透射式GaAs光电阴极的光学与光电发射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕透射式GaAs光电阴极光学与光电发射性能的理论研究、结构设计与性能测试的软件研制、MBE生长阴极的实验评估、MOCVD生长的具有不同性能阴极的结构设计及实验等方面展开研究。
     针对透射式GaAs光电阴极光学性能研究的缺乏,根据薄膜光学矩阵理论,推导了包括玻璃基底、Si3N4增透层、Ga1-xAlxAs窗口层和GaAs发射层的透射式GaAs光电阴极光学性能计算公式,分析了除玻璃外三层材料的折射率、消光系数、厚度对光学性能曲线的影响。另外,对透射式GaAs光电阴极量子效率公式进行了光学性能的修正,同时分析了表征光学性能的吸收率与表征光电发射性能的量子效率之间的关系,研究了光学性能对光电发射性能的影响。
     根据透射式GaAs光电阴极光学与光电发射性能的理论计算,研制了透射式光电阴极结构设计软件,通过输入特定的设计要求参数,由软件自动计算后给出宽光谱响应或窄带响应材料结构设计结果及理论计算曲线。根据光学与光电发射性能的关系分析,研制了用于测试透射式光电阴极光学与光电发射性能的软件,通过输入波长、结构、实验光谱等,由软件自动拟合后得到阴极相关性能参数结果,实现了透射式光电阴极性能的自动测试,并提供了一种组件厚度的非接触测量手段。
     利用性能测试软件拟合了多种结构的MBE生长透射式GaAs光电阴极的实验反射率和透射率曲线,获得了阴极组件各个薄膜层的可靠厚度结果,提出了在MBE生长阴极的窗口层和发射层间存在一个低Al组分的过渡层。采用由光学性能修正的量子效率公式拟合了MBE生长透射式GaAs光电阴极的实验量子效率曲线,评估了多种掺杂结构的阴极光电发射性能,说明了MBE生长透射式GaAs光电阴极短波响应差、光谱特性不佳,因此结构设计有待改善。通过有效拟合美国ITT公司高性能GaAs光电阴极的实验量子效率,获得了高性能GaAs光电阴极的结构参数范围,其结果可用于指导国产GaAs光电阴极的材料设计和阴极制备。
     鉴于MBE生长阴极短波响应低、光谱特性差的问题,设计了宽光谱普通透射式GaAs光电阴极、蓝延伸透射式GaAs光电阴极、窄带透射式GaAlAs光电阴极,给出了满足设计要求的组件结构、Al组分、厚度、掺杂结构等。采用MOCVD生长了理论设计的三类阴极,测试了光学性能和光谱响应曲线,拟合了实验曲线并获得了性能参数。结果表明,MOCVD生长的宽光谱透射式GaAs光电阴极获得了比MBE生长阴极更好的性能。蓝延伸GaAs光电阴极积分灵敏度最高达到了1980μA/lm,窄带GaAlAs光电阴极实现了在532nm处达到峰值响应的要求,普通GaAs光电阴极的积分灵敏度最高达到了2320μA/lm,这与美国ITT公司当前对外公布的最高水平一致。
The researches on the optical property and photoemission performance theories of the transmission-mode GaAs photocathodes, structural design and performance test softwares, performance evaluation of the MBE-grown photocathodes, and structural design and experiments of the MOCVD-grown photocathodes with different response properties were carried out in this thesis.
     Considering the lack of researches on the optical property, the calculation formula of optical property for the transmission-mode GaAs photocathode was derived based on thin film optical theory, where the photocathode module consisted of the glass substrate, the Si3N4antireflection layer, the Ga1-xAlxAs window layer and the GaAs active layer. The influences on the optical property curves corresponding to different thicknesses, refractive indexes and extinction coefficients were analyzed excluding the glass substrate. Besides, the quantum efficiency formula was deduced by taking into account the optical property. Following that, the relation between the absorptivity for optical property and the quantum efficiency for photoemission performance was discussed. Furthermore, the influence of optical property on the photoemission performance was investigated.
     The software on the structural design of the transmission-mode photocathode was developed on the basis of the theoretical calculation of the optical and photoemission performance. After entering the characteristic parameters of the wideband or narrowband response photocathodes, the structural result and the theoretical curves could be obtained by the software auto-calculation. The software on testing the optical and photoemission performance of the photocathodes was developed on the basis of the relationship between the optical property and photoemission performance. By means of inputting wavelength, structure parameters, experimental curves etc, the relating performance parameters could be computed by the software, which consequently realizes the automatic performance measurement for the transmission-mode photocathodes and affords a non-contact thickness measurement method.
     With the application of the performance measurement software, the experimental reflectivity and transmittance curves of transmission-mode GaAs photocathodes in varied structures grown by MBE were well fitted, and the thickness of each thin film in the cathode module was obtained, which reveals that a transition layer with the low Al component was presented between the window layer and the active layer for the MBE-grown GaAs photocathode. The experimental quantum efficiency curves were fitted by the formula modified with the optical property, and the photoemission performance of the various photocathodes were evaluated, which illustrates that the structure of the MBE-grown GaAs photocathode should be revised due to the low shortwave response and the poor spectral characteristic parameters. In addition, the experimental quantum efficiency curve of the high performance GaAs photocathode from American ITT Company was effectively fitted in order to gain the optimal structure ranges. The result can be used to guide the material design and cathode preparation of the domestic GaAs photocathodes.
     In view of the low shortwave response and the poor spectral characteristic of the MBE-grown photocathode, a wideband response standard GaAs, an extended blue GaAs and a narrowband response GaAlAs photocathodes were designed. Three kinds of transmission-mode module structures, Al components, thicknesses and doping distributions were calculated separately according to the required wideband or narrowband spectral response. The three designed photocathodes were grown by MOCVD, and their measured optical properties and spectral response curves were fitted by use of the performance measurement software. It is found that the MOCVD-grown wideband response GaAs photocathodes obtain better performance parameters than the MBE-grown ones. The highest integral sensitivity of the extended blue GaAs photocathode achieves1980μA/lm, meanwhile the narrowband response GaAlAs photocathode realizes the highest spectral response at the expected wavelength of532nm. The highest integral sensitivity of the standard GaAs photocathode achieves2320μA/lm, which is in accord with the released sensitivity level of American ITT Company.
引文
[1]李晓峰.第三代像增强器研究:[博士学位论文].西安:中国科学院西安光学精密机械研究所,2001
    [2]米侃.透射式NEA GaAs光电阴极和第三代像增强器的研究:[博士学位论文].西安:中国科学院西安光学精密机械研究所,1998
    [3]Allen G A. The performance of negative electron affinity photocathode. Applied Physics, 1971,4:308-317
    [4]Einstein A. (U)ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik,1905,17(1):132-148
    [5]刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社,1995
    [6]Spicer W E. Photoemissive, photoconductive, and absorption studies of alkali-antimony compounds. Physical Review,1958,112(1):114-122
    [7]Spicer W E and Herrera-Gomez A. Modern theory and application of photocathodes. Proc. SPIE,1993,2022:18-33
    [8]A.H.萨默.光电发射材料制备、特性与应用.北京:科学出版社,1979
    [9]Announcements and news:NEA Search. Phys. Teach.1967,5(7):340-340
    [10]Scheer J J and Laar J Van. GaAs-Cs:a new photoemission object. Solid State Communications,1965,3-8:189-193
    [11]张书明,孙长印,赛小峰,等.透射式GaAs光电阴极研究.光子学报,1996,25(11):1032-1036
    [12]Sommer A H. Brief history of photoemissive materials. Proc. SPIE,1993,2022:2-7
    [13]徐宏伟,王鼎盛.埋入GaAs/AlAs周期反射层提高反射式负电子亲和势阴极效率的研究.半导体学报,1992,13(11):675-682
    [14]郭太良,王敏,黄振武,等.反射式GaAs负电子亲和势光电阴极的激活.福州大学学报,1988,3:57-60
    [15]牛军,杨智,常本康,等.反射式变掺杂GaAs光电阴极量子效率模型研究.物理学报,2009,58(7):5002-5006
    [16]Yijun Zhang, Jijun Zou, Jun Niu, et al. Photoemission characteristics of different-structure reflection-mode GaAs photocathodes. Journal of Applied Physics, 2011,110:063113
    [17]Chen Xinlong, Zhang Yijun, Chang Benkang, et al. Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer. Optics Communications, 2013,287:35-39
    [18]Xiaohui Wang, Benkang Chang, Ren Ling, et al. Influence of p-type doping concentration on reflection-mode GaN photocathode. Applied Physics Letter,2011,98:082109
    [19]Beauvais Y, Chautemps J and Groot P D. LLL TV imaging with GaAs photocathode/CCD detector. Advances in Electronics and Electron Physics,1995,64A:267-274
    [20]Pollehn H K. Performance and reliability of third-generation image intensifiers. Advances in Electronics and Electron Physics,1995,64A:63-69
    [21]Jarry P, Guittard P and Piaget C. Improvement of the final wipe-off of GaAs/(Ga,Al)As double heterostructures. Journal of Crystal Growth,1980,50:877-878
    [22]Antypas G A and Edgecumbe J. Glass-sealed GaAs-AlGaAs transmission photocathode. Applied Physics Letters,1975,26(7):371-372
    [23]田金生,骆冠平(译).像增强器技术的最新进展.云光技术,2000,32(1):32-36
    [24]金伟其,刘广荣,王霞,等.微光像增强器的进展及分代方法.光学技术,2004,30(4):460-466
    [25]何开远.美军微光夜视技术的发展近况.云光技术,2003,35(2):18-21
    [26]James L W and Moll J L. Transport properties of GaAs obtained from photoemission measurements. Physical Review,1969,183(3):740-753
    [27]Liu Y Z, Moll J L and Spicer W E. Quantum yield of GaAs semitransparent photocathodes. Applied Physics Letters,1970,17(2):60-62
    [28]Fisher D G and Olsen G H. Properties of high sensitivity GaP/InxGa1-xP/GaAs:(Cs-O) transmission photocathodes. Journal of Applied Physics,1979,50(4):2930-2935
    [29]Costello K A, Aebi V W and MacMillan H F. Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm. Proc. SPIE,1990,1243:99-106
    [30]Antypas G A, James L W and Uebbing J J. Operation of III-V semiconductor photocathodes in the semitransparent mode. Journal of Applied Physics,1970,41(7): 2888-2894
    [31]James L W, Antypas G A and Edgecumbe J. Dependence on crystalline face of the band bending in Cs2O-activated GaAs. Journal of Applied Physics,1971,42:4976-4980
    [32]Antypas G A, Escher J S, Edgecumbe J, et al. Broadband GaAs transmission photocathode. Journal of Applied Physics,1978,49(7):4301-4301
    [33]Estrera J P, Bender E J, Giordana A, et al. Long lifetime generation IV image intensifiers with unfilmed microchannel plate. Proc. SPIE,2000,4128:46-53
    [34]Estrera J P, Ostromek T, Bacarella A, et al. Advanced image intensifier night vision system technologies:status and summary 2002. Proc. SPIE,2003,4796:49-59
    [35]Estrera J P, Ostromek T, Isbell W, et al. Modern night vision goggles for advanced infantry applications. Proc. SPIE,2003,5079:196-207
    [36]Liu Y Z, Hollish C D and Stein W W. LPE GaAs/(Ga,Al)As/GaAs transmission photocathodes and a simplified formula for transmission quantum yield. Journal of Applied Physics,1973,44(12):5619-5621
    [37]Csorba I P. Recent advancements in the field of image intensification the generation 3 wafer tube. Applied Optics,1979,18(14):2440-2444
    [38]Thomas N. System performance advances of 18-mm and 16-mm subminiature image intensifier sensors. Proc. SPIE,2000,4128:54-64
    [39]Olsen G H, Szostak D J, Zamerowski T J, et al. High-performance GaAs photocathodes. Journal of Applied Physics,1977,48(3):1007-1008
    [40]Narayanan A A, Fisher D G, Erickson L P, et al. Negative electron affinity gallium arsenide photocathode grown by molecular beam epitaxy. Journal of Applied Physics, 1984,56(6):1886-1887
    [41]Gutierrez W A and Pommerrenig H D. High-sensitivity transmission-mode GaAs photocathode. Applied Physics Letters,1973,22(6):292-293
    [42]Howorth J R, Holtom R, Hawton A, et al. Exploring the limits of performance of third generation image intensifiers. Vacuum,1980,30(11):551-555
    [43]Andre J P, Guittard P, Hallais J, et al. GaAs photocathodes for low light level imaging. Journal of Crystal Growth,1981,55(1):235-245
    [44]Antonova L I and Denissov V P. High-efficiency photocathodes on the NEA-GaAs basis. Applied Surface Science,1997,111:237-240
    [45]Sahno V, Dolgyx A, Gratca E, et al. Development of GaAs photocathode for image intensifier tube with spectral response extended to λ=0.36 μm. Proc. SPIE,2005,5834: 147-152
    [46]http://www.itt.com
    [47]Smith A, Passmore K, Sillmon R, et al. Transmission mode photocathodes covering the spectral range. New Developments in Photodetection 3rd Beaune Conference, France, June 17-21,2002
    [48]徐江涛.透射式GaAs光电阴极激活技术研究.应用光学,2000,21(4):5-15
    [49]徐江涛曹桂林,侯志鹏,等.微光管大面积GaAs负电子亲合势光电阴极(NEA)光谱特性测试与分析.真空科学与技术学报,2007,26(2):138-141
    [50]郭晖Ga1-xAlxAs/GaAs光电阴极光谱响应向短波延伸的机理分析和实验研究.应用光学,2007,28(1):12-15
    [51]高斐,郭晖,胡仓陆,等.透射式GaAs光电阴极的静电键合粘结.光子学报,2008,37(8):1549-1552
    [52]石峰GaAs光阴极制备自动化技术研究:[硕士学位论文].西安:西北工业大学,2007
    [53]周立伟.光电子成像:走向新的世纪.北京理工大学学报,2002,22(1):1-12
    [54]姜德龙,吴奎,王国政,等.微通道板离子壁垒膜及其特性.发光学报,2004,25(6):737-742
    [55]马建一,顾肇业,申屠浩.负电子亲和势Ⅲ-Ⅴ族化合物半导体光电阴极及其发展.半导体情报,1996,33(6):17-22
    [56]Guo Tailiang and Gao Huairong. Photoemission stability of negative-electron-affinity GaAs photocathodes. Proc. SPIE,1993,1982:127-132
    [57]Wang X F, Zeng Y P, Wang B Q, et al. The effect of Be-doping structure in negative electron affinity GaAs photocathodes on integrated photosensitivity. Applied Surface Science,2006,252:4104-4109
    [58]Lin L W. The role of oxygen and fluorine in the electron emission of some kinds of cathodes. Journal of Vacuum Science and Technology A,1988,6(3):1053-1057
    [59]常本康,房红兵,刘元震.光电材料动态自动光谱测试仪的研究与应用.真空科学与技术,1996,16(5):364-366
    [60]宗志园.NEA光电阴极的性能评估和激活工艺研究:[博士学位论文].南京:南京理工大学,2000
    [61]Qian Yunsheng, Zong Zhiyuan and Chang Benkang. Measurement of spectral response of photocathodes and its application. Proc. SPIE,2001,4580:486-495
    [62]Zong Zhiyuan, Qian Yunsheng and Chang Benkang. Analysis of on-line measured spectral responses of NEA photocathodes. Proc. SPIE,2001,4580:623-631
    [63]Chang Benkang, Du Xiaoqing, Liu Lei, et al. The automatic recording system of dynamic spectral response and its applications. Proc. SPIE,2003,5209:209-218
    [64]杜晓晴,常本康,邹继军,等.利用梯度掺杂获得高量子效率的GaAs光电阴极.光学学报,2005,25(10):1411-1414
    [65]杜晓晴,常本康,邹继军.Cs、O激活方式对GaAs光电阴极的影响.真空科学与技术学报,2006,26(1):1-4
    [66]杜晓晴.高性能GaAs光电阴极:[博士学位论文].南京:南京理工大学,2005
    [67]邹继军.GaAs光电阴极理论及其表征技术研究:[博士学位论文].南京:南京理工大学,2007
    [68]邹继军,钱芸生,常本康,等.GaAs光电阴极制备过程中多信息量测试技术研究.真 空科学与技术学报,2006,26(3):172-175
    [69]邹继军,常本康,杜晓晴.MBE梯度掺杂GaAs光电阴极激活实验研究.真空科学与技术学报,2005,25(6):401-404
    [70]Zou Jijun and Chang Benkang. Gradient-doping negative electron affinity GaAs photocathodes. Optical Engineering,2006,45(5):054001
    [71]常本康.GaAs光电阴极.北京:科学出版社,2012
    [72]Sinor T W, Estrera J P, Philips D L, et al. Extended blue GaAs image intensifiers. Proc. SPIE,1995,2551:130-134
    [73]Farsakoglu O F, Zengin D M and Kocabas H. Determination of some main parameters for quantum values of GaAlAs/GaAs transmission-mode photocathodes in near-infrared region. Optical Engineering,1993,32(5):1105-1113
    [74]Cheng K Y. Molecular beam epitaxy technology of III-V compound semiconductors for optoelectronic applications. Proceedings of the IEEE,1997,85(11):1694-1714
    [75]Dupuis R D. III-V semiconductor heterojunction devices grown by metalorganic chemical vapor deposition. IEEE on Selected Topics in Quantum Electronics,2000,6(6): 1040-1050
    [76]Hayfuji N, Mizuguchi K, Ochi S, et al. Highly uniform growth of GaAs and GaAlAs by large-capacity MOCVD reactor. Journal of Crystal Growth,1986,77:281
    [77]Miyao M, Chinen K, Niigaki M, et al. MBE growth of transmission photocathode and'in situ' NEA activation.2nd International Symposium on Molecular Beam Epitaxy and Related Clean Surface Techniques,1982
    [78]Narayanan A, Fisher G, Erickson L, et al. Negative electron affinity gallium arsenide photocathode grown by molecular beam epitaxy. Journal of Applied Physics,1984,56(6): 1886-1887
    [79]Vergara G, Gomez L J, Presa J, et al. Electron diffusion length and escape probability measurements for p-type GaAs(100) epitaxies. Journal of Vacuum Science and Technology A:Vacuum, Surfaces and Films,1990,8(5):3676-3681
    [80]Vergara G, Gomez L J, Capmany J, et al. Influence of the dopant concentration on the photoemission in NEA GaAs photocathodes. Vacuum,1997,48(2):155-160
    [81]Bourreea L E, Chasseb D R, Stephan Thambana P L, et al. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVD. Proc. SPIE, 2003,4796:11-22
    [82]Allwood D A, Mason N J and Walker P J. In situ characterization of Ⅲ-Ⅴ substrate oxide desorption by surface photo-absorption in MOCVD. Materials Science and Engineering B.1999,66:83-87
    [83]Maruyama T, Brachmann A, Clendenin J E, et al. A very high charge, high polarization gradient-doped strained GaAs photocathode. Nuclear Inst. and Methods in Physics Research A,2002,492(1-2):199
    [84]Thornton J, Weightman P, Woolf D A, et al. A photoemission study of the (2×2) reconstruction of GaAs(111) surface. Journal of Electron Spectroscopy and Related Phenomena,1995,72:65-69
    [85]Shimoda M, Tsukamoto S and Koguchi N. Photoelectron and Auger electron diffraction studies of a sulfur-terminated GaAs(001)-(2×2) surface. Surface Science,1998,395: 75-81
    [86]Strasser T, Solterbeck C, Schattke W, et al. A theoretical investigation of photoemission spectra from (GaAs)2(AlAs)2 superlattices. Journal of Elecron Spectroscopy and Related Phenomena,2001,116:1127-1132
    [87]Jiricek P, Cukr M and Bartos I. Electron mean free path for GaAs(100) at very low energies. Surface Science,2004,566:1196-1199
    [88]Szuber J. New procedure for determination of the interface Fermi level position for atomic hydrogen cleaned GaAs(100) surface using photoemission. Vacuum,2000,57: 210-218
    [89]Ow K N and Wang X W. First-principles pseudopotential calculations of alkali over-layers on GaAs(001). Surface Science,1995,337:109-117
    [90]Shoji D, Miura T and Niwano M. Photoemission study of metal deposition on sulfur treated GaAs(100). Applied Surface Science,1998,130:442-445
    [91]Khan K A, Camillone N, Yarmoff J, et al. Modification of the surface termination of GaAs(100) using photo-activated electron-transfer reactions. Surface Science,2000,458: 51-61
    [92]Zhang Yijun, Niu Jun, Zhao Jing, et al. Improvement of photoemission performance of a gradient-doping transmission-mode GaAs photocathode. Chinese Physics B,2011,20(11): 118501
    [93]Turnbull A A and Evans G B. Photoemissions from GaAs-Cs-O. Journal of Physics D: Applied Physics,1968,1:155-160
    [94]Togawa K, Nakanishi T, Baba T, et al. Surface charge limit in NEA superlattice photocathodes of polarized electron source. Nuclear Instruments and Methods in Physics Research A,1998,414:431-445
    [95]Sun Y, Liu Z, Pianetta P, et al. Formation of cesium peroxide and cesium superoxide on InP photocathode activated by cesium and oxygen. Journal of Applied Physics,2007,102: 074908
    [96]More S, Tanaka S, Tanaka S, et al. Interaction of Cs and O with GaAs(100) at the overlayer-substrate interface during negative electron affinity type activations. Surface Science,2003,527:41-50
    [97]Fisher D G The effect of Cs-O activation temperature on the surface escape probability of NEA(In, Ga)As photocathodes. IEEE Transactions on Electron Devices,1974, ED-21: 541-542
    [98]Bourreea L E, Chasseb D R, Thambana P L S, et al. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVD. Proc. SPIE, 2003,4796:11-22
    [99]杨智GaAs光电阴极智能激活与结构设计研究:[博士学位论文].南京:南京理工大学,2010
    [100]张益军.变掺杂GaAs光电阴极研制及其特性评估:[博士学位论文].南京:南京理工大学,2012
    [101]梁铨廷.物理光学.北京:电子工业出版社,2008
    [102]竺子民.物理光学.湖北:华中科技大学出版社,2009
    [103]郁道银,谈恒英.工程光学.北京:机械工业出版社,2004
    [104]黄昆,韩汝奇.半导体物理基础.北京:科学出版社,1979
    [105]刘恩科,朱秉升,罗晋生,等.半导体物理学.北京:电子工业出版社,2008
    [106]Donald A. Neamen著.赵毅强,姚素英,解晓东,等译.半导体物理与器件.北京:电子工业出版社,2005
    [107]Hass M and Henvis B W. Infrared lattice reflection spectra of III-Vcompound semiconductors. Journal of Physics and Chemistry of Solids,1962,23(8):1099-1104
    [108]Casey H C, Sell D D and Wecht K W. Concentration dependence of the adsorption coefficient for n-and p-type GaAs between 1.3 and 1.6 eV. Journal of Applied Physics, 1975,46(1):250-257
    [109]Masselink W T, Henderson T, Klem J, et al. Optical properties of GaAs on (100)Si using molecular beam epitaxy. Applied Physics Letters,1984,45:1309-1311
    [110]Aspnes D E, Kelso S M, Logan R A, et al. Optical properties of AlxGa1-xAs. Journal of Applied Physics,1986,60(2):754-767
    [111]Engelbrecht J A A, Lee I G and Venter D J L. Optical characterization of doped and undoped GaAs at 300 K. Infrared Physics,1987,27(1):57-62
    [112]刘成,吴惠桢,劳燕峰,等.p型GaAs的远红外波段光学特性.光学学报,2006, 26(2):221-224
    [113]牛军.变掺杂GaAs光电阴极特性及评估研究:[博士学位论文].南京:南京理工大学,2011
    [114]邹继军,常本康,杨智.指数掺杂GaAs光电阴极量子效率的理论计算.物理学报,2007,56(5):2992-2997
    [115]Drouhin H J, Hermann C and Lampel G Photoemission from activated gallium arsenide. I. Very-high-resolution energy distribution curves. Physical Review B,1985,31: 3859-3871
    [116]Liu Z, Sun Y, Peterson S, et al. Photoemission study of Cs-NF3 activated GaAs(100) negative electron affinity photocathodes. Applied Physics Letters,2008,92:241107
    [117]Sun Y, Kirby R E, Maruyama T, et al. The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3. Applied Physics Letters, 2009,95:174109
    [118]Karkare S and Bazarov I. Effect of nanoscale surface roughness on transverse energy spread from GaAs photocathodes. Applied Physics Letters,2011,98:094104
    [119]Songprakob W, Zallen R, Tsu D V, et al. Intervalenceband and plasmon optical absorption in heavily doped GaAs:C. Journal of Applied Physics,2002,91:171-177
    [120]Khan W I, Makdisi Y, Marafi M, et al. Laser and thermal annealing effects on the optical properties of n-GaAs (100) crystals:application to its Schottky diodes. Physica Status Solidi,2000,181:551-559
    [121]Bhat A, Yao H D, Compaan A, et al. Pulsed laser heating of silicon-nitride capped GaAs: Optical properties at high temperature. Journal of Applied Physics,1988,64:2591-2594
    [122]Yao H, Snyder P G and Woollam J A. Temperature dependence of optical properties of GaAs. Journal of Applied Physics,1991,70:3261-3267
    [123]唐晋发,顾培夫,刘旭,等.现代光学薄膜技术.浙江:浙江大学出版社,2006
    [124]Zhao Jing, Chang Benkang, Xiong Yajuan, et al. Spectral transmittance and module structure fitting for transmission-mode GaAs photocathode. Chinese Physics B,2011,20:047801
    [125]赵静,常本康,熊雅娟,等.发射层对指数掺杂Ga1-xAlxAs/GaAs光电阴极性能的影响.电子器件,2011,34(2):119-124
    [126]Jing Zhao, Benkang Chang, Yajuan Xiong, et al. Influence of the antireflection, window, and active layers on optical properties of exponential-doping transmission-mode GaAs photocathode modules. Optics Communications,2012,285(5):589-593
    [127]常本康.多碱光电阴极机理、特性与应用.北京:兵器工业出版社,1995
    [128]方如章,刘玉凤.光电器件.北京:国防工业出版社,1988
    [129]吴继宗,叶关荣.光辐射测量.北京:机械工业出版社,1992
    [130]刘世才.光辐射测量技术.北京:国防工业出版社,1991
    [131]Fawcett W, Boardman A D and Swain S. Monte carlo determination of electron transport properties in Gallium Aresenide. Journal of Physics and Chemistry of Solids,1970,31: 1963-1990
    [132]Vergara G, Gomez A H and Spicer W E. Escape probability for negative electron affinity photocathodes:calculations compared to experiments. Proc. SPIE,1995,2550:142-156
    [133]宗志园,钱芸生,富容国,等.NEA光电阴极电子表面逸出几率的计算和应用.南京理工大学学报,2002,26(6):641-644
    [134]Fisher D G, Enstrom R E, Escher J S, et al. Photoelectron surface escape probability of (Ga, In) As:Cs-O in 0.9 to 1.6 μm range. Journal of Applied Physics,1972,43(9): 3815-3823
    [135]Su C Y, Spicer W E and Lindau I. Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surface. Journal of Applied Physics,1983, 54(3):1413-1422
    [136]Bartelink D J, Moll J L and Meyer N I. Hot-electron emission from shallow p-n junction in silicon. Physical Review,1963,130(3):972-985
    [137]Kressel H and Kupsky G. The effective ionization rate for hot carriers in GaAs. Interational Journal of Electrical Engineering Education,1966,20(6):535-543
    [138]Williams B F and Simon R E. Direct measurement of hot electron-phonon interactions in GaP. Physical Review Letters,1967,18(13):485-487
    [139]曾谨言.量子力学导论,第2版.北京:北京大学出版社,1992
    [140]A.R.亚当斯.砷化镓的性质.北京:科学出版社,1990
    [141]付建民.用表面光电压法测试砷化镓少数载流子扩散长度.应用光学,1988,3:35-38
    [142]陈亮.基于光电压谱的GaAs光电阴极评估技术研究:[博士学位论文].南京:南京理工大学,2012
    [143]任浩.GaAs材料光电压谱特性分析:[硕士学位论文].南京:南京理工大学,2009
    [144]邵永富,陈自姚.光电化学法测量N型半导体材料扩散长度.半导体学报,1986,7(4):441-445
    [145]郭维廉.硅-二氧化硅界面物理.北京:国防工业出版社,1982
    [146]张峰,葛万来,沈其英,等.用光探针法测量表面复合速率.上海交通大学学报,1999,33(12):1-10
    [147]Jastrzebski L, Langowski J and Gatos H C. Application of scanning electron microscopy to determination of surface recombination velocity:GaAs. Applied Physics Letters,1975, 27(10):537-539
    [148]Davidson S M. Injection and doping dependence of SEM and scanning light spot diffusion length measurement in silicon power rectifiers. Solid-State Electronics,1982, 25(4):261-265
    [149]Bothra S and Tyagi S. Surface recombination velocity and lifetime in InP. Solid State Electronics,1991,34(1):47-51
    [150]Fuyki T, Masunami H and Tanaka T. The influence of the generation volume of minority carriers on EBIC. Journal of Physics D:Applied Physics,1980,13(1): 1093-1100
    [151]恽正中,王恩信,完利祥.表面与界面物理.成都:电子科技大学出版社,1993
    [152]邱思筹.半导体表面与界面物理.武昌:华中理工大学出版社,1995
    [153]杨智,邹继军,常本康.透射式指数掺杂GaAs光电阴极最佳厚度研究.物理学报,2010,59(6):4290
    [154]Yijun Zhang, Jun Niu, Jing Zhao, et al. Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes. Journal of Applied Physics,2010,108:093108
    [155]张益军,牛军,赵静,等.指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究.物理学报,2011,60(6):067301
    [156]赵静,张益军,常本康,等.高性能透射式GaAs光电阴极量子效率拟合与结构研究.物理学报,2011,60(10):107802
    [157]Jasik A, Wnuk A, Gaca J, et al. The influence of the growth rate and Ⅴ/Ⅲ ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods. Journal of Crystal Growth,2009,311(19):4423-4432
    [158]Jing Zhao, Benkang Chang, Yajuan Xiong, et al. Research on optical properties for the exponential-doped Ga1-xAlxAs/GaAs photocathode. The 3rd International Symposium on Photonics and Optoelectronics, Wuhan,2011
    [159]Zhao Jing, Xiong Yajuan and Chang Benkang. Simulation and spectral fitting of the transmittance for transmission-mode GaAs photocathode. Proceedings 8th International Vacuum Electron Sources Conference and Nanocarbon,2010:219
    [160]Zhao Jing, Xiong Yajuan, Chang Benkang, et al. Research on optical properties of transmission-mode GaAs photocathode module. Proc. SPIE 2011,8194:81940J
    [161]Shi Feng, Zhao Jing, Cheng Hongchang, et al. Photoemission characteristic of transmission-mode extended blue GaAs photocathodes. Spectroscopy and Spectral Analysis,2012,32(2):297-301
    [162]Shi Feng, Zhang Yijun, Cheng Hongchang, et al. Theoretical revision and experimental comparison of quantum yield for transmission-mode GaAlAs/GaAs photocathodes. Chinese Physics Letters 2011,28(4):044204
    [163]Yijun Zhang, Benkang Chang, Jun Niu, et al. High-efficiency graded band-gap AlxGa1-xAs/GaAs photocathodes grown by metalorganic chemical vapor deposition. Applied Physics Letters,2011,99:101104
    [164]Jing Zhao, Yijun Zhang, Benkang Chang, et al. Comparison of structure and performance between extended blue and standard transmission-mode GaAs photocathode modules. Applied Optics,2011,50(32):6140-6145
    [165]赵静,常本康,张益军,等.透射式蓝延伸GaAs光电阴极光学结构对比.物理学报,2012,61(3):037803
    [166]Lei Liu, Benkang Chang. Spectral response characterization of super S25 and new S25 photocathodes. Optical Engineering,2004,43(4):946-949
    [167]瞿文婷GaAlAs/GaAs光阴极组件材料机理研究:[硕士学位论文].南京:南京理工大学,2012
    [168]Jing Zhao, Wenting Qu, Benkang Chang, et al. Influence of cathode module technology on photoemission of transmission-mode GaAs photocathode materials. Photonics Global Conference 2012, Singapore