套建增层预应力钢骨混凝土框架抗震性能与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
既有房屋的套建增层改造已成为土木工程界所关注的一个热点问题。本文构建了一种以内置H型钢预应力混凝土组合梁为框架梁、以配置4个或8个角钢的角钢混凝土柱为框架柱的新型钢骨混凝土框架结构型式。该框架组合梁中的H型钢可在框架柱角钢的间隙通过,预应力筋可在H型钢上下翼缘间布置,因此可在框架柱的外侧实现预应力筋的张拉和锚固;同时因可在H型钢下挂底模,并以底模为支撑设置侧模,故该框架结构底层楼盖可实现施工过程中自承重,基于上述两点,新型框架结构适合用于既有房屋的套建增层改造。但如何确保新型套建增层结构“小震不坏、中震可修、大震不倒”,特别是满足“大震不倒”的要求,是工程界迫切解决的问题。围绕这一问题,本文开展了五个方面的研究工作。
     (1)新型框架结构中所采用的角钢混凝土柱抗震性能的试验研究尚未见报道,针对这一问题,本文进行了9根剪跨比为3、不同轴压比、采用钢板箍的角钢混凝土柱在水平低周反复荷载作用下的试验研究,获得了9根试验柱的滞回曲线,考察了该类柱的耗能、刚度退化、抗力衰减、骨架曲线及延性等抗震性能指标,建议了角钢混凝土柱在不同抗震等级下的轴压比限值等抗震构造措施。在试验的基础上,给出了角钢混凝土柱正截面承载力计算公式。利用仿真分析对角钢混凝土柱单调荷载-位移曲线进行了计算,仿真计算结果与试验所得骨架曲线吻合较好。在此基础上,探索了轴压比、配箍率、混凝土抗压强度、含钢率、钢材的屈服强度及剪跨比对角钢混凝土柱力学性能的影响,建立了角钢混凝土柱荷载-位移恢复力模型和截面弯矩-曲率恢复力模型,为结构的弹塑性时程分析提供参考依据。
     (2)基于大量参数分析回归的内置H型钢预应力混凝土组合梁恢复力模型尚未见报道,针对这一问题,本文利用仿真分析对其他学者通过试验获得的预应力钢骨混凝土梁单调弯矩-位移曲线和荷载-位移曲线进行了计算,仿真计算结果与试验结果吻合较好。在此基础上,考察了梁截面型钢抗力与截面总抗力之比、截面预应力筋抗力与截面总抗力之比两个重要参数对内置H型钢预应力混凝土组合梁力学性能的影响,给出了截面曲率延性和位移延性的计算公式。建立了内置H型钢预应力混凝土组合梁荷载-位移恢复力模型和截面弯矩-曲率恢复力模型,为结构的弹塑性时程分析提供参考依据。
     (3)在大型有限元程序ANSYS的基础上,利用参数化设计语言(APDL)和Matlab语言,结合新型套建增层框架的特点,基于《建筑抗震设计规范》(GB50011-2001)和《型钢混凝土组合结构技术规程》(JGJ138-2001)编制了套建增层预应力钢骨混凝土框架内力和配筋计算程序,该程序能够根据需要调整抗震增强措施,为后文对新型套建增层框架进行弹塑性时程分析提供了对象。
     (4)基于平面杆系模型,采用IDARC非线性分析程序,分析了房屋高度满足《型钢混凝土组合结构技术规程》(JGJ138-2001)要求的底层层高分别为8.1m、11.7m、15.3m、18.9m,上部各层层高为4.2m,跨度为16m的建造在I、II、III类场地土上,相对于设计地震分组一、二、三组的不同配筋的分离式套建增层预应力钢骨混凝土框架在不同地震记录输入下的地震反应。分析结果表明,满足《型钢混凝土组合结构技术规程》(JGJ138-2001)的套建增层预应力钢骨混凝土框架,在罕遇地震作用下7度抗震设防区建造在I、II、III类场地土上的套建增层预应力钢骨混凝土框架不会发生倒塌破坏;8度抗震设防区建造在Ⅰ类场地土上的套建增层预应力钢骨混凝土框架不会发生倒塌破坏;8度抗震设防区建造在II、III类场地土上的底层结构层高为8.1m,增层层数为2层到4层的原二级抗震框架底层柱形成柱铰倒塌机制,发生层倒塌破坏。建议套建增层预应力钢骨混凝土框架结构设计时对于8度抗震设防区建造在II、III类场地土上的底层结构层高为8.1m,增层层数为2层到4层的原二级抗震框架其柱端弯矩增大系数及相应的梁、柱、节点的抗震构造措施应按一级抗震框架取用。
     (5)分总则、一般规定、结构型式、材料选择、框架抗震等级、构造措施与梁板截面选择、梁柱设计与节点构造、其它等7个方面提出了套建增层预应力钢骨混凝土框架结构房屋的设计与施工建议。结合具体工程实例介绍了该类套建结构的设计过程,详细给出了角钢混凝土柱、套建一层自承重混凝土楼盖的设计方法和施工措施。
Jacketing structure, a construction technique used to add stories around the existing buildings, has been becoming one of the most concerned topics in the circles of civil engineering. A new style of steel reinforced concrete frame structure made up of encased H-shape steel prestressed concrete composite beams and angle-steel concrete columns (ASCC) with 4 or 8 angle-steel is put forward. The H-shape steel can transit among angle-steels of columns, and the prestressing tendons can be laid between the top and bottom flange of H-shape steel, so the prestressing tendons can be tensioned and anchored outside the column. At the same time, for the bottom formwork can be hung from the H-shape steel, on which the side formwork can be installed, the ground floor can be self-supporting during construction. Therefore, this new frame structure is fit for jacketing structures to add stories around the existing buildings. How to ensure this new structure to be in elastic state under frequent earthquake, be mendable under design earthquake and not collapse under infrequent earthquake, especially the last item, is the problem to be solved imminently in engineering field. Center around this problem, 5 aspects of investigation are carried out as following:
     (1) The experiment of seismic performance of ASCCs in this new frame structure has not been reported, in order to study this problem, 9 ASCC specimens with shear steel plate are tested subjected to the horizontal low cyclic loading, in which, the shear span ratio is 3 and axial compression ratio is different. The hysteretic curves of 9 specimens are obtained. The seismic performance indexes such as energy dissipation, stiffness degradation, strength degradation, skeleton curves and ductility of this kind of column are acquired, and the seismic fortification measures including ultimate values of axial compression ratio under different seismic degree are suggested. Based on the tests, the calculation formula of flexural bearing capacity of the columns is given. Simulation analysis is used to calculate monotone load-displacement curves of the ASCCs, and the calculated results agree well with the test results. Then the influence of factors on the performance of the ASCCs is explored, such as the axial compression ratio, shear steel plate ratio, concrete compression strength, steel ratio, yield strength of steel and shear span ratio, etc. The hysteretic models for the load-displacement and the moment-curvature are established, and this provides reference for the elastic-plastic history analysis of structure.
     (2) Hysteretic model of encased H-shape steel prestressed concrete composite beams based on mass parameter statistical analysis has not covered, in order to study this problem, using Simulation analysis monotone moment-displacement curves and load-displacement curves based on the encased H-shape steel prestressed concrete composite beams tests by other scholars are calculated, and the results agree well with the test results. Then the influence of two factors on the mechanical performance of the encased H-shape steel prestressed concrete composite beams are researched, which are the ratio of the resistance of the H-shape steel to the total resistance and the ratio of the resistance of the prestressing tendons to the total resistance of the members, and the formulas of the curvature ductility and the displacement ductility are given. Hysteretic models for the load-displacement and the moment-curvature are established for encased H-shape steel prestressed concrete composite beams, this provides reference for elastic-plastic time analysis of structure.
     (3) Combined with the characteristics of jacketing frame, based on the large-scale finite element method software ANSYS, making use of parameterized design language APDL and Matlab, program for calculating internal force and placing reinforcement of jacketing steel reinforced concrete frame prestressed with bonded tendons is compiled under“Code for seismic design of buildings”(GB50011-2001) and“Technical specification for steel reinforced concrete composite stuctures”(JGJ138-2001). This program can adjust seismic reinforced measures according to different requirements, and provides the tool for the elastic-plastic history analysis of jacketing steel reinforced concrete frame prestressed with bonded tendons.
     (4) Based on the plane rod model, using IDARC nonlinear analysis program, the different jacketing steel reinforced concrete frames prestressed with bonded tendons designed according to“technical specification for steel reinforced concrete composite structures”, and with design earthquake group one, two and three, situated in Class I, II and III soil are analyzed under different earthquake waves. In this case, the height of the ground floor of these frames is 8.1m, 11.7m, 15.3m, 18.9m separately, and the height of the added stories is 4.2m, and the span is 16m. Analysis results indicate: satisfing“technical specification for steel reinforced concrete composite structures”,under infrequent earthquake, in the area of earthquake fortification intensity of degree 7, the jacketing steel reinforced concrete frames prestressed with bonded tendons for storey-adding situated in Class I, II and III soil will not collapse; in the area of earthquake fortification intensity of degree 8, the jacketing steel reinforced concrete frames prestressed with bonded tendons for storey-adding situated in Class I soil will not collapse; in the area of earthquake fortification intensity of degree 8, failure occurs in the bottom column of the jacketing steel reinforced concrete frames prestressed with bonded tendons for storey-adding situated in Class II and III soil with the height of ground floor is 8.1m and the number of added stories is 2 to 4, and the ground floor will collapse because of column hinges mechanism. So we suggest in design of the jacketing steel reinforced concrete frames prestressed with bonded tendons for storey-adding, in the area of earthquake fortification intensity of degree 8, steel reinforced concrete frames prestressed with bonded tendons situated in Class II and III soil with the height of ground floor is 8.1m and the number of added stories is 2 to 4, multiplying coefficient of bending moment of column, detail of seismic design of beam, column, and joint, should conform to a higher one earthquake-resistant grade.
     (5) 7 aspects of design and construction suggestions on jacketing steel reinforced concrete frames prestressed with bonded tendons for storey-adding are presented, they are general principles, general requirements, types of structure, choice of materials, earthquake resistant grade, details of design, and choice of sectional dimension of beam and slab, design of beams and columns and construction of joints, and others, etc. Design process of this type jacketing frame are given associated with a particular example of project, design method and construction details of angle-steel concrete columns and self-supporting floor of the first floor are given.
引文
1郑文忠.黑龙江省科技攻关计划项目“既有房屋套建增层改造、功能改造及加固改造成套技术研究”可行性研究报告.哈尔滨工业大学土木工程学院. 2005.4
    2郑文忠.哈尔滨市科学技术计划项目“既有房屋套建增层改造成套技术”可行性研究报告.哈尔滨工业大学土木工程学院. 2005.3
    3郑文忠,王英,刘铁,谭军.对既有房屋套建增层改造的认识与思考.工业建筑. 2005, (4):1~5
    4刘铁.混凝土套建结构选型与设计方法研究.哈尔滨工业大学硕士学位论文. 2002
    5吕志涛,陈健.外套框架结构加层设计研究.建筑结构. 1997, (5):20~25
    6汪恒在.地震区房屋加层采用外套结构时合理形式的选择.建筑结构. 1993, (6):22~24
    7韩选江,孙伟民.十四所02号宿舍增层改造工程实录.见:建筑物增层改造基础托换技术应用.南京大学出版社, 1992:40~45
    8陈瑜,高红旗,周兴高.建筑改造中的预应力巨型框架设计与施工要点.建筑科学. 2000, 16(3):36~39
    9程懋堃,寿光,张美励.北京日报社综合业务楼接层结构设计简介.建筑结构,1993(6):16~18
    10欧阳峰,陈长璠.某大楼加层预应力巨型框架设计研究.建筑结构,1997(1):38~41
    11来庆贵.哈医大实验楼套建增层选型与设计方法研究.哈尔滨工业大学硕士学位论文. 2004
    12郑文忠,周威,田石柱.哈工大动力楼巨型框架增层结构设计与测试.建筑结构. 2004, (9):3~6
    13郑文忠,刘铁,谭军,解恒燕,李忠民.绥芬河青云市场套(扩)建工程结构设计方法与施工措施研究.土木工程学报.2006(11):68-76
    14郑文忠,刘铁,王英.哈尔滨制药六厂变电所扩建改造设计研究[J].哈尔滨工业大学学报, 2005, 37(4):459~462
    15石晶,白国良.空腹式型钢混凝土框架柱的恢复力特性.西安公路交通大学学报.2000, 2(4):94~97
    16赵鸿铁.钢与混凝土组合结构.科学出版社, 2001
    17赵世春.空腹桁架式型钢混凝土框架柱抗震性能的试验.工业建筑.2007,(37)2:93~95
    18周颖,吕西林.空腹式劲性钢筋混凝土柱的恢复力模型研究.结构工程师.2004, 20(6):59~65
    19刘军进.预应力钢骨混凝土梁的理论分析和实验研究.东南大学硕士学位论文. 1999
    20张松林,舒赣平.预应力钢骨混凝土结构转换梁的设计和分析.工业建筑.1997, 27(7):16~18
    21孙光初,张继文,陈乾.预应力型钢混凝土梁设计方法探讨.江苏建筑. 1996(4):25~28
    22傅传国,李玉莹,梁书亭.预应力型钢混凝土简支梁受弯性能试验研究.建筑结构学报. 2007, Vol.28(3):62~73
    23袁伟斌,金伟良.预应力型钢混凝土受弯构件计算理论及应用研究.钢-混凝土组合结构协会第九次全会论文.2004
    24刘军进,吕志涛.预应力钢骨混凝土梁的理论分析和计算方法研究.工程力学. 2000,(增刊):175~181
    25陆平,苏旭霖,薛伟辰.预应力钢骨混凝土梁工程应用及施工监测分析.结构工程师. 2005, 21(2):70~74
    26戴国亮,蒋永生,傅传国,梁书亭.高层型钢混凝土底部大空间转换层结构性能研究.土木工程学报. 2003, 36(4):24~32
    27傅传国.预应力钢骨高强混凝土叠层空腹桁架转换层试验研究.南京,东南大学.2000
    28薛伟辰,杨枫,苏旭霖,陆平.预应力钢骨混凝土梁低周反复荷载试验研究.哈尔滨工业大学学报. 2007,Vol.39(8):1185~90
    29郑文忠,王琨,计静,谢恒燕,王英.角钢混凝土柱内置钢箱或H型钢混凝土组合梁框架.申请专利.申请号: 200710071942.9
    30贾金青,姜睿,厚童.钢骨超高强混凝土框架柱抗震性能的试验研究.土木工程学报.2006, 39(8):14~18
    31李俊华.低周反复荷载作用下钢骨高强混凝土柱性能研究.西安建筑科技大学博士学位论文.2005
    32 Tomii M, Sakino K, Xiao Y, Watanabe K. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube.Proceeding of the international speciality conference on concrete filled steel tubular structures, Harbin, China, August 1985:119~125
    33 Xiao Y, Tomii M, Sakino K. Experimental study on design method to prevent shear failure of reinforced concrete short circular columns by confining in steel tube. Transactions of Japan Concrete Institute, 1986,8:535~542
    34 R. S. Aboutaha and R. I. Machado. Seismic Resistance of Steel-Tubed High-Strength Reinforced-concrete Columns. Journal of Structural Engineering. 2005, 125(5):485~494
    35 S.K.Hwang, H.D.Yun, W.S.Park and B.C.Han. Seismic performance of high -Strength Reinforced-concrete Columns.Magazine of concrete research, 2005, 57(5):247~260
    36 R.S.Regan and N.W.Krahl.Behavior of Prestressed Composite Beams. Journal of the Structural Division, ASCE.2003,93(6):87~108
    37 Hanid Saadatmanesh, Pedro Albrechl, and B.M.Ayywb. Experimental Study of Prestressed Composite Beams. Journal of the Structural Engineering, ASCE. 2004,115(9):2364~2381
    38 Hanid Saadatmanesh, Pedro Albrechl,and B.M.Ayywb.Analytical Study of Prestressed Composite Beams. Journal of the Structural Engineering, ASCE.2002,125(2):314~318
    39 B.M.Ayywb, Y.G.Sohn and Hanid Saadatmanesh. Prestressed Composite Girders under Positive Moment. Journal of the Structural Engineering, ASCE. 2005, 116(11):2931~2951
    40 B.M.Ayywb, Y.G. Sohn and Hanid Saadatmanesh. Prestressed Composite Girders I: Experimental Study for Negative Moment. Journal of the Structural Engineering. ASCE. 2006,118(10):2763~2773
    41 B.M.Ayywb, Y.G.Sohn and Hanid Saadatmanesh. Prestressed Composite Girders II: Analytical Study for Negative Moment. Journal of the Structural Engineering. ASCE. 2006,118(10):2774~2783
    42 JGJ101-96.建筑抗震试验方法规程.中国建筑工业出版社.1996:11~17
    43构造标准委员会.铁筋ュンタソ-ト柱の强度とにん性.建筑杂志. 1980,95(1173):125~134
    44赵世春.钢骨钢筋混凝土结构基本受力行为的研究.西南交通大学博士学位论文. 1994:78~84
    45沈聚敏,周锡元,高小旺,刘晶波.抗震工程学.北京:中国建筑工业出版社.2000:282~294
    46叶列平,丁大钧,陈文瀼.高强混凝土框架柱抗震性能的试验研究.建筑结构学报.1992, 13(4):41~48
    47抗震性能专题组.钢筋混凝土压弯剪构件抗震性能试验研究.建筑结构学报.1992, 13(2):2~10
    48姜维山,白国良.配复合箍、螺旋箍、X形筋钢筋混凝土短柱的抗震性能及抗震设计.建筑结构学报.1994,15(1):2~16
    49 Patrick Paultre, Frederic Legeron, and Daniel Mongeau. Influence of Concrete Strength and Transverse Reinforcement Yield Strength on Behavior of High-Strength Concrete Columns. ACI Structural Journal.2001, 98(4): 490~501
    50 Frederic Legeron and Patrick Paultre. Behavior of High-Strength Concrete Columns under Cyclic Flexure and Constant Axial Load. ACI Structural Journal.2000,97(4):591~601
    51朱伯龙,董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1985
    52 J.B.Mander, M.J.N.Priestley, and R.Park. Theoretical Stress-Strain Model for Confined Concrete. Journal of the Structural Engineering, 1988,114(8): 1804~1823
    53 J.B.Mander, M.J.N.Priestley, and R.Park. Observed Stress-Strain Behavior of Confined Concrete.Journal of the Structural Engineering, 1988,114(8): 1827~1849
    54 Amir Fam, Frank S.Qie and Sami Rizkalla.Concrete-Filled Steel Tubes Subjected to Axial Compression and Lateral Cyclic Loads.Journal of Structural Engineering.2004,125(5):631~640
    55 Shamim A. Sheikh, Dharmendra V.Shah and Shafik S.Khoury. Confinement of high-strength concrete-columns. ACI Structural Journal.2005,91(1):66~78
    56赵忠虎,谢和平,许博,刘志宝.钢筋混凝土压弯构件恢复力特性研究状况.工业建筑.2006, 36(1):62~65
    57刘界鹏.钢管约束钢筋、型钢混凝土静力和动力性能试验研究与分析.哈尔滨工业大学博士学位论文.2006
    58张素梅,刘界鹏,王玉银,郭兰慧.双向压弯方钢管高强混凝土构件滞回性能试验与分析.建筑结构学报.2005, 26(3):9~18
    59 Penzien J. Dynamic response of elasto-plastic frames. Journal of the Structural Division. ASCE. 1960, 86(7):265~279
    60 Jinnigs P. C. Periodic response of a general yielding structure.Journal of Engineering Mechanical Division, ASCE, 1964, 90(EM2):131~165
    61 Ramberg W, Osgood WR. Description of steel strain curve by three parameters[R].Tech.Note 902,National Advisory Committee for Aeronautics, July, 2004
    62 Clough R W and Johnston S B. Effect of stiffness degradation on earthquake ductility requirements.Proc. 2th Jappan Earth. Engng. Symp, 1966, Tokyo Japan
    63 Takeda T, Sozen M A and Nielson N N.Reiforced concrete response to simulated earthquakes. Journal of Structural Division, ASCE. 1970, 96(ST12):2557~2572
    64 Saiidi M. Hysteresis modals for Reinforced concrete.Journal of Structure Division, ASCE, 1982,108(ST5):1077~1087
    65 Park YJ, Reinhorn A M and Kunnath s k. IDARC: inelastic damage analysis of reiforced concrete frame-shear-wall structures[R]. Technical Report. No. NCEER-87-00008, State UNIV.of New York,1987
    66 Y. Fukada. A study on the restoring force characteristics of reinforced concrete buildings. Proceedings of Kanto District Symposium of AIJ, Tokyo, Japan. 1969
    67 O.Kustu and J.G.Bouwkamp. Behavior of reinforced concrete deep beam-columns subassemblages under cyclic loads. UCB/EERC Report 73~82, University of California, Berkeley. 1973
    68 S. Tanl and S. Nomura. Response of reinforced concrete structures characterized by skeleton curve and normalized characteristic loops to ground motion. Proceeding of the 5th World Conference on Earthquake Engineering. 1973
    69 W. D. lwan. A model for the dynamic analysis of deteriorating structures. Proceeding of the 5th World Conference on Earthquake Engineering. 1973
    70张国军,吕西林,刘伯权.轴压比超限时框架柱的恢复力模型研究.建筑结构学报.2006, 27(1):90~98
    71 S.Watson and R.Park. Simulated seismic load tests on reinforced concretecolumns. Journal of structural engineering. 2004,120(6):1825~1849
    72 S.Watson, F.A.Zahn and R.Park. Confined reinforcement for concrete columns. Journal of structural engineering.2004,120(6):1798~1824
    73 Shamim A. Sheikh and Ching-Chung Yeh. Tied concrete columns under axial load and flexure. Journal of structural engineering. 1990,116(10):2780~2800
    74 Shamim A. Sheikh and Shafik S.Khoury.Confined concrete columns with stubs. ACI Structural Journal.1993,90(4):414~431
    75郑文忠,王英.预应力混凝土房屋结构设计统一方法与实例.哈尔滨:黑龙江科学技术出版社.1998
    76何政,欧进萍.钢筋混凝土结构非线性分析.哈尔滨:哈尔滨工业大学出版社,2007
    77 M.V.Sivaselvan and A.M.Reinhorn.Hysteretic Model for Deteriorating Inelastic Inelastic Structures. Journal of engineering Mechanics. ASCE. 2003,26(6):633~640
    78 M. S. L. Roufaiel and C. Meyer. Analytical Modeling of Hysteretic Behavior of R/C frame. Journal of structural engineering. ASCE.1987,113(3):429~444
    79 Y.Fukada. A Study on the restoring Force Characteristics of Reinforced concrete Building. Proceedings of Kanto District Symposium of AIJ, Tokyo, Japan.1969
    80 W.D.Lwan. A Model for the Dynamic Analysis of Deteriorating Structures. Proceeding of the 5th World Conference on Earthquake Engineering.1973
    81 Y.J.Park,A.Ang. Mechanistic Seismic Damage Model for Reinforced Concrete. Journal of structural engineering. ASCE. 1985,111(4):722~739
    82 Y. J.Park, A.Ang, Y.K.Wen. Damage-limiting Aseismic Design of Buildings. Earthquake Spectra. 1978,13(1):1~26
    83 O.Kustu and J.G.Bouwkamp.Behavior of Reinforced Concrete Deep Beam-University of California, Berkeley.2005
    84 S.Tanl and S.Nomura. Response of Reinforced Concrete Structures Characterized by Skeleton Curve and Normalized Characteristic Loops to Ground Motion. Proceeding of the 5th World Conference on Earthquake Engineering.1973
    85 Urocode No.4. Design of Composite Steel and Concrete Structures. Part 1.1: General Rules for Building, Revised Draft, 2004
    86 Uropean Convention for Constructional Steelwork. Composite Structure. The Construction Press. London and New York, 2005
    87 British Standards Institution. Structural use of concrete: BS8110. London,1985
    88 Furlong, R. W., Strength of steel-encased concrete beam, proceeding of ASCE, Journal of the strength Division, 1967, 93(ST5)
    89 Furlong, R. W., Strength of steel-encased concrete beam-column, proceeding of ASCE, Journal of the strength Division, 1968, 94(ST1)
    90 Abolhassan Astaneh-Asl. Behavior and design of steel and composite structures including seismic effects. University of California, Berkeley, 2004, 5
    91 CE 122-Design of Steel Structures, University of California, Berkeley, 2004
    92 Kindmann, R., Bergmann, R. Effect of reinforced concrete between the flanges of the steel profile of partially encased composite beams. Journal of Constructional Steel Research, 2006:27(1-3): 107~122
    93 Chicoine, Thierry, Massicotte, Bruno, Tremblay, Robert. Long-term behavior and strength of partially encased composite columns made with built-up steel shapes. Journal of Structural Engineering, 2003, 129(2): 141~150
    94 Mendis, P. Plastic hinge lengths of normal and high-strength concrete in flexure. Advances in Structural Engineering, 2001, 4(4): 189~195
    95 Hsu, H.-L., Yu, H.-L. Seismic performance of concrete-filled tubes with restrained plastic hinge zones. Journal of Constructional Steel Research, 2005, 59(5): 587~608
    96 W. F. Chen. Plasticity in Reinforced Concrete,1982
    97 G.W.Washa, P.G.U. Fluck. Effect of Compressive Reinforcement on the Plastic Flow of Reinforced Concrete Beams,. ACI Journal 24(2), S. 89–108, 1952
    98 Al-Shaikh, A.H., Al-Zaid, R.Z., Effect of reinforcement ratio on the effective moment of inertia of reinforced concrete beams. ACI Structural Journal, 1993, 90: 144~149
    99 P.R. Barnard, R.P. Johnson. Plastic behaviour of continuous composite beams.Proc.Inst.civ.Eng.,1965,32(2):180~197
    100 Cohn, V.A. Petcu. Moment Redistribution and Rotation Capacity of PlasticHinges in Redundant Reinforced Concrete Beams. 1963
    101陈富生,邱国桦,范重.高层建筑钢结构设计(第二版).中国建筑工业出版社, 2004:57~59
    102吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.同济大学出版社, 1996:142~211
    103 R. E. VALLES, A. M. REINHORN, S. K. KUNNATH, et al. IDARC 2D Version 4.0: A program for the inelastic damage analysis of building. Buffalo: National Center for Earthquake Engineering Research. State University of New York. 1996
    104 Y.J.Park.A.M.Reinhorn and S.K.Kunnath, IDARC: Inelastic damage analysis of reinforced concrete frame-shear-wall structures, Technical Report NCEER-87-0008.State University of New York at Buffalo.1987
    105 S. K.Kunnath, A. M.Reinhom, R. F.Lobo. IDARC version 3.0: A program for the inelastic damage analysis of RC structures. Technical Report NCEER-92-0022, State University of New York at Buffalo. 1992
    106沈聚敏.钢筋混凝土结构非线性地震反应分析与倒塌评估,中国地震工程研究进展.地震出版社, 1992:164~177
    107刘铁.套建增层框架结构房屋设计与施工方法研究及实践[D].哈尔滨工业大学博士学位论文.2006
    108计静,郑文忠.三种套建增层结构在既有房屋增层改造中的应用[J].哈尔滨工业大学学报. 2008(1):76~87