典型混沌系统及耦合神经元的同步与反同步
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混沌控制与同步是将混沌系统应用于保密通信的前提。一方面,在工业系统通信中,由于利用混沌进行通信有保密性强,抗干扰能力强等特点,所以研究混沌控制与同步并使其应用于通信系统有一定的实际意义;另一方面,生物系统中也存在着混沌现象,如大脑系统、视觉系统等,因此分析生物体神经元之间的同步,以研究其通信机制有一定的理论意义。本文主要应用几种非线性理论的控制方法,通过理论推导研究了一类典型混沌系统同步、反同步,以及耦合神经元之间的同步,并对推导结果做了数值模拟,以进一步说明结果的正确性和有效性,本文的主要工作如下:
     (1)研究了基于直接构造法的同构混沌系统和异构混沌系统的混沌同步问题。首先,采用直接构造法为响应系统设计适当的控制器;然后将控制器作用下的误差系统转化为三对角结构,得到误差系统状态在原点渐进稳定,因此实现了驱动系统与响应系统达到同步,并通过数值仿真进一步证明了该方法的有效性。
     (2)研究了分数阶超混沌Chen系统的动力学行为。结果表明:当阶数大于或等于0.95时分数阶超混沌Chen系统处于超混沌状态;且随阶数的增大,混沌性会越来越明显。以阶数取0.95及0.98为例,采用主动控制方法,设计了使得两个分数阶超混沌Chen系统同步的控制策略。数值模拟结果证实了该策略对一类分数阶超混沌Chen系统有效。
     (3)研究了两个超混沌Lorenz系统的反同步,以及超混沌Lorenz系统和超混沌Chen系统的异结构反同步问题。对于两个参数已知的超混沌Lorenz系统,使用了非线性控制方法;而对于两个参数未知的超混沌Lorenz系统和超混沌Chen系统,运用了自适应控制法设计合适的Lyapunov函数及参数自适应率,并成功辨识出了系统参数。数值模拟验证了所设计方案的有效性。
     (4)研究了外部电刺激下未知参数耦合FitzHugh-Nagumo (FHN)神经元的混沌同步问题。基于Lyapunov稳定性理论,设计了自适应控制器及参数更新率,使得当单个神经元混沌时,不论其耦合强度多大都能使耦合神经元达到同步,并且对近似误差,离子通道噪声及外部干扰等有较好的鲁棒性,并能成功辨识出未知参数。数值模拟结果证实了所设计的控制器的有效性。
Chaos control and synchronization of chaotic systems is the premise for applying them in communication systems. On the one hand, due to the strong confidentiality and anti-interference ability of chaos communication, studying of chaos control and synchronization has some practical significance, when chaos is used in the industrial systems' communication; On the other hand, there are also chaotic phenomena in biological system, such as the brain system and visual system. In order to learn the communication mechanism of neurons, analyzing of the synchronization between them has some theoretical significance. In this paper, based on nonlinear control methods, synchronization and anti-synchronization of a class of typical chaotic systems is studied via theoretical analysis, and also the synchronization between coupled neurons. Finally, the results are illustrated by numerical simulation. The major work of this paper is summarized as follows:
     (1) Synchronization of the chaotic and hyper-chaotic systems with identical or different structures is studied, which is based on direct construction method. Firstly, an appropriate controller for the response system is designed by direct construction method. And then transform the error system with the controller into triangular structure, so it can be obtained that the error system is asymptotically stable at the origin, which shows the drive system and response system achieve synchronization. Through numerical simulation, the effectiveness of this method is proved further.
     (2) The dynamics of fractional order hyper-chaotic Chen system is studied. The results show:when the order equal to or greater than 0.95, the fractional order hyper-chaotic Chen system is hyper-chaotic;and with the order increasing, the chaos becomes evident increasingly. The author designs a control strategy to realize self-synchronization of two fractional order hyper-chaotic Chen systems by active control method, case in the order is 0.95 and 0.98, respectively. The results of numerical simulation show the effectiveness of the strategy to a class of fractional order hyper-chaotic Chen systems.
     (3) The anti-synchronization of two hyper-chaotic Lorenz systems is studied, as well as hyper-chaotic Lorenz system and hyper-chaotic Chen system with different structures. Nonlinear control method is used to the two hyper-chaotic Lorenz systems with certain parameters, and adaptive control method is used to the hyper-chaotic Lorenz system and hyper-chaotic Chen system with uncertain parameters, respectively. The Lyapunov function and parameters'update laws are selected, which can identify the unknown parameters successfully. The numerical simulation shows the effectiveness of the strategies.
     (4) The chaotic synchronization of two electrical coupled FitzHugh-Nagumo (FHN) neurons with unknown parameters via adaptive control is investigated. Based on the Lyapunov stability theory, an adaptive controller and parameters'update laws are designed, which can achieve the synchronization of the two gap junction coupled FHN neurons when the individual neuron is chaotic, but without considering the coupling strength. The controller is robust to the uncertainties such as approximate error, ionic channel noise and external disturbances, and the parameters can be identified successfully. The numerical simulation results confirm the effectiveness of the designed controller.
引文
[1]E.N.洛伦兹.混沌的本质[M].刘式达,刘式适,严中伟译.北京:气象出版社,1997.
    [2]郝柏林.从抛物线谈起——混沌动力学引论[M].上海:上海科技教育出版社,1993.
    [3]吴祥兴,陈忠,等.混沌学导论[M].上海:上海科学技术文献出版社,1996.
    [4]Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Phys Rev Lett,1990, 64(8):821-830.
    [5]Wang X Y, Song J M. Synchronization of the unified chaotic system [J]. Nonlinear Anal: Theory Meth Appl,2008,69(10):3409-3416.
    [6]Cai G L, Huang J J. Synchronization for hyperchaotic Chen system and hyperchaotic Rossler system with different structure [J]. Phys Soc,2006,55(8):3997-4004.
    [7]Khadra A, Liu X Z and Shen X M. Impulsive control and synchronization of spatiotemporal chaos [J]. Chaos Solitions and Fractals,2005,26(2):615-636.
    [8]Lu J Q, Cao J D. Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters [J]. Chaos,2005,15(4):043901.
    [9]Rafikov M, Balthazar J M. On control and synchronization in chaotic and hyperchaotic systems via linear feedback control [J]. Commun Nonlinear Sci Numer Simulat 2008,13(7): 1246-1255.
    [10]Tao C H, Lu J A, Lu J H. Feedback synchronization of united chaotic system [J]. Phys Soc,2002,51(7):1497-1501.
    [11]Sun M, Tian L X, Xu J. Time-delayed feedback control of the energy resource chaotic system [J]. Int J Nonlinear Science.2006,1(3):172-177.
    [12]Li Y, Tang W K S, Chen G R. Generating hyperchaos via state feedback control [J]. Int J of Bifurcation & Chaos,2005,15(10):3367-3375.
    [13]Wang T B, Qin T F, Chen G Z. Coupled synchronization of hyper-chaotic system [J]. Phys Soc,2001,50(10):1851-1855.
    [14]LiGH, Zhou S P. An observer-based anti-synchronization [J]. Chaos, Solitons & Fractals. 2006,29(2):495-498.
    [15]Li G H, Zhou S P, Xu D M. A parameter modulated method for chaotic digital communication based on state observers [J]. Phys Rev Lett,2004,53(3):706-709.
    [16]方锦清.驾驭混沌与发展高新技术[M].北京:原子能出版社,2002.
    [17]Chiang T Y, Hung M, Yan J J, et al. Sliding mode control for uncertain unified chaotic systems with input nonlinearity [J]. Chaos Solitions and Fractals,2007,34(2): 437-442.
    [18]Luo, Albert C J. A theory for synchronization of dynamical systems [J]. Commun Nonlinear Sci Numer Simulat.2008,14(5):1901-1951.
    [19]Salarieh H, Shahrokhi M. Multi-synchronization of chaos via linear output feedback strategy [J]. J Comput Appl Math.2009,223(2):842-852.
    [20]LU J H, Chen G R, Cheng D, et al. Bridge the gap between the Lorenz system and Chen system [J]. Int J of Bifurcation and Chaos,2002,12(12):2917-2926.
    [21]Wang X Y, Wang M J. Dynamic analysis of the fractional order Liu system and its synchronization [J]. Chaos,2007,17(3):033106.
    [22]Wang X Y, He Y J. Projective synchronization of fractional order chaotic system based on linear separation [J]. Physics Letters A,2008,372(4):435-441.
    [23]Wang X Y, Wang M J. A hyperchaos generated from Lorenz system [J]. Physica A,2008, 387(14):3751-3758.
    [24]Lorenz E N. Deterministic nonperodic flow [J]. Journal of the Atomospheric Sciences,1963,20(5):130-141.
    [25]Li T Y, Yorke J A. Period three implies chaos [J]. American Mathematical Monthly, 1975,82(1):985-992.
    [26]昂利·彭加勒.科学与方法[M].李醒民泽.上海:商务印书馆,2006.
    [27]蔡少棠.非线性网络理论引论[M].北京:人民教育出版社,1980.
    [28]Chen G R, Ueta T. Yet another chaotic attractor [J]. International Journal of Bifurcation & Chaos,1999,9(6):1465-1466.
    [29]LU J H, Chen G R, Cheng D Z, Celikovsky S. Bridge the gap between the Lorenz system and Chen system [J]. International Journal of Bifurcation & Chaos,2002,12(12):2917-2926.
    [30]Hartley T T, Lorenzo C F, Qammer H K. Chaos in a fractional order Chua's system [J]. IEEE Trans CAS-I,1995,42(8):485-490.
    [31]Arena P, Caponetto R, Fortuna L, Porto D. Chaos in a fractional order Duffing system [J]. In:Proc. ECCTD, Budapest,1997,1259-62.
    [32]Ahmad W, El-Khazali R, El-Wakil A. Fractional-order Wien-bridge oscillator [J]. Electr Lett,2001,37(18):1110-1112.
    [33]Ahmad W M, Sprott J C. Chaos in fractional-order autonomous nonlinear systems [J]. Chaos, Solitons & Fractals,2003,16(2):339-351.
    [34]Hwang C, Leu J F, Tsay SY. A note on time-domain simulation of feedback fractional-order systems [J]. IEEE Trans Auto Contr,2002,47(4):625-631.
    [35]Podlubny I, Petras I, Vinagre B M,O'Leary P, Dorcak L. Analogue realizations of fractional-order controllers [J]. Nonlinear Dyn,2002,29(1-4):281-296.
    [36]Chay T R. Chaos in a three-variable model of an excitable cell [J]. Physica D,1985, 16(2):233-242.
    [37]Glass L. Chaos in neural systems. In:Arbib M, editor. The handbook of brain theory and neural networks [J]. Cambridge. MIT:1995,186-189.
    [38]Roelfsema P R, Engel A K, Konig P, Singer W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas [J]. Nature,1997,385:157-161.
    [39]Steriade M, McCormick D A, Sejnowski T J. Halamocortical oscillations in the sleeping and aroused brain [J]. Science,1993,262(5134):679-685.
    [40]Dhamala M, Jirsa V K, Ding M. Enhancement of neural synchrony by time delay [J]. Phys Rev Lett,2004,92(7):074104-1-4.
    [41]Wang Q Y, Lu Q S, Chen G R, Guo D H. Chaos synchronization of coupled neurons with gap junctions [J]. Phys Lett A,2006,356(1):17-25.
    [42]Cornejo-Perez O, Femat R. Unidirectional synchronization of Hodgkik-Huxley neurons [J]. Chaos, Solitons & Fractals,2005,25(1):43-53.
    [43]Zhang H G, Xie YH, Wang Z L, Zheng C D. Adaptive synchronization between two different chaotic neural networks with time delay [J]. IEEE Transaction on Neural Networks,2007, 18(6):1841-1845.
    [44]刘斌,张曾科,等.一种三对角结构非线性系统的稳定性及其应用[J].自动化学报,2007,33(4):442-445.
    [45]Podlubny I. Fractional differential equations [M]. New York:Academic Press,1999.
    [46]Hilfer R, editor. Applications of fractional calculus in physics [M]. New Jersey:World Scientific,2000.
    [47]Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastically damped structures [J]. Guid, Cont& Dyn,1991,14(2):304-309.
    [48]Koeller R C. Application of fractional calculus to the theory of viscoelasticity [J]. J Appl Mech,1984,51(2):299-307.
    [49]Koeller R C. Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics [J]. Acta Mech,1986,58(3,4):251-264.
    [50]Ichise M, Nagayanagi Y, Kojima T. An analog simulation of noninteger order transfer functions for analysis of electrode processes [J]. Electroanal Chem,1971,33(2): 253-265.
    [51]Mandelbrot B. Some noises with 1/f spectrum, a bridge between direct current and white noise [J]. IEEE Trans Inform Theory,1967,13(2):289-292.
    [52]Heaviside 0. Electromagnetic theory [M]. New York:Chelsea,1971.
    [53]Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system [J]. Phys Rev Lett,2003,91(3):034101-4.
    [54]Li C G, Chen G R. Chaos in the fractional order Chen system and its control [J]. Chaos Solitons Fract,2004,22(3):549-554.
    [55]Lv J G, Chen G R. A note on the fractional-order Chen system [J]. Chaos, Solitons and Fractals,2006,27(3):685-688.
    [56]Li C, Chen G. Chaos and hyperchaos in fractional order Rossler equations [J]. Physica A,2004,341(1):55-61.
    [57]Matignon D. Stability results for fractional differential equations with application to control processing. Computational engineering system application, Lille (France), 1996,963-968.
    [58]Ramasubramanian K, Sriram M S. A comparative study of computation of Lyapunov spectra with different algorithms [J]. Physica D,2000,139(1,2):2-86.
    [59]Chen H, Sun M:Generalized projective synchronization of the energy resource system [J]. Int J Nonlinear Science,2006,2(3):166-170.
    [60]Yang S S, Duan C K. Generalized synchronization in chaotic systems [J]. Chaos, Solitons & Fractals,1998,9(10):1703-1707.
    [61]Li Y, Zhang J B, Liu Z R. Circadian Oscillators and Phase Synchronization under a Light-Dark Cycle [J]. Int J Nonlinear Science,2006,1(3):131-138.
    [62]Rosenblum M G, Pikovsky A S, Kurths J. Phase synchronization of chaotic oscillators [J]. Phys Rev Lett,1996,76(11):1804-1807.
    [63]Sun M, Tian L X, Xu J. Time-delayed feedback control of the energy resource chaotic system [J]. Int J Nonlinear Science,2006,1(3):172-177.
    [64]Chen Y, Chen X X and Gu S S. Lag synchronization of structurally nonequivalent chaotic systems with time delays [J]. Nonlinear Analysis,2007,66(9):1929-1937.
    [65]Li G H, Zhou S P. An observer based anti-synchronization [J]. Chaos, Solitons & Fractals, 2006,29(2):495-498.
    [66]Li G H. Synchronization and anti-synchronization of Colpitts oscillators using active control [J]. Chaos, Solitons & Fractals,2005,26(1):87-93.
    [67]Hu J, Chen S H, Chen L. Adaptive control for anti-synchronization of Chua's chaotic system [J]. Physics Letters A,2005,339(6):455-460.
    [68]Meister M, Wong R O, Baylor D A, Shatz C J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina [J]. Science,1991,252:939-943.
    [69]Kreiter A K, Singer W. Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey [J]. Journal of Neuroscience,1996,16: 2381-2396.
    [70]Shuai J W, Durand D M. Phase synchronization in two coupled chaotic neurons [J]. Phys Lett A,1999,264(4):289-297.
    [71]Bennett M V L, Verselis V K. Biophysics of gap junction [J]. Semin Cell Biol,1992, 3(1):29-47.
    [72]Wang J, Deng B, Tsang K M. Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation [J]. Chaos, Solitons & Fractals,2004,22(2): 469-476.
    [73]Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. J Physiol (London) 1952,117: 500-544.
    [74]Lasalle J, Lefschtg S. Stability by Lyapunov's direct method with application. New York:Academic Press,1961.