自适应波束形成技术应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应波束形成技术从理论知识走向工程应用仍面临许多实际问题。其中,自适应波束形成算法在误差情况下的稳健性能直接影响到实际的应用效果。同时,实际环境中存在的一些特殊形式的干扰也给自适应波束形成技术带来了严重的影响,如多径相干干扰、闪烁干扰、灵巧干扰等。本文主要围绕算法稳健性和特殊干扰抑制两大问题展开研究,主要内容如下:
     研究了几种典型的基于不确定集约束的稳健自适应波束形成算法,明确了算法彼此间的关系。并对基于球形不确定集约束的稳健Capon法性能进行了深入分析,揭示了各种因素对自适应权矢量最优加载因子以及算法性能的影响关系。
     研究了基于球形不确定集约束的稳健最小方差无失真响应(MVDR: Minimum Variance Distortionless Response)波束形成算法,提出了一种球心位于期望信号导向矢量估计值的新的球形不确定集,不仅克服了输出信干噪比性能依赖于期望信号导向矢量误差模值上限的不足,而且在导向矢量严重失配时,仍具有良好的稳健性能。
     针对稳健MVDR波束形成的自适应方向图旁瓣电平较高问题,提出一种自适应副瓣控制方法。该方法可在波束指向误差情况下,对自适应方向图的任意副瓣区域进行副瓣电平控制,并获得理想的控制效果,因而实现了稳健自适应波束形成和低副瓣自适应方向图的有效结合。
     针对波束指向误差情况下相干干扰抑制问题,提出基于特征空间的迭代Toeplitz算法。该算法首先采用迭代Toeplitz化方法对相干干扰信号进行去相关处理,然后利用基于特征空间的自适应波束形成克服指向误差的影响。因而算法稳健性较强,尤其在小快拍时仍具有良好的干扰抑制性能。
     研究了严重非平稳环境下的干扰抑制问题,提出了利用单次快拍的直接数据域最小二乘优化算法,增加了系统自由度,保证了对期望信号的有效接收和对干扰信号的有效抑制,并降低了自适应方向图的旁瓣电平,从而显著改善了算法性能。
     研究了“灵巧干扰”的对抗方法,基于干扰样本识别与采集思想,分别提出了独立对抗“灵巧干扰”时空级联自适应旁瓣对消方法,以及同时对抗压制性噪声干扰和“灵巧干扰”的“对消-识别-对消”的干扰抑制方法,均取得了较好的干扰抑制效果。
From theories to applications, many practical issues also exist for adaptive beamforming technique. For example, the robustness performance of adaptive beamforming algorithm would be an immediate cause for the effectiveness in practice. Moreover, some jammings with special styles, like multipath coherent jamming, blinking jamming, smart jamming and so forth, also bring serious impacts on traditional adaptive beamforming. Therefore, the investigations of this dissertation are focused on the two issues of the robustness of algorithm and peculiar jamming suppression. The main research contents are summarized as follows.
     Several representive robust adaptive beamforming algorithms based on uncertainty set constraints are investigated. And the relationships between them are clarified. The performance of robust Capon beamforming based on spherical uncertainty set constraint is deeply analyzed, which show clear that several parameters how to influence the optimum diagonal loading factor of the adaptive weight vector and the performance of the algorithm.
     A modified robust minimum variance distortionless response(MVDR) beamforming algorithm is presented, which is on the basis of a novel spherical uncertainty set constraint whose center locates the estimated steering vector of the desired signal. The method not only overcomes the shortcoming of the output performance dependent on the upper limit of of the norm of steering vector error, but also can hold good robustness under serious mismatches of steering vector of the desired signal.
     For the sidelobe level of adaptive pattern of robust MVDR beamforming algorithm is relative high, a sidelobe control approach is presented. In the case of beam pointing error, the approach is able to control the arbitrary sidelobe areas of the adaptive pattern and attains perfect control effects, which realizes the effective combination of robust adaptive beamforming and low sidelobe level of the adaptive pattern.
     An approach of iterative Toeplitz based on the eigenspace-based beamforming is presented for eliminating the coherent jammings under beam pointing error. The iterative Toeplitz technic is firstly applied to conduct decorrelation for the coherent jammings. And then the adaptive beamforming based on eigenspace is used to mitigate the impact caused by the pointing error. Therefore, the approach has better robustness, especially has better capability for jamming suppression in the presence of small sample size.
     The jamming suppression issue under highly nonstationary circumstance is investigated. An optimized direct data domain least squares approach using single snapshot is presented, which increases the adaptive freedoms, ensures adaptive reception for the desired signal and suppression for the jamming signals, decreases the sidelobe level of adaptive pattern, and therefore obviously improves the output capability.
     The approaches against smart jamming are investigated. Combined with the idea of jamming samples recognition and collection, the time-space cascade adaptive sidelobe canceling method only confronting the smart jamming and the“canceling-recognizing-canceling”method simultaneously confronting the noise jamming and the smart jamming is put forward respectively. The two methods both take on favorable effects for jamming suppression.
引文
[1] Godara L G. Error analysis of the optimal antenna array processors. IEEE Trans. on AES, 1986, 22(3): 395~409
    [2]龚耀寰.自适应滤波-时域自适应滤波和智能天线.北京:电子工业出版社,2003
    [3] Special issue on adaptive arrays. IEEE Trans. on Antennas and Propagation, 1964, 12
    [4] Special issue on adaptive arrays. IEEE Trans.on Antennas and Propagation, 1976, 24
    [5] Van Veen B D, Buckley K M. Beamforming: A versatile approach to spatial filtering. IEEE ASSP Magazine, 1988, 5(2): 4~24
    [6] Howells P W. Intermediate frequency sidelobe canceller. US Patent, 3202990, Aug.24, 1965
    [7] Applebaum S P. Adaptive arrays. Special Projects Lab. (SPL)TR66-1, Syracuse University Research Corporation, Aug.,1966
    [8] Applebaum S P, Chapman D J. Adaptive arrays with main beam constraints. IEEE Trans.on Antennas and Propagation, 1976, 24(5): 650~662
    [9] Widrow B, Mantey P E, Griffiths L J, et al. Adaptive antenna systems. Proc. IEEE, 1967, 55(12): 2143~2159
    [10] Widrow B. A review of adaptive antennas. Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Apr., 1979, 4: 273~278
    [11] Applebaum S P. Adaptive arrays. IEEE Trans. on Antennas and Propagation, 1976, 24(5): 585~598
    [12] Forst O L. An algorithm for linearly constrained adaptive array processing. Proc. IEEE, 1972, 60: 926~935
    [13] Alexander S T. Adaptive signal processing: Theory and applications. Springer-Verlag, New York, 1986
    [14] Alexander S T, Ghirnikar A L. A method for recursive least squares filtering based upon an inverse QR decomposition. IEEE Trans.on Signal Processing, 1993, 41(1): 20~30
    [15]汤俊,彭应宁.一种RLS型快速波束形成算法.信号处理, 1999, 15(4): 341~345
    [16] Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive arrays. IEEE Trans.on AES, 1974, 10(6): 853~863
    [17] Boroson D M. Sample size consideration for adaptive arrays. IEEE Trans.on AES, 1980, 16(4): 446~451
    [18] Brennan L E, Mallet J D, Reed I S. Adaptive arrays in airborne MTI. IEEE Trans.on Antennas and Propagation, 1976, 24(5): 607~615
    [19] Monzingo R A, Miler T W. Introduction to adaptive arrays. New York: John Wiley and Sons Inc, 1980
    [20] Nickel U. Subarray configurations for digital beamforming with low sidelobes and adaptive interference suppression. The Record of the IEEE 1995 International Radar Conference, Alexandria VA, May 1995: 714~719
    [21] White W D. Wideband interference cancellation in adaptive sidelobe cancelers. IEEE Trans.on AES, 1983, 19(6): 915~925
    [22] Yang H, Ingram M A. Subarray design for adaptive interference cancellation. IEEE Trans.on Antennas and Propagation, 2002, 50(10): 1453~1459
    [23] Morgan D R. Partially adaptive array techniques. IEEE Trans.on Antennas and Propagation, 1978, 26(6): 823~833
    [24] Adams R N, Horowitz L L, Senne K D. Adaptive main-beam nulling for narrowbeam antenna arrays. IEEE Trans.on AES, 1980, 16: 509~516
    [25] Brookner E, Howell J M. Adaptive-adaptive array processing. Proc. IEEE, 1986, 74(4): 602~604
    [26] Gabriel W F. Using spectral estimation techniques in adaptive processing antenna systems. IEEE Trans.on Antennas and Propagation, 1986, 34(3): 291~300
    [27] Haimovich A M, Bar-Ness Y. An eigenanalysis interference canceler. IEEE Trans. on Signal Processing, 1991, 39(1): 76~84
    [28] Haimovich A. The eigencanceler: Adaptive radar by eigenanalysis methods. IEEE Trans. on AES, 1996, 32(2): 532~542
    [29] Kirsteins I P, Tufts D W. Rapidly adaptive nulling of interference. Proc. of the International Conference on System Engineering. Dayton OH, USA, Aug., 1989: 269~272
    [30] Tufts D W, Shah A A. Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix. IEEE Trans. on Signal Processing, 1993, 41(4): 1716~1721
    [31] Kirsteins I P, Tufts D W. Adaptive detection using low-rank approximation to a data matrix. IEEE Trans. on AES, 1994, 30(1): 55~67
    [32] Subbaram H, Abend K. Interference suppression via orthogonal projections: A performance analysis. IEEE Trans. on Antennas and Propagation, 1993, 41(9): 1187~1194
    [33] Goldstein J S, Reed I S. Reduced-rank adaptive filtering. IEEE Trans. on Signal Processing, 1997, 45(2): 492~496
    [34] Goldstein J S, Reed I S. Subspace selection for partially adaptive sensor array processing. IEEE Trans. on AES, 1997, 33(2): 539~544
    [35] Haimovich A M, Peckham C, Ayoub T, et al. Performance analysis of reduced-rank STAP. Proc. of the 1997 IEEE National Radar Conference. Syracuse NY, USA, May 1997: 42~47
    [36] Goldstein J S, Reed I S, Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans. on Information Theory, 1998, 44(7): 2943~2959
    [37] Weippert M E, Hiemstra J D, Goldstein J S, et al. Insights from the relationship between the multistage Wiener filter and the method of conjugate gradients. 2nd IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2002), Rosslyn VA, USA, Aug., 2002: 388~392
    [38]王永良,丁前军,李荣锋.自适应阵列处理.北京:清华大学出版社,2009
    [39] Godara L G. The effect of phase-shift errors on the performance of an antenna-array beamformer. IEEE J. Ocean. Eng., 1985, 10: 278~284
    [40] Kim J W, Un C K. An adaptive array robust to beam pointing error. IEEE Trans. on Signal Processing, 1992, 40: 1582~1584
    [41] Jablon N K. Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections. IEEE Trans. on Antennas and Propagation, 1986, 34: 996~1012
    [42] Gupta I J, Ksienski A A. Effect of mutual coupling on the performance of adaptive arrays. IEEE Trans. on Antennas and Propagation, 1983, 31(9): 785~791
    [43] Steyskal H, Herd J S. Mutual coupling compensation in small array antennas. IEEE Trans. on Antennas and Propagation, 1990, 38(12): 1971~1975
    [44] Adve R S, Sarker T K. Elimination of the Effects of Mutual Coupling in Adaptive nulling system with a look direction constraint. Proceedings of IEEE Antennas and Propagation Society International Symposium, USA, 1996, 1164~1167
    [45] Gershman A B, Mecklenbr?uker C F, B?hme J F. Matrix fitting approach to direction of arrival estimation with imperfect spatial coherence of wavefronts. IEEE Trans. on Signal Processing, 1997, 45: 1894~1899
    [46] Ringelstein J, Gershman A B, B?hme J F. Direction finding in random inhomogeneous media in the presence of multiplicative noise. IEEE Signal Processing Letters, 2000, 7: 269~272
    [47] Weiss A, Friedlander B. Fading effects on antenna arrays in cellular communications. IEEE Trans. on Signal Processing, 1997, 45: 1109~1117
    [48] Pedersen K I, Mogensen P E, Fleury B H. A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Trans. on Vehicular Technology, 2000, 49: 437~447
    [49] Gershman A B. Robust adaptive beamforming in sensor arrays. Int. Journ. Electronics and Communications, invited paper, 1999, 53: 305~314
    [50] Feldman D D, Griffiths L J. A projection approach to robust adaptive beamforming. IEEE Trans. on Signal Processing, 1994, 42: 867~876
    [51] Gershman A B, Serebryakov G V, Bohme J F. Constrained Hung-Turner adaptive beamforming algorithm with additional robustness to wideband and moving jammers. IEEE Trans. on Antennas and Propagation, 1996, 44(3): 361~367
    [52] Gershman A B, Nickel U, Bohme J F. Adaptive beamforming algorithms with robustness against jammer motion. IEEE Trans. on Signal Processing, 1997, 45(7): 1878~1889
    [53] Hayward S D. Effects of motion on adaptive arrays. IEE Proc. Radar, Sonar and Navigation, 1997, 144(1): 15~20
    [54] Subbaram H, Abend K. Interference suppression via orthogonal projections: A performance analysis. IEEE Trans. on Antennas and Propagation, 1993, 41(9): 395~409
    [55] Buckley K M, Griffiths L J. An adaptive generalized sidelobe canceller with derivative constraints. IEEE Trans. on Antennas and Propagation, 1986, 34(3): 311~319
    [56] Huarng K C, Yeh C C. Performance Analysis of Derivative Constraint Adaptive Arrays with Pointing Errors. IEEE Trans. on Antennas and Propagation, 1992, 40(8): 975~981
    [57] Tseng C Y. Minimum variance beamforming with phase-independent derivative constraints. IEEE Trans. on Antennas and Propagation, 1992, 40(3): 285~294,
    [58] Cox H, Zeskind R M, Owen M H. Robust adaptive beamforming. IEEE Trans. on Acoustic, Speech, and Signal Processing, 1987, ASSP-35(10): 1365~1376
    [59] Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. on Aerospace and Electronic Systems, 1988, 24(4): 397~401
    [60] Gabriel W F. Spectral analysis and adaptive array superresolution techniques. Proc. IEEE, 1980, 68(6): 654~666
    [61] Abramovich Y I. Controlled method for adaptive optimization of filters using the criterion of maximum SNR.Radio Engineering and Electronic Physics, 1981, 26: 87~95
    [62] Chang L, Yeh C C. Performance of DMI and eigenspace-based beamformers. IEEE Trans. on Antennas and Propagation, 1992, 40: 1336~1347
    [63] Kim J W, Un C K. A robust adaptive array based on signal subspace approach. IEEE Trans.on Signal Processing, 1993, 41(11): 3166~3171
    [64] Charge P, Wang Y, Saillard J. Adaptive beamforming for cyclostationary signals.Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003, 5: V-349~352
    [65] Lee J H, Lee Y T, Shih W H. Efficient robust adaptive beamforming for cyclostationary signals. IEEE Trans.on Signal Processing, 2000, 48(7): 1893~1901
    [66]周雷,张贤达.一种新的循环平稳盲自适应波束形成方法.清华大学学报:自然科学版, 2000, 40(7): 47~50
    [67] Lee C C, Lee J H. Eigenanalysis interference cancellers with robust capabilities. Signal Processing, 1997, 58:193~202
    [68] Chang A C, Chiang C T and Chen Y H. An eigenanalysis interference canceler with robust capabilities. Microwave Opt Technol Lett, 2000, 25(2): 100~103
    [69] Lee C C, Lee J H. Eigenspace-based adaptive array beamforming with robust capabilities. IEEE Trans. on Antennas and Propagation, 1997, 45(12): 1711~1716
    [70]赵永波,刘茂仓,张守宏.一种改进的基于特征空间自适应波束形成算法.电子学报,2000, 28(6): 16~18
    [71] Gabriel W F. Using spectral estimation techniques in adaptive processing antenna systems. IEEE Trans. on Antennas and Propagation, 1986, 34(3): 291~300
    [72] Kim Y L, Pillai S U, Guerci J R. Optimal loading factor for minimal sample support space-time adaptive radar. In Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1998, 2505~2508
    [73] Ma N, Goh J T. Efficient method to determine diagonal loading value. In Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2003, V: 341~344
    [74] Van Trees H L. Optimum Array Processing, Wiley, NY, 2002
    [75] Gu J, Wolfe P J. Robust adaptive beamforming using variable loading. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006: 1~5
    [76]刘聪锋,廖桂生.基于模约束的稳健Capon波束形成算法.电子学报,2008,36(3): 440~445
    [77] Li J, Stoica P, Wang Z S. Doubly constrained robust capon beamformer. IEEE Trans. on Signal Processing, 2004, 52(9): 2407~2423
    [78] Vorobyov S A, Gershman A B, Luo Z Q. Robust adaptive beamforming using worst case performance optimization: A solution to the signal mismatch problem. IEEE Trans. on Signal Processing, 2003, 51(2): 313~323
    [79] Lorenz R G, Boyd S P. Robust minimum variance beamforming. IEEE Trans. on Signal Processing, 2005, 53(5): 1684~1696
    [80] Li J, Stoica P. On robust capon beamforming and diagonal loading. IEEE Trans.on Signal Processing, 2003, 51(7): 1702~1715
    [81] Stoica P, Wang Z S, Li J. Robust Capon beamforming. IEEE Signal Processing Letters, 2003, 10: 172~175
    [82] Wu S Q, Zhang J Y. A new robust beamforming method with antennae calibration errors. IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, 1999, 2: 869~872
    [83] Ma C A, Ng B P, Bao H J, et al. Robust adaptive beamforming for large steering angle error. Proceedings of ISCAS, Hong Kong, Apr., 2004, III: 273~276
    [84] Vorobyov S A, Gershman A B, Luo Z Q, et al. Adaptive beamforming with joint robustness against mismatched signal steering vector and interference nonstationarity. IEEE Signal Processing Letters, 2004, 11: 108~111
    [85] Theil A. On combining adaptive nulling with high-resolution angle estimation under main lobe interference conditions, Record of the IEEE 1990 International Radar Conference. Arlingten, VA, USA, May 1990, 295~297
    [86] Hughes D T, Mcwhirter J G. Using the penalty function to cope with mainbeam jammers. Proceedings of 3rd International Conference on Signal Processing, Beijing, Oct., 1996, 401~405
    [87]李荣锋,王永良,万山虎.主瓣干扰条件下自适应方向图保形方法的研究.现代雷达, 2002, 24(3): 50~53
    [88]苏保伟,王永良,李荣锋等.阻塞矩阵方法对消主瓣干扰.系统工程与电子技术,2005, 27(11): 1830~1832
    [89] Mailloux R J. Covariance matrix augmentation to produce adaptive array pattern troughs. Electronics Letters, 1995, 31(10): 771~772
    [90] Zatman M. Production of adaptive array troughs by dispersion synthesis. Electronics Letters, 1995, 31(25): 2141~2142
    [91] Guerci J R. Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. on Signal Processing, 1999, 47(4): 977~985
    [92] Sarkar T K, Park S, Koh J, et al. A deterministic least squares approach to adaptive antennas. Digital Signal Processing, 1996, 6(3): 185~194
    [93] Sarkar T K, Koh J, Adve R, et al. A pragmatic approach to adaptive antennas. IEEE Antennas and Propagation Magazine, 2000, 42(2): 39~53
    [94] Ali M E, Schreib F. Adaptive single snapshot beamforming: a new concept for the rejection of nonstationary and coherent interferers. IEEE Trans. on Signal Processing, 1992, 40(12): 3055~3058
    [95] Kim K, Sarkar T K, Palma M S. Adaptive processing using a single snapshot for a nonuniformly spaced array in the presence of mutual coupling and near-field scatterers. IEEE Trans. on Antennas and Propagation, 2002, 50(5): 582~590
    [96] Choi W, Sarkar T K, Wang H, et al. Adaptive processing using real weightsbased on a direct data domain least squares approach. IEEE Trans. on Antennas and Propagation, 2006, 54(1): 182~191
    [97] Shan T J, Kailath T. Adaptive beamforming for coherent signals and interference. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1985, 33(3): 527~536
    [98] Cheung K W, Murch R D. Improved spatial smoothing technique. Electronics Letters, 1997, 33(21): 1757~1758
    [99] Serebryakov G V. Adaptive array utilizing improved spatial averaging technique. Electronics Letters, 2000, 36(5): 471~472
    [100] Raghunath K J, Reddy V U. A note on spatially weighted subarray covariance averaging schemes. IEEE Trans. on Antennas and Propagation, 1992, 40(6): 720~723
    [101] Elmaraazey M. An adaptive spatial smoothing technique for beamforming in the presence of correlated arrivals. Proc. of the IEEE International Symposium on Circuits and Systems, Chicago IL, USA, May 1993, 1: 208~211
    [102] Wang B H. Adaptive array with global weighted spatial averaging. Electronics Letters, 2004, 40(8): 460~461
    [103] Yeh C C, Wang W D. Coherent interference suppression by an antenna array of arbitrary geometry. IEEE Trans. on Antennas and Propagation, 1989, 37(10): 1317~1322
    [104] Lee T S, Lin T T. Coherent interference suppression with complementally transformed adaptive beamformer. IEEE Trans. on Antennas and Propagation, 1998, 46(5): 609~617
    [105] Ming Lu, Zhenya He. Adaptive beam forming using split-polarity transformation for coherent signal and interference. IEEE Trans. on Antennas and Propagation, 1993, Vol. 41(3): 314~324
    [106] Bresler Y, Reddy V U, Kailath T. Optimum beamforming for coherent signal and interferences. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1988, 36(6): 833~843
    [107] Qian F, Van Veen B D. Quadratically constrained adaptive beamforming for coherent signals and interference. IEEE Trans. on Signal Processing, 1995, 43(8): 1890~1900
    [108] Choi Y H. Improved adaptive nulling of coherent interference without spatial smoothing. IEEE Trans. on Signal Processing, 2004, 52(12): 3464~3469
    [109]史双宁,尚勇,梁庆林等.一种新的相干信号波束形成方法.电子与信息学报, 2008, 30(5): 113~121
    [110]赵永波,张守宏.存在相干信号时的最优波束形成.通信学报, 2002, 23(2): 113~121
    [111] Zhang L R, So H C, Ping L, et al. Effective beamformer for coherent signalreception. Electronics Letters, 2003, 39(13): 949~951
    [112]赵永波,水鹏朗,张守宏.一种能有效接收相干信号的波束形成技术.电子学报, 2006, 34(6): 1016~1019
    [113] Brookner E. Phased array radars-past, present and future. IEE 490 Radar 2002 Edinburgh International Conference Center, UK, Oct., 2002, 104~113
    [114] Steyskal H. Digital Beamforming at Rome laboratory. The Rome Laboratory Technical Journal, 1995, 1(1): 7~22
    [115] Garrod A. Digital modules for phased array radar. 1996 IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, 1996, 81~86
    [116] Pettersson L, Eanestig M, Sjostrom U. An experimental S-band digital Beamforming Antenna. 1996 IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, 1996, 93~98
    [117] Cantrell B H, Graaf J W, Leibowitz L M. Digital active-aperture phased-array radar. IEEE International Conference on Phased Array Systems and Technology, Dana Point, CA, 2000
    [118] Cantrell B, Graaf J, Willwerth F, et al. Development of a digital array radar(DAR). IEEE AESS Magazine, 2002, 22~27
    [119] Rapaport T S. Smart antenna: adaptive arrays, algorithms, and wireless position location. USA: Institute of Electrical and Electronics, 1998
    [120] Liberti J C, Rappaport T S. Smart antennas for wireless communications: IS-95 and third generation CDMA applications. Prentice Hall PTR, 1999
    [121]彭木根,王文博. TD-SCDMA移动通信系统.北京:机械工业出版社, 2005
    [122] Householder A S. The theory of matrices in numerical analysis. New York: Dover, 1964
    [123] Bell K L, Ephraim Y, Van Trees H L. A Bayesian approach to robust adaptive beamforming. IEEE Trans.on Signal Processing, 2000, 48(2): 386~398
    [124]林静然,彭启琮,邵怀宗.一种具有双重鲁棒性的自适应波束形成算法.电子测量与仪器学报,2007,21(2): 10~14
    [125] Amir B, Yonina C E. Doubly constrained robust Capon beamformer with ellipsoidal uncertainty sets. IEEE Trans. on Signal Processing, 2007, 55(2): 753~758
    [126] Shahbazpanahi S, Gershman A B, Luo Z Q, et al. Robust adaptive beamforming for general-rank signal models using worst-case performance optimization. Proc. of 2nd IEEE Sensor Array and Multichannel Signal Processing Workshop, Rosslyn, VA, Aug., 2002: 13~17
    [127] Shahbazpanahi S, Gershman A B, Luo Z Q, et al. Robust adaptive beamforming using worst-case SINR optimization: a new diagonal loading-type solution forgeneral-rank signal models. Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing, 2003, 5: 333~336
    [128] EI-Keyi A, Kirubarajan T, Gershman A B. Robust adaptive beamforming based on the Kalman filter. IEEE Trans. on Signal Processing, 2005, 53(8): 3032~3041
    [129] Yu Z L, Er M H. A robust Capon beamformer with new uncertainty constraint on steering vector. Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, 4: 1029~1032
    [130] Nesterov Y, Nemirovsky A. Interior Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia, 1994
    [131] Sturm J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Meth. Software, 1999, 11-12: 625~653
    [132] Bertsekas D P. Constrained optimization and Lagrange multiplier methods. Athena Scientific, Belmont, MA, 1996
    [133] Dahlquist G, Bj?rck ?. Numerical methods. Series in Automatic Computation, Prentice Hall, Englewood Cliffs, 1974
    [134] Marzetta T L. A new interpretation for Capon’s maximum likelihood method of frequency-wavenumber spectrum estimation. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1983, 31(2): 445~449
    [135] Vincent F, Besson O. Steering vector errors and diagonal loading. IEE Proc.- Radio, Sonar Navig, 2004, 151(6): 337~343
    [136]林静然,彭启琮,邵怀宗等.最坏情况下的鲁棒自适应波束形成算法性能分析.电子学报,2006,34(12): 2161~2166
    [137] Li J, Stoica P. Robust adaptive beamforming. New Jersey: John Wiley & Sons, Inc., 2006: 185~188
    [138] Van Veen B D. Minimum variance beamforming with soft response constraints. IEEE Trans. on Signal Processing, 1991, 39(9): 1964~1972
    [139] Bell K L, Van Trees H L. Adaptive and non-adaptive beampattern control using quadratic beampattern constraints. Proceedings of 33rd Asilomar Conference on Signals, Systerms and Computers, Pacific Grove, CA, 1999: 486~490
    [140] Wu R, Bao Z, Ma Y. Control of peak sidelobe level in adaptive arrays. IEEE Trans. on Antennas Propagation, 1996, 44(10): 1341~1347
    [141] Liu J, Gershman A B, Luo Z Q, et al. Adaptive beamforming with sidelobe control: A second-order cone programming approach. IEEE Signal Processing Letters, 2003, 10(11): 331~334
    [142] Zarifi K, Shahbazpanahi S, Gershman A B, et al. Robust blind multiuser detection based on the worst-case performance optimization of the MMSE receiver. IEEE Trans. on Signal Processing, 2005, 53(1): 295~305
    [143] Ye Y. Combining binary search and Newton’s method to compute real roots for a calss of real functions. Journal of complexity, 1994, 10: 271~280
    [144] Akaike H. Information theory and an extension of the maximum likelihood principle. Proc. of 2nd Int. Symp. Inform. Theory, 1973: 267~281
    [145] Rissanen. Modeling by the shortest data description. Automatica, 1978, 14: 465~471
    [146] Lee J H, Hsu T F. Adaptive beamforming with multiple-beam constraints in the presence of coherent jammers. Signal Processing, 2000, 80(11): 2475~2480
    [147]赵永波,张守宏,廖桂生. Toeplitz化在ESB自适应波束形成中的应用.西安电子科技大学学报,2000,27(6): 682~685
    [148] Sarkar T K, Sangruji N. An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method. IEEE Trans. on Antennas and Propagation, 1989, 37(7): 940~944
    [149]侯印鸣.综合电子战-现代战争的杀手锏.北京:国防工业出版社,2000
    [150]张永顺,童宁宁,赵国庆.雷达电子战原理.北京:国防工业出版社,2006
    [151] Shnidman D A, Toumodge S S. Sidelobe blanking with integration and target fluctuation. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(3): 1023~1037
    [152] Applebaum S P, Chapman D J. Adaptive arrays with main beam constraints. IEEE Trans. on Antennas and Propagation, 1976, AP-24: 650~662
    [153] Howells P. Intermediate frequency side-lobe canceller. US Paternt, 3202990, August, 1965
    [154] Schleher C D. Electronic warfare in the information age. London: Artech House, 1999
    [155]喻旭伟.高密度脉内假目标生成技术.电子对抗,2003,93(6): 25~28
    [156]汤礼建,黄建冲,徐新华.基于卷积调制的脉内多假目标干扰技术研究.电子信息对抗技术,2008,23(3): 43~45
    [157]刘佳琪,刘进,丹梅等.对导弹防御制导雷达的多假目标干扰仿真研究.系统仿真学报,2008,20(3): 557~561
    [158]周义建,张剑云,贺平.一种雷达干扰技术-灵巧噪声干扰.雷达与对抗,2002,1: 12~16
    [159]史军军,姜秋喜,毕大平.一种有效的灵巧噪声干扰技术.航天电子对抗,2006,22(3): 41~43