioannis A. et al. Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Design Basis and Test Results[J]. ACI Structural Journal. 1999,96(4):649-660.
    [49] Sittipunt, C., Wood, S. L. Influence of Web Reinforcement on the Cyclic Response of Structural Walls[J]. ACI Structural Journal. 1995,92(6):745-756.
    [50] John H. Thomsen IV, John W. Wallace. Displacement-Based Design of Slender Reinforced Concrete Struatural Walls-Experimental Verification[J]. Journal of Structual Engineering, 2004, 130(4):618-630.
    [51] ]龚炳年,方鄂华反复荷载下联肢剪力墙结构联系梁的性能[J].建筑结构学报, 1988, 9(l): 34-40.
    [52]李国威,李文明.反复荷载下钢筋混凝土剪力墙联系梁的强度和延性[C].第八届全国高层建筑结构学术交流会论文集,第五卷, 1984, 5:14-7.
    [53] Zhao, Z.Z. and Kwna, A.K.H. Nonlinear Behvaior of Deep Reinforced Concrete Copuling Beams. Sturtrural Engineering and Mechanics, Vol.15, No.2(2003):181-198.
    [54]王维汉,傅秀黛,倪钰.陶粒砼联肢剪力墙结构中的连梁在反复荷载下的性能[J].建筑结构学报,1992,2(1):71-77.
    [55]高层建筑混凝土结构技术规程(JGJ3-2002),中华人民共和国国家标准,2002.
    [56]陈京洲,新型配筋小跨高比洞口连梁的试验研究设计方法[D],重庆大学硕士学位论文,2006.
    [57]戴瑞同,孙占国.菱形配筋剪力墙连梁的承载能力[J].工业建筑, 1993, (10):33-38.
    [58]傅剑平,赵杰林,曹云峰,白绍良.采用新配筋方案小跨高比抗震连梁的试验研究[J].重庆建筑大学学报, 2004, 26(1):50-54.
    [59]梁启智,韩小雷.低周反复荷载作用下刚性连梁及普通连梁性能[J].华南理工大学学报(自然科学版),1995, 23(l):27-33.
    [60] T.paulay, J.R.Binny. Diagonally reinforced coupling beams of shear walls, Shear in Reinforced concrete[R], SP-42. American Concrete Institute, Farmington Hills, (1974):579-598.
    [61] T.paulay, Seismic Design in Reinforced Concrete. The State of the Art in New Zealand, Vol.21,No.3, (1988):208-232.
    [62] G. B. Barey, K. N. Shiu, B. G. Rabbat et al. Behavior of Coupling Beams Under Load Reversals[R]. Portland Cement Association. 1980.
    [63] I. A. Tegos and G.Gr. Penelis. Seismic Resistnace of Short Columns and Coupling Beams Reinforced with Inclined Bars[J]. ACI Structural Jounal. Vol. Jan-Feb:82-88. 1998.
    [64] Luciano Galano and Andrea Vignoli. Seismic Behavior of Short Coupling Beams with Different Reinforcement Layouts[J]. ACI Structural Journal. Vol.97. No.6.:876-885. 2000.
    [65] John Wallace. Modelling Issues for Tall Reinforced Concrete Core Wall Buildings[J]. The Structural Design of Tall and Special Buildings. Vol.16:615-632. 2007.
    [66]吴廉仲,徐培福等.底层大空间剪力墙结构12层模型的试验研究[J].建筑结构学报,1984,5(2):1-7.
    [67]吕西林,孟良.一种新型抗震耗能剪力墙结构模型的振动台试验研究[J].世界地震工程, 1995,15(1):29-34.
    [68]夏敬谦, Kwan K.H.剪力墙结构、框架填充墙结构模型模拟地震试验研究[J].地震工程与工程振动, 1996,16(2):55-66
    [69]许淑芳,冯瑞玉等.十层钢筋混凝土空心剪力墙结构1/2.8比例模型房屋抗震试验研究[J].西安建筑科技大学学报(自然科学版). 2006, 38(1): 63-68.
    [70] P.Riva, A.Meda, E.Giuriani. Cyclic behavior of a full scale RC structural wall[J]. Engineering Structures, 2003,25(6):835-845
    [71] Kabeyaawa T et al. U. S.- Japan cooperative research on R/C full -scale building test,Part 5:Discussion of dynamic response system[A]. Proc.8thof WCEE[C]. 627 - 634.
    [72] Kotronis P, and Mazars J. Simplified modelling strategies to simulate the dynamic behaviour of R/C walls[J]. Journal of Earthquake Engineering, 2005, 9(2):285-306.
    [73] Clough R W, Benuska K L, and Wilson E L. Inelastic earthquake response of tall buildings [C]. Proceeding 3rd World Conference on Earthquake Engineering, 1965, Wellington, New Zealand
    [74] H.Aoyoma, Inelastic Analysis of RC Structures[M], Transaction of the ArchitecturalInstitute of Japan, 1967.
    [75] Giberson M F. The response of nonlinear multistory structures subjected to earthquake excitation [D]. California Institute of Technology, Pasadena, 1967,California.
    [76] H.Takizawa. Notes on some Basic Problems in Inelastic Analysis of Plane RC Structures Part1 and Part2, Transaction of the Architectural Institute of Japan, 1976.
    [77] Otani, S., Inelastic Analysis of RC Frame Structures, Journal of the Structural Division, ASCE, Vol.100, No.ST7, July1974.
    [78] Ambrisi A.D, and Filippou F.C. Modeling of cyclic shear behavior in RC members[J].Journal of Structural Engineering,ASCE,1999,125(10):1143-1150.
    [79] D.Soleimani, Reinforced Concrete Ductile Frame Under Earthquake Loading With Stiffness Degradation, Ph.D.Thesis, University of California, Berkeley, 1978
    [80] Roufaiel M.S.L.,and Meyer C. Analytical modeling of hysteretic behavior of RC frames [J]. Journal of Structural Engineering, ASCE,1987,113(3):429-444.
    [81]汪梦甫.钢筋混凝土框剪结构非线性地震反应分析[J].工程力学,1999,16(4):136-143.
    [82] S.S.Lai, G.T.Willand.Otani, Model for Inelastic Biaxial Bending of Concrete Members[J], Journal of Structural Division ASCE, 1984, 110(11): 63-84. 1984
    [83] Kang, Y.J., Nonlinear Geometric Material and Time-Dependent Analysis of Prestressed Concrete Frames,Ph.D,Thiesis,Division of Structural Engineering and Civil Engineering,Department of Civil Engineering, University of California,Berkeley,Report No.UC -SESM77-l, 1977.
    [84] ]Chan, E.C., Nonlinear Geometric, Material and Time Dependent Analysis of Reinforced Concrete Shells with Edge Beams[R], Department of Civil Engineering, University of Califomia, Berkeley,1982.
    [85] Mari, A.R., Noulinear Geometric, Material and Time-Dependent Analysis of Three Dimensional Reinforced Concrete Frames[R], Department of Civil Engineering, University of California, Berkeley,1984.
    [86] Takaynanagi T and Schnobrich W, Nonlinear Analysis of Coupled Wall Systems[J], Earthquake Engineering and Structural Dynamic,1992,25(7):1-22.
    [87] Filippou F C, Issa A. Nonlinear Analysis of Reinforced Concrete Frames under Cyclic Load Reversals[R]. EERC Report 88-12, Earthquake Engineering Research Center, Berkeley. 1988.
    [88] Hellesland J and Scordelis A. Analysis of RC Bridge Columns under Imposed Deformations[R]. IABSE Colloquium, Delft, Netherlands.
    [89] Mari A and Scordelis A. Nonlinear Geometric Material and Time Dependent Analysis of Three Dimensional Reinforced and Prestressed Concrete Frames[R].SESM Report 82-12, Department of Civil Engineering, University of California, Berkeley.1984.
    [90] Mahasuveraehai.M., GH., Inelastic Analysis of Piping and Tubular Structures, Report No. EERC Earthquake Engineering Research Center, University of California, Berkeley, California, November 1982.
    [91] Mahasuverachai M. Inelastic Analysis of Piping and Tubular Structures[R]. Earthquake Engineering Research Center, University of California, Berkeley. 1982.
    [92] Kaba S, Mahin S A. Refined Modeling of Reinforced Concrete Columns for Seismic Analysis[R]. Earthquake Engineering Research Center, University of California, Berkeley.2000.
    [93] Zeris C A, and Mahin S A. Behavior of Reinforced Concrete Beam-Columns under Uniaxial Excitation[J]. Jounal of Structural Engineering ASCE, 1998, 114(4):804-820.
    [94] Hiraishi H, Kawashima T. Deformation behavior of shear walls after flexural yielding[C]. Proceeding of 9th World Conference of Earthquake Engineering. [C].Tokyo, 1998.
    [95] Kabeyasawa T. U.S.-Japan cooperative research on R/R full-scale building test[C]. Proceeding of 8th World Conference of Earthquake Engineering. San Francisco,1984.
    [96] VulcanoA,Bertero V V Analytical model for Predicating the lateral response of RC shear Wall: evaluation of the irreliability[R]. Earthquake Engineering Research Center, University of California, Berkeley. 1987.
    [97] Linda P, Bachmann H.Dynamic modeling and design of earthquake-resistant walls[J].EESD, 1994, 23:1331-1350.
    [98] Vulcano A,Bertero V V Colotti V. Analytical model of R/C structural wall [A]. Proc. of 9th WCEE [C], Tokyo, 1988, (6):41-46.
    [99]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究[J].建筑结构学报,2004 25(5):35-42.
    [100]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛柯分层梁单元[J].地震工程与工程振动,2001,21(2):78-83.
    [101]Milev J I, Two dimension alanalytical model of reinforced concrete shear walls [A].Proe.of 11th WCEE[C], 1996.
    [102]Vecchio F J, Collins M P. Response of Reinforced Concrete on In Plane Shear and Normal Stresses[R]. University of Toronto, Toronto, Canada, 1982.
    [103]Vecchio F J, and Collins M P. The Modified Compression Field Theory for ReinforcedConcrete Elements Subjected to Shear[J]. ACI Journal, 1986, 83(2):219-231.
    [104]Kaufmann, Walter, and Marti Peter. Structural Concrete: Cracked Membrane Model[J]. Jounal of Structrual Engineering, 1998, 124(12):1467-1475.
    [105]Vecchio F J, Lai D, Sim W, and Ng J. Disturbed Stress Field Model for Reinforced Concrete: Validation[J]. Journal of Structural Engineering ASCE, 2001, 127(4):350-358.
    [106]Prakash V, Powell G H, Cam P bell S.Drain-2DX static and dynamic analysis of inelastic plane structures National Information Service for Earthquake Engineering [R]. Earthquake Engineering Research Center, USA, 1993.
    [107]R E Valles, A M Reihorn, S K Kunnath, IDARC 2DVersion 4.0: A Program for Inelstic Damage Analysis of Buildings Technical Report NCEER-96-0010 January 8, 1996
    [108]R.E.Valles, A.M.Reihorn, S.KKunnath, IDARC 2DVersion 5.5: July 2002 User’s Guide State University of New York at Buffalo 2002.
    [109]LiKN, otani S.Multi-spring model for3-dimensional analysis of RC members [J]. International Journal of Structural Engineering and Mechanics, 1993, 1(l):17-30.
    [110]McKenna F, and Fenves G L. The OpenSEES Command Language Primer[Z]. PEER, University of California, Berkeley, USA. http://opensees.berkeley.edu.
    [111] Powell G H. Componets and Elements for Perform-3d and Perform-Collapse Version 4[Z]. Computers and Structrues Inc. Newyork, USA, 2006.
    [112] Hilmy S I, and Abel J F. A strain-hardening concentrated plasticity model for nonlinear dynamic analysis of steel buildings[C]. Proceeding of NUMETA85, Numerical Methods in Engineering, Theory and Applications, 1985, Boston, 305–314.
    [113] Powell G H, and Chen P F. 3D beam-column element with generalized plastic hinges[J]. Journal of Engineering and Mechanics, 1986, 112(7):627–641.
    [114] Ciampi V, and Carlesimo L. A nonlinear beam element for seismic analysis of structures[C]. Proceeding of 8th European Conference on Earthquake Engineering , Lisbon, Portugal, 1986.
    [115] Spacone E, Ciampi V, and Filippou, F C.“Mixed formulation of nonlinear beam finite element[J]. Computer and Structures, 1996, 58(1): 71–83.
    [116] Hjelmstad K D, and Taciroglu E. Variational basis of nonlinear flexibility methods for structural analysis of frames[J]. Journal of Engineering and Mechanics,2005, 131(11): 1157–1169.
    [117] Alemdar B N, and White D W. Displacement, flexibility, and mixed beam-column finite element formulations for distributed plasticity analysis[J]. Journal of Structural Engineering, 2005, 131(12): 1811–1819.
    [118] Crisfield M A. Nonlinear finite element analysis of solids and structures [M], Wiley Press, New York, USA, 1991.
    [119] Neuenhofer A, and Filippou F C. Evaluation of nonlinear frame finite-element models[J]. Journal of Structural Engineering, 1997, 123(7): 958–966.
    [120] De Souza R M. Force-based finite element for large displacement inelastic analysis of frames[D], Univ. of California, Berkeley, California, USA, 2000.
    [121] Zhou Z, and Chan S. Elastoplastic and large deflection analysis of steel frame by one element per member. I: One hinge along member[J]. Journal of Structural Engineering, 130(4): 538–544, 2004.
    [122] Fenves G L. Object-oriented programming for engineering software development[J]. Engineering Computation, 1990, 6(1): 1–15.
    [123] Forde B W R, Foschi R O, and Stiemer S F Object oriented finite element analysis. Computer and Structures, 1990, 34(3): 355–374.
    [124] Mackie R I. Object-oriented programming of the finite element method[J]. International Jouranl of Numerical Methods of Engineering, 1992, 35(2): 425–436.
    [125] Zimmermann T, Dubois-Pelerin Y, and Bomme P. Object oriented finite element programming: I. governing principles[J]. Computation Methods and Applied Mechanic Engineering, 1992, 98(2): 291–303.
    [126] Rucki M D, and Miller G R. An algorithmic framework for flexible finite element-based structural modeling[J]. Computation Methods and Applied Mechanic Engineering 1996, 136(1): 363–384.
    [127] Gamma E, Helm R, Johnson R, and Vlissides J. Design patterns:Elements of reusable object-oriented software[M], Addison-Wesley Press, Reading, Mass. USA. 1995.
    [128] Kent D C. Inelastic Behavior of Reinforced Concrete Members with Cyclic Loading[D]. University of Canterbury, Christchurch, New Zealand, 1969.
    [129] Menegotto M, and Pinto P E. Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and nonelastic behavior of elements under combined normal force and bending[C]. Proceeding, Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, International Association for Bridge and Structural Engineering, Zurich, Switzerland:15–22, 1973
    [130] Steve Teixeira, and Xavier Pacheco. Delphi 5 Developer’s Guide[M]. China Machine Press, 2000.
    [131]ANSYS Version 12.0 User’s Manual [Z]. ANSYS Inc, USA, 2009.
    [132] E L Wilson. CSI Analysis Reference Manual[M]. Computers and Structrues Inc. Newyork, USA, 2006.
    [133] Michael H Scott, Gregory L Fenves. Plastic Hinge Integration Methods for Force-Based Beam-Column Elements[J]. Journal of Structural Engineering, 2006,132(2):244-252.
    [134] Tanaka H, Park R. Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforced Concrete Columns[R]. Report No 90-2, Department of Civil Engineering. University of Canterbury, Canterbury, U.K.1990.
    [135] Paulay T, Priestley, M J N. Sesmic Design of Reinforced Concrete and Masonry Buildings[M]. Wiley, New York.1992.
    [136] Serhan Guner, and Frank J Vecchio. Pushover analysis of shear-critical frames: verification and application[J]. ACI Structural Journal, 2010, 107(8):72-81.
    [137]ABAQUS Version 6.3 User and Theory Manual [Z]. Habbitt, Karlsson and Sorensen Inc, USA, 2005.
    [138]ADINA Version 8.0 User’s Manual [Z]. ADINA R&D Inc, USA, 2009.
    [139] Fajfar P, and M Fischinger. Mathematical modeling of RC structure walls for nonlinear seismic analysis[C]. Proceedings of European Conference on Structural Dynamics, Bochum, Germany, 1990.
    [140] Kabeyasawa T. Design of RC shear wall in hybrid wall system[C]. Proceedings of 4th Joint Technical Coordinating Committee, US-Japan Cooperative Seismic Research on Composite and Hybrid Structures, Monterey, California, USA, 1997.
    [141] Wallace J W. A new methodology for seismic design of reinforced concrete shear walls[J]. ASCE Journal of Structural Engineering. 1994, 120(3):863-884.
    [142] Matej Fischinger, Tatjana Isakovic, Peter Kante. Implementation of a macro model to predict seismic response of RC sturecture walls[J]. Computers and Concrete, 2004, 1(2):55-73.
    [143] Karsan I D, and J O Jirsa. Behavior of concrete under compressive loadings[J]. ASCE Journal of the Structural Division, 1969, 95(12):2543-2563.
    [144] Sinha B P, K H Gerstle, and L G Tulin. Stress-strain relations for concrete under cyclic loading[J]. Journal of the American Concrete Institute, 1964, 61(2):195-211.
    [145] Yassin M H M. Nonlinear analysis of prestressed concrete structure under monotonic and cyclic loads[D], University of California. Berkeley, California, USA, 1994.
    [146] Kutay Orakal, Lenoardo M Massone, and John W Wallace. Analytical modeling of reinforced concrete walls for predicting flexural and coupled-shear-flexural response[R]. Pacific Earthquake Engineering Research Center, University of California, Los Angeles,USA, 2006.
    [147]江见鲸,陆新征,叶列平等.混凝土结构有限元分析[M].清华大学出版社, 2004.
    [148] C E Zhou, and F J Vecchio. Nonlinear Finite Element Analysis of Reinforced Concrete Structures Subjected to Transient Thermal Loads[J]. Computers and Concrete. 2005, 2(6):455-479.
    [149] F J Vecchio, E C Bentz, and M P Collins. Tools for Forensic Analysis of Concrete Structures[J]. Computers and Concretes. 2004, 1(1): 1-14.
    [150]混凝土结构设计规范(GB50010-2002)[S],中华人民共和国国家标准, 2002.
    [151] Leonhardt, Fritz, and Walther Rene. Wandartige Trager Bulletin No. 178[R]. Deutscher Ausschuss fur Stahlbeton, Berlin, 1966.
    [152] Bresler Boris, and Scordelis A C. Shear Strength of Reinforced Concrete Beams[J]. ACI Journal, 1963, 60(1):51-74.
    [153] Lefas I D, Kotsovos M D, and Ambraseys N N. Behavior of Reinforced Concrete Structural Walls: Strenght, Deformation Characteristics, and failure mechanism[J]. ACI Journal, 1990, 87(1):23-31.
    [154]韩小雷,戴金华,何伟球等.广州花园酒店白金五星级酒店结构改造基于性能的可行性研究[J].地震工程与工程振动, 2007,27(5):89-94.
    [155]曹万林,范燕飞,张建伟等.不同轴压比下内藏钢桁架混凝土组合剪力墙抗震研究[J].地震工程与工程振动. 2007, 27(4):42-46.
    [156]曹万林,张建伟,张静娜等.内藏桁架混凝土组合中高剪力墙抗震性能试验研究[J].北京工业大学学报. 2008, 34(6):572-579.
    [157]曹万林,张建伟,陶军平等.内藏桁架的混凝土组合低剪力墙试验[J].东南大学学报(自然科学版). 2007, 37(2):195-200.
    [158]广东省地震工程实验中心.广州市中洲二期工程场地地震安全评价报告[R].广州,广东省地震工程实验中心, 2007.
    [159]马玉宏,金建敏,韩小雷等.高层钢-混凝土组合门式结构消能减震体系模拟地震振动台试验研究[J].振动与冲击. 2010, 29(6):134-139.