重磁位场新技术与山西断陷盆地构造识别划分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山西断陷盆地是汾渭盆地的主体部分。该盆地是世界上著名的地震、地质灾害活动区之一,其中,最著名的地质灾害是地裂缝。地裂缝活动严重影响着城市建设及国民经济的发展,已成为目前该盆地影响面最广、破坏最严重的地质灾害。研究表明,地裂缝的形成和发展主要是受控于基底构造活动或隐伏活动断裂。因此,查明该盆地基底构造及活动断裂分布特征是解决地裂缝灾害的关键问题之一。目前,对上述面积性的区域构造的研究主要是利用重磁位场资料。鉴于此,本论文以国家自然科学基金重点项目——汾渭盆地地裂缝灾害成因机理与大陆动力学(项目编号:4053021)为依托,以位于山西省中部的山西断陷盆地为研究区域,以重磁位场新技术与山西断陷盆地构造识别划分为主要研究内容,以获取全区及上下深、浅区域构造信息(全区断裂分布特征、前寒武纪古构造特征、浅层断陷盆地基底构造及盆内活动断裂特征等)为主要目标,以重磁位场数据为主要原始资料,以提高位场资料处理精度和分辨率的新方法、新技术为主要手段,以深地震测深剖面和浅层地震剖面为约束,并结合钻井、地质、构造演化,对山西区域构造进行了深入的研究。取得的主要成果和结论如下:
     1、利用小波多分辨分析技术首次对山西重磁位场数据进行了分离阶数与异常源特征对应关系的试验研究,通过基于研究区实际的模型对比模拟,半定量得出了小波分解阶次与深、浅源构造信息的对应关系。与常规方法相比,小波多分辨分析技术不但能分离浅部构造信息,保留深部构造信息,而且能保留深部构造信息的细节特征和弱异常信息。将该技术应用于山西重磁位场数据处理,获得了高分辨率的反映莫霍面起伏变化的深部(区域)重力场资料和反映前寒武纪古构造特征的区域航磁场资料;获得了高质量的反映断陷盆地低密度沉积特征的浅部(局部)重力场资料。上述成果为山西断陷盆地深部、浅部区域构造信息的进一步研究提供了良好的基础。
     2、首次在国内研究了基于曲率属性的位场自动反演新技术,并且对该方法进行了创新性的技术改进,使其不仅具有更好的反演效果,而且具有分离不同埋深场源信息的功能。提出的三个主要技术措施为扩展自动搜索极大值法、多分辨率阈值法、扩展自动搜索极大值和多分辨率阈值组合法。研究表明:上述技术措施不仅使原有方法受噪声的影响降低到最小,使反演的解更连续,水平位置和埋深更准确,而且具有分离不同埋深场源信息的功能,为浅、中、深层场源的分离提供了另一种思路,丰富了位场资料处理技术和手段。
     3、将改进后的基于曲率属性的位场自动反演新技术应用于山西重力异常数据的反演,得到了不同深度层的深、浅断裂信息。利用提出的扩展自动搜索极大值和多分辨率阈值组合法,研究了不同阈值系数k对应的不同埋深断裂信息,得到了它们之间的半定量关系,且当阈值系数k =1.0时获得的山西断陷盆地内新生代断裂系与本论文中利用小波分解得到的浅部(局部)重力场特征和新编制的第四系或新生界构造图成果相吻合,有效反映了断陷盆地边缘大断裂和盆内界限性断裂。
     4、研究了位场场源边界识别新技术,如斜导数法、斜导数水平梯度法及theta图法。模型试验研究表明:上述技术具有弱信号提取功能,能得到更多的地质信息,进一步提高了解释的准确性和精度。将该技术应用于山西重力异常数据处理,获得了丰富的平面断裂信息;利用theta图法对航磁异常小波分解6阶近似进行了前寒武纪古构造边界的识别,结合地质、构造演化等重新划分了前寒武纪古构造单元。新划分的古构造单元是利用人工地震测深剖面资料加以佐证了的结果,与前人结果相比具有更高的分辨率和可信度。
     5、利用重新划分的前寒武纪古构造单元研究了磁性基底构造对盆地形成的影响,结合人工地震测深剖面资料、重磁识别的断裂系及盆地磁性地壳结构等信息研究了区域构造与地震活动的关系。研究结果表明断陷盆地的形成受磁性结晶基底的制约;地壳结构越复杂,地壳介质之间的力学强度差异越大,热水点年释放量越小,就越容易孕育和发生大的地震。
     6、利用浅层地震剖面、钻井等资料,并参考重磁划分的断裂系,新编制了山西四个断陷盆地的第四系构造图。利用新编制的第四系构造图并结合新生界构造图,研究了新生代断陷盆地基底构造分区及盆内活动断裂分布特征。新编制的第四系构造图提供了盆地内构造分区和活动断裂分布信息,该信息可用于解释地裂缝的分布与基底构造活动或隐伏活动断裂之间的关系,为浅地表地裂缝的评价研究提供了重要的基础资料。
     本论文以重磁位场新技术为主要手段,将地震、钻井、地质等要素最大限度的融合在一起,研究了山西区域构造特征,为依托项目提供了丰富的深部和浅部区域构造信息,这不仅对地裂缝的防灾减灾具有重要的实际意义,而且对该区区域构造、矿产资源勘探和评价研究具有重要意义。此外,本论文对重磁位场新技术的研究成果丰富了位场资料处理技术和手段,具有一定的学术价值和实际应用价值。
Shanxi fault basin is the main part of the Fen-Wei basins, which is one of the famous seismic, geological disaster areas in the world. Ground fissure as the most serious geological disaster impacts on urban construction and the development of the national economy, and has become the most widely impact and serious geological disasters in Shanxi Province. Research result shows that the formation and development of the ground fissure is mainly controlled by the basement tectonic activity or buried active faults. Therefore, it is one of the key problems to investigate the basin basement tectonic and the distribution of active faults for solving the ground fissure disaster. In present condition, the research on this type of regional tectonic mainly depends on potential field data.
     In view of above, this thesis relies on the project of“Genetic mechanism of ground-fissure hazards & continental dynamics in Fen-Wei Basin”(Item No.4053021) supported by the National Natural Science Foundation of China, and takes Shanxi fault basin located in the central Shanxi Province as the research area. New technologies are investigated and developed for potential field processing and the tectonic recognition & division are researched for Shanxi fault basin. The main aim is to investigate the deep and shallow tectonic information throughout the region (the distribution of fracture features, the features of formation age paleo-tectonic zone, the characteristics of shallow fault basement tectonic and the features of active faults in the basin). The main raw data are gravity, magnetic potential field data. By means of new methods and technologies to improve the accuracy and the resolution of potential field data processing, binding with deep and shallow seismic sounding profiles, combined with drilling, geological, tectonic evolution, the regional tectonic of Shanxi are studied in-depth. The main research results and conclusions are as follows:
     1. The multi-resolution wavelet analysis technology is applied into the experimental research of Shanxi potential field data processing for the first time to our knowledge. In contrast to simulation the actual model of the study area data, a semi-quantitative relationship between the order properties of the wavelet decomposition and deep & shallow source structural information has been obtained. Compared with the conventional method, the multi-resolution wavelet analysis technology can not only separate the shallow tectonic information with deep tectonic information remained, but also preserve the details and weak anomalies characteristics of the deep tectonic. During potential field data processing of Shanxi, this technology provides high quality gravity field data information in the deep tectonic researching, which reflects the Moho ups and downs. This technology provides regional aeromagnetic field data formation of age paleo-tectonic zone and shallow (local) gravity field data during shallow basin research, which reflects low-density deposition characteristics of the basin. These results provide a firm basis for further investigations.
     2. The potential field automatically inversion technology based on the curvature attribute is studied for the first time at home, and innovative improvements are made to the method. After that, it has not only better inversion effect, but also the function of separation different depths field source information. The three main technical measures are as follows: the expanded automatic search maxima method, the multi-resolution threshold method, the combined method of expanded automatic search maxima method and multi-resolution threshold method. Experimental study from model shows that, we can minimize the impact of the noise for the original method, and the result of the inversion is more continuous, the horizontal position and bearing depth are more accurately. At the same time, it has the power distinct the tectonic information from different depths. This method not only enriches the ways of potential field automatically inversion, but also provides another idea for deep and shallow source separation when processing gravity and magnetic anomalies.
     3. Application the developed technology of potential field automatically inversion technology based on the curvature attribute into Shanxi gravity anomaly data processing, obtained deep and shallow fault information of different depths. Studied the different threshold coefficients k and their corresponding fault information, obtained their semi-quantitative relationship. When the threshold coefficients k =1.0, the obtained Cenozoic era fault system in Shanxi fault basin matches the shallow (local) gravity characteristics obtained by multi-resolution wavelet analysis ,and accesses to the results of the new establishment quaternary tectonic map or the cenozoic group tectonic map, which effective reflects the edge large faults and the limits of faults.
     4. Investigated new detection techniques of geologic boundaries using potential-field data, the new techniques including tilt derivative (TDR), total horizontal gradient of the TDR and theta map. Model experiment results indicate that the new detection technology is more effective and accurate than the traditional horizontal gradient one and can gather more geological information. Applying those new technologies to the Shanxi gravity anomaly data processing, a wealth of plane fracture information is obtained. Studied the precambrian palaeo-tectonic boundaries detection by using theta map methods to the wavelet decomposition 6-order approximation, combined the geological and the tectonic evolution, and redrawn the precambrian tectonic units. The new redrawn precambrian tectonic units are proved by artificial seismic profiles data. Compared with the previous results, it has much higher resolution and credibility.
     5. Investigated the magnetic basement tectonic impact to the basin formation by the redrawn Precambrian tectonic units, combined with the artificial seismic profiles data, Studied the relationship between regional tectonic and seismic activity by combining with artificial seismic profiles data, the fault system which detected by gravity and magnetic, and the magnetic crustal tectonic, etc. The results indicated that the formation of fault basin constrained by magnetic crystalline basement. The more complex of the crustal tectonic, the greater the difference mechanical strength between crust media, the smaller thermal water release less, the easier bred major earthquake.
     6. Mapped the new quaternary tectonic map of four fault basin based on the data of shallow seismic profiles, drilling, and the redrawn fault system divided by the potential data processing, etc. Studied the cenozoic basement tectonic division of the fault basin and the distribution of the active faults in the basement by the new quaternary tectonic map above and the cenozoic tectonic map. The new mapped quaternary tectonic map provides the information of the tectonic division and active fault distribution features. That information can be used to interpret the relationship between ground fissures and buried active faults, which provides important basic information for shallow ground fissures evaluation.
     The new technologies for potential field processing are investigated and developed as primary means in this thesis, integrated maximize elements of seismic, drilling, geologic, etc. The regional tectonic of Shanxi is researched which provides wealth information for the relying project. It has not only important value for ground fissure disaster prevention and mitigation, but also great significance for mineral resources exploration and evaluation. In addition, the developed new techniques provide new technologies and means for potential field data processing. The work of this thesis has certain academic value and social impact.
引文
[1]彭建兵,范文,李喜安.汾渭盆地地裂缝成因研究中的若干关键问题[J].工程地质学报,200715(4):433-440
    [2]刘玉海,陈志新.大同城市地质研究[M].西安:西安地图出版社,1995
    [3]徐锡伟,钱瑞华,高震寰等.大同铁路分局地裂缝带的三维构造特征及其成因分析[J].地震地质,1994,16(4): 355-364
    [4]马国栋.大同市地裂缝研究[J].地质灾害与防治,1991,1(2):25-31
    [5]任建国,龚卫国,焦向菊.山西大同市地裂缝的分布特征及其发展趋势[J].山西地震,2004,118(3):39-42
    [6]马宗晋.山西临汾地震研究与系统减灾[M].北京:地震出版社,1993
    [7]吴嘉毅,廖燕鸿.西安地裂缝的工程性质[M].西安:陕西科学技术出版社,1990
    [8]张家明.西安地裂缝研究[M].西安:西北大学出版社,1990
    [9]彭建兵,张骏.渭河盆地活动断裂与地质灾害[M].西安:西北大学出版社,1992
    [10]李永善.西安地裂及渭河盆地活断层研究[M].北京:地震出版社,1992
    [11]姜振泉等.山西断陷带地裂缝的成因及其发育条件[J].中国矿业大学学报,1997,26(3):74-78
    [12]武强,姜振泉,李云龙.山西断陷盆地地裂缝灾害研究[M].北京:地质出版社,2003
    [13]Peng J B,Sun P,Li X An. Ground fissure:The major geological and environmental problem in the development of Xi'an city,China. Environment Science and Technologu,American Science Press,2006,4
    [14]李树德.中国东部山西地堑系的形成机制及构造地貌[J].地震探讨,北京大学学报(自然科学顿),1997,33(4):467-474
    [15]邢作云,赵斌,涂美义等.汾渭裂谷系与造山带耦合关系及其形成机制研究[J].地学前缘,2005,12(2):247-262
    [16]张世民.汾渭地堑系盆地发育进程的差异及其控震作用[J].地质力学学报,2000,6(2):30-37
    [17]王秀文,赵文星,杨国华.山西地堑系的最新水平运动[J].山西地震,2000,116(1):20-24
    [18]王秀文,郭跃宏,范雪芳.山西地区近期垂直形变场分析[J].地壳形变与地震,2001,21(2):64-69
    [19]李清林.山西断陷带地热分布的某些特征[J].山西地震,1996,84(1):26-30
    [20]吴乾蕃,廉雨方,祖金华等.山西断陷带地热研究[J].科学通讯,1991,(7):532-534
    [21]吴乾蕃,祖金华,廉雨方等.山西断陷带地热特征与地震活动性[J].华北地震科学,1993,11(2):14-22
    [22]山西省地质矿产局物理探矿队.山西省西南部断陷盆地地热综合物探成果研究报告[M],1988
    [23]国家地震局《鄂尔多斯周缘活动断裂系》课题组.鄂尔多斯周缘活动断裂系[M].北京:地震出版社,1988
    [24]王崇德等.山西省1:50万区域重力调查报告.山西省地质矿产局物理探矿队,1988
    [25]余钦范,马杏垣.华北地区航磁图像处理结果和地震构造解释[J].地震地质,1989,11(4):5-13
    [26]唐东磊等.三维重力剥皮改正计算技术及其在山西的应用[J].山西地质,1 989,4(2):141-149
    [27]邢集善等.华北剖面山西段区带综合研究报告深部地球物理调查.山西省地质矿产局物理探矿队,1990
    [28]王西文.用航磁异常计算山西省地区居里面[J].西安地质学院学报,1991,13(3):80-86
    [29]邢集善,叶志光,孙振国等.山西板内构造及其演化特征初探[J].山西地质,1991,6(1):3-15
    [30]邢集善,叶志光,陈昌武等.山西省深部地球物理综合研究报告--大陆板块内构造及深部过程初探.山西省地质矿产局物理探矿队,1991
    [31]陈燕.三维位场异常的快速反演方法及其在山西地区构造解释中的应用.硕士学位论文,1991
    [32]吴刚.汾渭断陷带地壳磁性结构研究.中国地震,1992,8(3):69-73
    [33]白来旺,侯廷爱.山西断陷带地球物理场特征与强震活动[J].山西地震,1993,75(4):43-47
    [34]杨巍然,孙继源,纪克诚等.大陆裂谷对比--汾渭裂谷系与贝加尔裂谷系例析[M].武汉:中国地质大学出版社,1995
    [35]邢集善,刘建华,赵晋泉.华北板内深部构造[J].山西地震,2002,111(4):3-l2
    [36]邢作云,邢集善,赵斌.华北地区深部构造特征[J].地质科技情报,2006,25(6):17-23
    [37]Bruckshaw, J. M.., Kunaratnam, K.. The interpretation of magnetic anomalies due todikes[J]. Geophysical Prospecting,1963,11(4):509-522
    [38]Bhattacharyya B. K. TWO-DIMENSIONAL HARMONIC ANALYSIS AS A TOOL FOR MAGNETIC INTERPRETATION[J]. Geophysics,1965,30(5):829-857
    [39]Bean R. I.. A rapid graphical solution for the aeromagnetic anomaly of the two-dimensional tabular body[J]. Geophysics,1966,31(5):963-970
    [40]Koulomzine Th., Lamontagne. Y., Nadeau. A.. New methods for the direct interpretation of magnetic anomalies caused by inclined dikes of infinite length[J]. Geophysics,1970,35(5):812-830
    [41]Rao B.S.R., Prakasa Rao T.K.S., Gopala Rao D., Kesavamani M.. Derivatives and dike anomaly interpretation[J]. Pure and Applied Geophysics,1972,99(1):120-129
    [42]Hood. P.. Gradient measurement in aeromagnetic surveying[J]. Geophysics,1965, 30(5):891-902
    [43] Hood, P., McClure, P. J.. gradient measurements in ground magnetic prospecting[J]. Geophysics,1965,30(3):403-410
    [44] Green R., Stanley J. M.. Application of a Hilbert transform method to the interpretation of surface vehicle magnetic data[J]. Geophys Prospect.,1975,23:18-27
    [45] Stanley J. M., Green, R.. gravity gradients and the interpretation of the truncated plate[J]. Geophysics, 1976,41(6):1370-1376
    [46]Atchuta Rao D., Ram Babu H. V., Sanker Narayan P. V.. Relationship of magnetic anomalies due to subsurface features and the interpretation of sloping contacts[J]. Geophysics,1980,45(1):32-36
    [47]D. Atchuta Rao, H. V. Ram Babu,P. V. Sanker Narayan. Interpretation of magnetic anomalies due to dikes: The complex gradient method[J]. Geophysics,1981,46(11):1572-1578
    [48]Cordell L., Grauch V.J.S.. Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico[A]. The Utility of Regional Gravity and Magnetic Anomaly Maps[C]. Society of Exploration Geophysicists,1985:181-197
    [49]Blakely R J,Simpson R W.Approximating edges of source bodies from magnetic or grayity anomalies[J].Geophysics,1986,51(7):1494-1498
    [50]V. J. S. Grauch, L. Cordell. Limitations of determining density or magnetic boundariesfrom the horizontal gradient of gravity or pseudogravity data[J]. Geophysics,52(1):118-121
    [51]余钦范,楼海.水平梯度法提取重磁源边界位置[J] .物探化探计算技术,1994,16(4):363-367
    [52]Thurston J.B., Smith R.S.. Automatic conversion of magnetic data to depth, dip and susceptibility contrast using the SPI method[J]. Geophysics ,1997, 62(3):807-813
    [53]Smith R. S., J. B. Thurston, T. Dai, I. N. MacLeod. iSPITM-The improve source parameter imaging method[J]. Geophysical Prospecting,1998, 46:141-15
    [54]Nabighian, M. N.. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation[J]. Geophysics,1972,37(3):507-517
    [55]Nabighian M.N. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics,1984,49(6):780-786
    [56]RoestW.R., Verhoef J., Pilkington M.. Magnetic interpretation using the 3-D analytic signal[J]. Geophysics,1992,57(1):116-125
    [57]Hsu S., Coppens D., Shyu C.. Depth to magnetic source using the generalized analytic signal. Geophysics[J]. 1998,63(6):1947-1957
    [58]Hsu S. K., Sibuet J. C., Shyu, C. T.. High-resolution detection of geologic boundaries from potential anomalies: An enhanced analytic signal technique[J]. Geophysics, 1996,61(2):373-386
    [59]M.Fedi, G.Florio. Detection of potential fields source boundaries by enhanced horizontal derivative method[J]. Geophysical Prospecting, 2001,49(1):40-58
    [60]Xiong Li. Understanding 3D analytic signal amplitude[J]. GEOPHYSICS, 2006,71(2):13-16
    [61]Thompson D.T.. EULDPH A new technique for making computer-assisted depth estimates from magnetic data[J]. Geophysics,1982,47(1):31-37
    [62]Reid A.B., Allsop J.M., Granser H., Millett A.J., Somerton I.W.. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics,1990,55(1):80-91
    [63]MD. ABDUL AZIZ KHAN,1993, A critical examination of 3D Euler deconvolution forinterpretation of potential field data and its application in the Bengal basin, Bangladesh.
    [64]Fairhead J.D., Bennett K.J., Gordon D.R.H, Huang,D.. Euler: beyond the“black box”[J]. SEG Expanded Abstracts,1994,64(13):422-424
    [65]Pierre B. Keating. Weighted Euler deconvolution of gravity data[J]. Geophysics,1998,63(5):1595-1603
    [66]Ahmed Salem, Dananjay Ravat. A combined analytic signal and Euler method(AN-EUL) for automatic interpretation of magnetic data[J].Geophysics.2003,68(6):1952-1961
    [67]G. Florio, M. Fedi, R. Pasteka. On the application of Euler deconvolution to the analytic signal[J]. GEOPHYSICS,2006,71(6):87-93
    [68]范美宁.欧拉反褶积方法的研究及应用[D].长春:吉林大学,2006
    [69]Moreau F., Gibert D., Holschneider M., et al. Identification sources of potential fields with the continuous wavelet transform Basic theory[J]. Journal of Geophysical Research,1999,104(b3):5003-5013
    [70]Hornby P., Boschetti F., Horowitz F.G.. Analysis of potential field data in the wavelet domain[J]. Geophys.J.Int.,1999,137:175-196
    [71]Sailhac D., Galdeano A., Gibert D., et al. Identification of source of potential field swith the continuous wavelet transform: Comple wavelets and application to aeromagnetic profile in French Guiana[J]. Journal of Geophysical Research,2000,105(b8):5003-5013
    [72]Martelet G., Sailhac P., Moreau F.,et al. Characterization of geological boundaries using 1_D wavelet transform on gravity data: Theory and application to the Himalayas. Geophysics,2001,66(4):1116-1129
    [73]陈玉东.利用位场连续复小波变换识辨磁场源(上)[J].物探化探计算技术,2003a,25(2):113-118
    [74]陈玉东.利用位场连续复小波变换识辨磁场源(下)[J].物探化探计算技术,2003b,25(3):220-225
    [75]陈玉东.应用连续复小波变换反演位场[J].地学前缘,2003c,10(1):212-212
    [76]陈玉东.复小波变换反演重力异常[J].物探与化探,2003d,27(5):354-361
    [77]Vallee M. A., Keating P., Smith R. S., et al. Estimating depth and model type using the continuous wavelet transform of magnetic data[J]. Geophysics,2004,69(1):191-199
    [78]山西省地矿局.山西省区域地质志[M].北京:地质出版社,1989
    [79]Zhao G C, Wilde S A, Cawood P A et al. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. Inter Geol Rev, 1998, 40:706-721
    [80]赵国春,孙敏.华北克拉通基底构造单元特征及早元古代拼合[J].中国科学(D辑),2002,32(7):534-549
    [81]崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1994
    [82]秦前清,杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1994
    [83]李世雄,刘家琦.小波变换与反演数学基础.北京:地质出版社,1994
    [84]侯遵泽,杨文采.小波分析应用研究[J].物探化探计算技术,1995,17(3):1-9
    [85]侯遵泽,杨文采.小波变换与地球物理数值分析[A].中国地球物理学会年刊[C].北京:石油工业出版社,1999
    [86]李宗杰,杨林,王勤聪.二维小波变换在位场数据处理中的应用试验研究[J].石油物探,1997,36(3):70-78
    [87]何继善,温佩琳,肖兵等.小波分析在地球物理勘探中的应用[J].中国有色金属学报,1997,7(4):14-19
    [88]李健,周云轩,许惠平.重力场数据处理中小波母函数德选择[J].物探与化探,2001,25 (6):410-417
    [89]侯遵泽,杨文采.中国重力异常的小波变换与多尺度分析[J].地球物理学报,1997,40(1):85-95
    [90]杨文采,施志群,侯遵泽等.离散小波变换与重力异常多重分解[J].地球物理学报,2001,44(4):534-541
    [91]杨宇山.小波细节的微分特征及其在重力场断裂分析中的应用[J].地质与勘探.2003,39(1):41-44
    [92]刁博,王家林,程顺有.重力异常小波多分辨分析分解阶次的确定[J].地球科学--中国地质大学学报,2007,32(4):564-568
    [93]Mallat S. Multifrequency Channel decomposition and wavelet models IEEE ANS. On Acoustics,1989,37:209-211
    [94]曾华霖.重力场与重力勘探[M].北京:地质出版社,2005
    [95]管志宁.磁力场与磁力勘探[M].北京:地质出版社,2005
    [96]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1997
    [97]管志宁,郝天珧,姚长利. 21世纪重力与磁法勘探的展望[J].地球物理学进展,2002,17(2):237-244
    [98]王芳.重磁勘探方法新技术[J].地质与资源,2004,13(3):184-186
    [99]王懋基,蔡鑫,承林.中国重力勘探的发展与展望[J].地球物理学报,1997,40(增刊):292 298.
    [100]王懋基.重磁解释方法的新进展[J].物探化探译丛,1992,4(5):56-64
    [101]张季生.位场自动反演技术的研究现状及意义[J].地球学报,2006,27(6):609-612
    [102]刘金兰,李庆春,赵斌.位场场源边界识别新技术及其在山西古构造带与断裂探测中的应用研究[J].工程地质学报,2007,15(4):569-574
    [103] Hugh G,Miller and Vijay Singh.Potential filed tilt-a new concept or location of potential field sources[J].Journal of Applied Geophysics,1994,32(2):213-217
    [104] VERDUZCO B., Derek J,Airhead F,Chris Green M.New insishts into magnetic derivatives for structural mapping[J].The Leading Edge,2004,23(2):116-119
    [105] Huang D., Versnel P.A.. Depth estimation algorithm applied to FTG data[J]. SEG Technical Program Expanded Abstracts,2000,19:394-397
    [106] Fairhead J. D., Williams S. E., Flanagan G.. Testing magnetic local wavenumber depth estimation methods using a complex 3D test model[J]. SEG Technical Program Expanded Abstracts,2004,23:742-745
    [107]谷社峰.局部波数在位场数据处理及解释中的应用[D].长春:吉林大学,2005
    [108] Chris Wijns, Carlos Perez, Peter Kowalczyk. Theta map: Edge detection in magnetic data[J]. Geophysics,2005,70(4):39-43
    [109] Roberts A. Curvature attributes and their application to 3D interpreted horizons[J]. First Break,2001,19(2):85-100
    [110] MARIO E. SIGISMONDI, JUAN C. SOLDO. Curvature attributes and seismic interpretation: Case studies from Argentina basins[J]. The Leading Edge, 2003,22(11):1122-1126
    [111] MARIO E. SIGISMONDI,JUAN C. SOLDO. Curvature attribute applications to 3D surface seismic data[J]. The Leading Edge,2007,26(4):404-414
    [112] SATINDER CHOPRA,KURT J. MARFURT. Volumetric curvature attributes add value to 3D seismic data interpretation[J]. The Leading Edge,2007,26(7): 856-867
    [113]郭志宏,刘浩军,熊盛青.平面网格位场数据的空间域非线性曲率滤波方法[J].地球物理学进展,2003,18(1):134-137
    [114]文百红.异常识别与分离的自适应曲率结构分滤波器[J].中南矿冶学院学报,1993,24(3):289-294
    [115]申宁华.国外磁法勘探近况概述[J].物探化探译丛,1992,(4):64-71
    [116] Xiong Li,Hans-Jurge G?tze. Comparison of some gridding methods[J]. The Leading Edge,1999,18(8):898-900
    [117]陈斌.一种离散化的最小曲率插值方法[J].煤田地质与勘探,2000,28(1):49-54
    [118] R.O. Hansen, Eduard deRidder. Linear feature analysis for aeromagnetic data[J]. Geophysics,2006,71(6):L61-L67
    [119] Jeffrey D. Phillips,R. O. Hansen,Richard J. Blakely. The use of curvature in potential-field interpretation[J]. Exploration Geophysics,2007,38:111-119
    [120]华东师范大学数学系编.数学分析(下册)[M].北京:高等教育出版社,2004
    [121]郭志宏,熊盛青,曹建平.航磁异常总梯度模反演方法的实用化改进及软件研制[J].物探与化探,2004,28(6):518-522
    [122]候重初.补偿圆滑滤波[J].地质计算技术,1981,(4):1-19
    [123]刘金兰,王万银,于长春.逐步逼近“曲化平”方法研究[J].地球物理学报,2007,50(5):1551-1557
    [124]王崇德等.山西省1:50万区域重力调查报告.山西省地质矿产局物理探矿队,1988
    [125]赵金仁,张先康.河南林县地震区地壳深部构造背景探讨[J].中国地震,1999,15(3): 229-236
    [126]祝治平,张建狮,周雪松.山西临汾震区地壳上地幔构造的研究[J].华北地震科学,1994,12(1):77-84
    [127]张成科.上海-奉贤-阿拉善左旗地学断面[M].北京:地震出版社,1992
    [128]赵金仁,张先康,张成科等.山西五台山地区地壳深部结构特征研究[J].地球物理学报,2006,49(1):123-129
    [129]张建狮,祝治平,张先康.山西高原北部地壳上地幔地震波速结构与深部构造[J].地震地质,1997,19(2):220-226
    [130]刘国栋,刘昌铨.华北北部地区地壳上地幔构造及其与新生代构造活动的关系[J].中国科学,B辑,1982,12
    [131]吴宗絮,郭才华.冀东陆壳结构的岩石学模型[J].地震地质1991,13(4):369-376
    [132]张世民.汾渭地堑系盆地发育进程的差异及其控震作用[J].地质力学学报,2000,6(2):30-37
    [133]吴刚.汾渭断陷带地壳磁性结构研究.中国地震,1992,8(3):69-73
    [134]赖晓玲,孙译,刘志.华北强震区地震测深研究[J].大地测量与地球动力学,2006,26(1):55-62
    [135]张淑亮,李冬梅,马朝辉.山西地震带热流体对强震活动的影响[J].地震,2002,22(1):84-90
    [136]山西省地质矿产局物理探矿队.山西省西南部断陷盆地地热综合物探成果研究报告[M],1988