壳聚糖金属印迹树脂的制备、表征及吸附特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有害重金属是比较常见的污染物,对人体有强烈的致癌、致畸和致突变等毒害作用。随着工业化进程的加快,环境中的有害重金属含量日益增加,严重威胁人类的健康。因此,寻找一种能有效地吸附水体和液态食品中有害重金属的材料就成为亟待解决的问题。
     壳聚糖是自然界存在的唯一碱性多糖,是地球上第二大可再生资源。壳聚糖在废水处理、食品医药、造纸、纺织和水净化等方面具有广泛的应用。壳聚糖分子中含有大量的氨基和羟基,利于对其进行改性,以增强壳聚糖的吸附能力、吸附选择性及对环境的适应能力。
     本文以壳聚糖为功能单体,考察了无机材料、氨基化和硫代羰基化等改性壳聚糖树脂对有害重金属离子的吸附特性,对其结构作了初步表征,并从饱和吸附量、吸附选择性和在低pH下的吸附方面做了深入的研究,为壳聚糖树脂在重金属吸附领域的研究和应用提供有力的科学支持和理论依据。
     1)首次建立了利用氢化物发生器-原子吸收分光光度计测定海带汁中总砷的方法。通过考察了消解温度,预还原剂的种类和浓度以及还原剂NaBH4浓度等条件的影响,最终确定消解温度为180℃,酸性介质为浓硝酸,预还原剂Vc的浓度为1%,还原剂NaBH4的浓度为1.8%,总砷检出量稳定。
     2)制备了壳聚糖As(III)印迹树脂As-ICR,研究其对As(III)的吸附特性。通过利用分子印迹技术,以As(III)为印迹分子,制备As-ICR用于吸附水溶液和海带汁中的As(III),考察不同pH、温度条件下As-ICR对As(III)的吸附。吸附反应主要是As-ICR上的氨基吸附As(III),壳聚糖形成树脂后热稳定性和结晶性均有所下降。As-ICR对水溶液中的As(III)表现出选择性吸附。As-ICR对海带汁中的As(III)有选择性吸附。
     3)对As-ICR进行改性,提高其对As(III)的吸附量。利用α-Fe2O3对壳聚糖进行改性制备α-Fe2O3改性壳聚糖As(III)印迹树脂As-IFICR用于提高对As(III)的吸附量。As-IFICR在pH5,30℃,As(III)浓度50mg/L下对As(III)的饱和吸附量为6.20mg/g,吸附过程符合Langmuir等温吸附模型和拟二级动力学方程。As-IFICR对As(III)的吸附量显著提高。As-IFICR对海带汁中As(III)的吸附能力显著高于As-ICR,且对有益金属元素的吸附量较小。
     4)制备壳聚糖Pb2+印迹树脂Pb-ICR,研究其对Pb2+的吸附特性。Pb-ICR的氨基和羟基是吸附Pb2+的主要功能基团。Pb-ICR在40℃,pH6.0,吸附时间4h下对Pb2+的吸附量最大,且对Pb2+表现出选择性吸附。
     5)对Pb-ICR进行改性,提高其对Pb2+的吸附选择性。利用四乙烯五胺对壳聚糖树脂进行改性制备四乙烯五胺改性壳聚糖Pb2+印迹树脂Pb-ITMCR用于提高壳聚糖树脂对金属离子的吸附选择性。Pb-ITMCR上的氨基参与吸附反应。Pb-ITMCR在pH6.0,40℃,8h下对Pb2+的吸附达到饱和状态,且Pb-ITMCR对Pb2+的吸附选择性较Pb-ICR有明显提高。
     6)对Pb-ICR进行改性,提高其对pH的适应能力。利用二硫代氨基甲酸钠对壳聚糖树脂进行改性制备二硫代氨基甲酸钠改性壳聚糖Pb2+印迹树脂Pb-IDMCR用于拓宽壳聚糖树脂对pH的适用范围。Pb-IDMCR上的氨基、巯基和硫代羰基参与吸附过程,且壳聚糖的热稳定性降低。Pb-IDMCR在较低pH (pH1.0)下对Pb2+有较高的吸附量,拓宽了壳聚糖树脂对pH的适用范围。
     我国是重金属污染较严重的国家之一,目前还没有很成熟的方法用于解决液态食品中重金属超标问题。本文以壳聚糖为功能单体,以戊二醛交联成壳聚糖树脂,根据不同的目的对壳聚糖树脂进行改性,用于液态食品和水体中有害重金属离子的选择性吸附,为改性壳聚糖树脂应用于有害重金属的脱除提供理论支持。
Harmful heavy metals are more common pollutants, causing cancer, teratogenicand mutation of adverse effects to the human body. With the development ofindustrialization, the harmful heavy metals content in the enviroment is increasing,which influencing the human being seriously. Therefore, seeking a kind of materialsfor adsorbing heavy metals from aqueous solution becomes a urgently problem to besolved.
     Chitosan is the only alkaline polysaccharide in nature, which is the secondlargest renewable resources. Chitosan has been widely applied in waste watertreatment, food and medicine, paper and textile, water purification. Chitosan has a lotof free amino and hydroxyl groups, it is easily to be modified to enhance theadsorption properties, adsorption selectivity and adapting ability to the environment.
     In this topic, chitosan was used as functional monomer, inorganic material,amination and sulfur based modification were investigated to the adsorptionproperties for harmful heavy metals, their structures were preliminary characterized,the adsorption properties of modified chitosan resin for heavy metals was discussedfrom aspects of adsorption capacity, adsorption selectivity and adsorption at low pH,which provide powerful scientific support and theoretical basis for researching andapplying of chitosan resin in the heavy metals adsorption areas.
     1) The detection methods of total arsenic was established with HVG-FAAS forthe first time. Digestion temperature, the selection of pre-reduction agents andreduction agents NaBH4concentration were investigated to determine the the optimalconditions: digestion temperature was180℃, acid medium was nitric acid, the pre-reduction agent Vc concentration was1%, reduction agent NaBH4concentrationwas1.8%, detection limit was0.95μg/L, RSD was1.3%~7.6%, recovery rate was83.1%~105.3%, total arsenic detection was stable.
     2) Chitosan resin was prepared with As(III) as imprinted ion As-ICR wasprepared to investgated the adsorption property. As-ICR was prepared throughmolecular imprinted technology with As(III) as imprinted ion to adsorb As(III) fromaqueous solution and Laminaria japonica juice. The adsorption of As-ICR for As(III)was investagted at different pH and temperature. The adsorption process was that theamino groups of As-ICR adsorb As(III), and the thermal stability and crystalline bothreduce after formed into chitosan resin. As-ICR selectively adsorbed As(III) fromaqueous solution. It also could adsorbed As(III) from Laminaria japonica juice.
     3) As-ICR was modified to enhance the adsorption capacity. α-Fe2O3modifiedchitosan resin with As(III) as imprinted ions As-IFICR was prepared to improve theadsorption capacity of chitosan resin for As(III). The adsorption capacity of As-IFICRfor As(III) was6.20mg/g at pH5,30℃, As(III) concentration50mg/L, theadsorption process fit Langmuir isothermal adsorption model and pseudo secondkinetic equation. The adsorption capacity of As-IFICR for As(III) was improvedsignificantly. The adsorption capacity of As-IFICR for As(III) from Laminariajaponica juice was more than that of As-ICR, the adsorption for beneficial metalelements was less.
     4) Chitosan resin was prepared with Pb2+as imprinted ion was prepared toinvestgated the adsorption property. Amino and hydroxyl groups were mainlyfunctional groups of Pb-ICR for Pb2+. The adsorption capacity of Pb-ICR for Pb2+wassaturated at40℃, pH6.0, contact time4h, and it could selectively adsorb Pb2+fromaqueous solution.
     5) The Pb-ICR was modified to enhance the adsorption selectivity. The tetraethylene pentamine (TEPA) modified chitosan resin with Pb2+as imprinted ionsPb-ITMCR was prepared to enhance the adsorption selectivity of chitosan resin formetal ions. The amino groups of Pb-ITMCR participate in the adsorption. Theadsorption capacity of Pb-ITMCR for Pb2+was saturated at pH6.0,40℃, contacttime8h, the adsorption could fit the pseudo second kinetic equation and Langmuirisothermal adsorption model. The adsorption selectivity of Pb-ITMCR for Pb2+washigher than that of Pb-ICR.
     6) The Pb-ICR was modified to enhance the pH adaptability. The sodiumdithiocarbamate modified chitosan resin with Pb2+as imprinted ions Pb-IDMCR wasprepared to widen the application scope of chitosan resin to pH. Amino, sulfydryl andthiocarbonyl groups of Pb-IDMCR involved in the adsorption process, and the thermalstability of chitosan decrease. The adsorption capacity of Pb-IDMCR for Pb2+washigher than that of chitosan resin at low pH (pH1.0), and the adaptability ofPb-IDMCR to pH improved greatly.
     Nowdays, our country is one of the serious countries in heavy metal pollution,but no mature methods were applied to solve heavy metal pollution up to now. In thisresearch, chitosan was used as functional monomer to prepare crosslinked chitosanresin, chitosan resin was modified to selectively adsorb heavy metals from liquid foodand aqueous solution, which providing theory support for heavy metals removal.
引文
[1] Nriagu J.O., Pacyna J.M. Quantitative assessment of worldwide contamination of air, waterand soils by trace metals. Nature,1988,333:134~139
    [2] Liu J.F., Zhao Z.S., Jiang G.B. Coating Fe3O4magnetic nanoparticles with humic acid for highefficient removal of heavy metals in water. Environmental Science and Technology,2008,42:6949~6954
    [3] Takashi Y., Toshihide T., Sachiko I., Soshi T., Masazumi H. Long-term exposure tomethylmercury and psychiatric symptoms in residents of Minamata, Japan. EnvironmentInternational,2011,37:907~913
    [4] Yamagami T., Ezaki T., Moriguchi J., Fukui Y., Okamoto S., Ukai H., Sakurai H., Aoshima K.,Ikeda M. Low-level cadmium exposure in toyama city and its surroundings in Toyamaprefecture, Japan, with references to possible contribution of shellfish intake to increaseurinary cadmium levels. Science of The Total Environment,2006,362:56~67
    [5] Chen Q.Y, Luo Z., Hills C., Xue G., Tyrer M. Precipitation of heavy metals from wastewaterusing simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. WaterResearch,2009,43:2605~2614
    [6] Matthew M. M., Brock S. H., David A. A. Chemical precipitation of heavy metals from acidmine drainage. Water Research,2002,36:4757~4764
    [7] Gábor B., Endre N. Removal of zinc and nickel ions by complexation–membrane filtrationprocess from industrial wastewater. Desalination,2009,240:218~226
    [8] Bessbousse H., Rhlalou T., Verchère J.F., Lebrun L. Removal of heavy metal ions fromaqueous solutions by filtration with a novel complexing membrane containingpoly(ethyleneimine) in a poly(vinyl alcohol) matrix. Journal of Membrane Science,2008,307:249~259
    [9] Inglezakis V.J., Zorpas A.A., Loizidou M.D., Grigoropoulou H.P. The effect of competitivecations and anions on ion exchange of heavy metals. Separation and Purification Technology,2005,46:202~207
    [10] Abdelaziz S., Rachid D., Eric C., Jacqueline S. Removal of heavy metals from dilutedmixtures by a hybrid ion-exchange/electrodialysis process. Separation and PurificationTechnology,2007,57:103~110
    [11] Meunier N., Drogui P., Montané C., Hausler R., Mercier G., Blais J.F. Comparison betweenelectrocoagulation and chemical precipitation for metals removal from acidic soil leachate.Journal of Hazardous Materials,2006,137:581~590
    [12] Parga J.R., Cocke D.L., Valenzuela J.L., Gomes J.A., Kesmez M., Irwin G., Moreno H., WeirM. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater inLa Comarca Lagunera México. Journal of Hazardous Materials,2005,124:247~254
    [13] Liu B.J., Wang D.F., Xu Y., Huang G.Q. Adsorption properties of Cd(II)-imprinted chitosanresin. Journal of Materials Science,2011,46:1535~1541
    [14] Fan L.L., Luo C.N, Lv Z., Lu F.G., Qiu H.M. Removal of Ag+from water environment usinga novel magnetic thiourea-chitosan imprinted Ag+. Journal of Hazardous Materials,2011,194:193~201
    [15] Wang L., Zhang J., Zhao R., Li Y., Li C., Zhang C.L. Adsorption of Pb(II) on activatedcarbon prepared from polygonum orientale Linn.: kinetics, isotherms, pH, and ionic strengthstudies. Bioresource Technology,2010,101:5808~5814
    [16] Mohammadi S.Z., Karimi M.A., Afzali D., Mansouri F. Removal of Pb(II) from aqueoussolutions using activated carbon from sea-buckthorn stones by chemical activation.Desalination,2010,262:86~93
    [17] Bulut Y., Baysal Z. Removal of Pb(II) from wastewater using wheat bran. Journal ofEnvironmental Management,2006,78:107~113
    [18] zer A. Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran.Journal of Hazardous Materials,2007,141:753~761
    [19] Nassereldeen A.K., Muataz A.A., Abdullah A.M., Mohamed ES.M., Alam MDZ, NoorahayuY. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueoussolution. Journal of Environmental Sciences,2009,21:539~544
    [20] Xu D., Tan X.L., Chen C.L., Wang X.K. Removal of Pb(II) from aqueous solution byoxidized multiwalled carbon nanotubes. Journal of Hazardous Materials,2008,154:407~416
    [21] Mondal M.K. Removal of Pb(II) ions from aqueous solution using activated tea waste:Adsorption on a fixed-bed column. Journal of Environmental Management,2009,90:3266~3271
    [22] Amarasinghe B.M.W.P.K., Williams R.A. Tea waste as a low cost adsorbent for the removalof Cu and Pb from wastewater. Chemical Engineering Journal,2007,132:299~309
    [23] Hamidpour M., Afyuni M., Kalbasi M., Khoshgoftarmanes A.H., Inglezakis V.J. Mobility andplant-availability of Cd(II) and Pb(II) adsorbed on zeolite and bentonite. Applied ClayScience,2010,48:342~348
    [24] Vila M., Sánchez-Salcedo S., Cicuéndez M., Izquierdo-Barba I., María Vallet-Regí. Novelbiopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water.Journal of Hazardous Materials,2011,192:71~77
    [25] Asri S.E., Laghzizil A., Coradin T., Saoiabi A., Alaoui A., M’hamedi R. Conversion of naturalphosphate rock into mesoporous hydroxyapatite for heavy metals removal from aqueoussolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,362:33~38
    [26] Jiang M.Q., Jin X.Y., Lu X.Q., Chen Z.L. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) ontonatural kaolinite clay. Desalination,2010,252:33~39
    [27] Boddu V.M., Abburi K., Talbott J.L., Smith E.D., Haasch R. Removal of arsenic (III) andarsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Research,2008:633~642
    [28] Boddu V.M., Abburi K., Talbott J.L., Smith E.D. Removal of hexavalent chromium fromwastewater using a new composite chitosan biosorbent. Environmental Science&Technology,2003,37:4449~4456
    [29] Boddu V.M., Abburi K., Randolph A., J., Smith E. D. Removal of copper(II) and nickel(II)ions from aqueous solutions by a composite chitosan biosorbent. Separation Science andTechnology,2008,43:1365~1381
    [30]刘莺.新型分子烙印技术研究及有机膨润土在水处理中的应用:[博士学位论文].北京:中国科学院研究生院,2004
    [31] Liu B.J., Wang D.F., Li H.Y., Xu Y., Zhang L. As(III) removal from aqueous solution usingα-Fe2O3impregnated chitosan beads with As(III) as imprinted ions. Desalination,2011,272:286~292
    [32] Guibal E., Vincent T., Navarro M.R. Synthesis and characterization of a thiourea derivative ofchitosan for platinum recovery. Journal of Applied Polymer Science,2000,75:119~134
    [33] Guibal E., Milot C., Eterradossi O. Study of molybdate ion sorption on chitosan gel beads bydifferent spectrometric analyses. International Journal of Biological Macromolecules,1999,24:49~59
    [34] Guibal E., Milot C., Roussy J. Molybdate sorption by crosslinked chitosan beads: dynamicstudies. Water Environment Research,1999,71:10~17
    [35] Guibal E, Touraud E, Roussy J. Chitosan interactions with metal ions and dyes:dissolved-state vs. solid-state application. World Journal of Microbiology and Biotechnology,2005,21:913~920
    [36] Guibal E., Milot C., Tobin J.M. Metal–anion sorption by chitosan beads: equilibrium andkinetic studies. Industrial and Engineering Chemistry Research,1998,38:1454~1463
    [37] Tofighy M.A., Mohammadi T. Adsorption of divalent heavy metal ions from water usingcarbon nanotube sheets. Journal of Hazardous Materials,2011,185:140~147
    [38]蒋挺大.甲壳素.北京:化学工业出版社,2003.1~26
    [39] Muzzarelli R.A.A., Jeuniauk C., Gooday G.W. Chitin in nature and technology. New York:Plenum,1986.21~23
    [40] Brine C.J., Sandford P.A., Zikakis J.P. Advances in chitin and chitosan. New York: Elsevier,1992.11~15
    [41] Sjak-Braek G., Anthonsen T., Sandford P. Chitin and chitosan. New York: Elsevier,1992.2~10
    [42] Muzzarelli R.A.A. Chitin. New York: Pergamo,1997.22~30
    [43] Zhou D., Zhang L.N., Zhou J.P., Guo S.L. Cellulose/chitin beads for adsorption of heavymetals in aqueous solution. Water Research,2004,38:2643~2650
    [44] Trimukhe K.D., Varma A.J. Complexation of heavy metals by crosslinked chitin and itsdeacetylated derivatives. Carbohydrate Polymers,2008,71:66~73
    [45]蒋挺大.壳聚糖.北京:化学工业出版社,2001.11~25
    [46] Berger J., Reist M., Mayer J.M., Felt O., Gurny R. Structure and interactions in chitosanhydrogels formed by complexation or aggregation for biomedical applications. EuropeanJournal of Pharmaceutics and Biopharmaceutics,2004,57(1):35~52
    [47]谢宇.壳聚糖及其衍生物制备与应用.北京:中国水利水电出版社,2010.1~5
    [48] Kong M., Chen X.G., Xing K., Park H.J. Antimicrobial properties of chitosan and mode ofaction: a state of the art review. International Journal of Food Microbiology,2010,144:51~63
    [49] Devlieghere F., Vermeulen A., Debevere J. Chitosan: antimicrobial activity, interactions withfood components and applicability as a coating on fruit and vegetables. Food Microbiology,2004,21:703~714
    [50] Yan W.L., Bai R.B. Adsorption of lead and humic acid on chitosan hydrogel beads. WaterResearch,2005,39:688~698
    [51] Juang R.S., Wu F.C., Tseng R.L. Solute adsorption and enzyme immobilization on chitosanbeads prepared from shrimp shell wastes. Bioresource Technology,2001,80:187~193
    [52] Konaganti V.K., Kota R., Patil S., Madras G. Adsorption of anionic dyes on chitosan graftedpoly(alkyl methacrylate)s. Chemical Engineering Journal,2010,158:393~401
    [53] Hoven V.P., Tangpasuthadol V., Angkitpaiboon Y., Vallapa N., Kiatkamjornwong S.Surface-charged chitosan: preparation and protein adsorption. Carbohydrate Polymers,2007,68:44~53
    [54] Benesch J., Tengvall P. Blood protein adsorption onto chitosan. Biomaterials,2002,23:2561~2568
    [55] Paul W., Sharma C.P. Chitosan, a drug carrier for the21st century: a review. STP PharmaSciences,2000,10:5~22
    [56] Dash M., Chiellini F., Ottenbrite R.M., Chiellini E. Chitosan-A versatile semi-syntheticpolymer in biomedical applications. Progress in Polymer Science,2011,36(8):981~1014
    [57]陈培榕,吴耀国,刘保超,谭英.重金属吸附剂壳聚糖的改性研究进展.化工环保,2009,29:126~130
    [58] Yu Q., Song Y.N., Shi X.M., Xu C.Y., Bin Y.Z. Preparation and properties of chitosanderivative/poly(vinyl alcohol) blend film crosslinked with glutaraldehyde. CarbohydratePolymers,2011,84(1):465~470
    [59] Crini G., Morcellet M. Synthesis and applications of adsorbents containing cyclodextrins.Journal of Separation Science,2002,25:789~813
    [60] Liu X.D., Tokura S., Nishi N. A novel method for immobilization of chitosan ontonon-porous glass beads through a1,3-thiazolidine linker. Polymer,2003,44:1021~1026
    [61]丘坤元.铈离子氧化还原引发体系与铈离子引发接枝或嵌段共聚合研究的新进展.高等学校化学学报,1991,12(1):133~138
    [62]于丽娜.壳聚糖树脂的制备、表征及应用研究:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2008
    [63] Varma A.J., Deshpande S.V., Kennedy J.F. Metal complexation by chitosan and its derivatives:a review. Carbohydrate Polymers,2004,55:77~93
    [64] Sun S.L., Wang A.Q. Adsorption properties of N-succinyl-chitosan and cross-linkedN-succinyl-chitosan resin with Pb(II) as template ions. Separation and PurificationTechnology,2006,51:409~415
    [65]周利民.磁性壳聚糖改性以及对金属离子的吸附特性研究:[博士学位论文].天津:天津大学,2007
    [66]柳小平.交联壳聚糖-羟基脯氨酸树脂合成、表征及功能分析:[硕士学位论文].重庆:重庆大学,2008
    [67] Zhou Y.T., Nie H.L., Branford-White C., He Z.Y., Zhu L.M. Removal of Cu2+from aqueoussolution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid.Journal of Colloid and Interface Science,2009,330:29~37
    [68] Ramesh A., Hasegawa H., Sugimoto W., Maki T., Ueda K. Adsorption of gold(III),platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. BioresourceTechnology,2008,99:3801~3809
    [69] Muzzarelli R.A.A., Tanfani F., Emanuelli M., Mariotti S. The characterization of N-methyl,N-ethyl, N-propyl, N-butyl and N-hexyl chitosans, novel film-forming polymers. Journal ofMembrane Science,1983,16:295~308
    [70]李雯,张光华,朱雪丹,来水利. O-羧甲基壳聚糖对电镀废水中Cr(VI)吸附性能的研究.电镀与涂饰,2010,29:30~32
    [71] Wang L., Wang A.Q. Adsorption properties of congo red from aqueous solution onto N,O-carboxymethyl-chitosan. Bioresource Technology,2008,99:1403~1408
    [72] Sun S.L., Wang A.Q. Adsorption kinetics of Cu(II) ions using N, O-carboxymethyl-chitosan.Journal of Hazardous Materials,2006,131:103~111
    [73]贾建洪,许小丰,盛卫坚.接枝含氮杂环化合物壳聚糖的合成及其对重金属离子的吸附研究.浙江工业大学学报,2004,32:369~642
    [74] Zhou L.M., Liu Z.R., Liu J.H., Huang Q.W. Adsorption of Hg(II) from aqueous solution byethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination,2010,258:41~47
    [75] Huang X.Y., Bin J.P., Bu H.T., Jiang G.B., Zeng M.H. Removal of anionic dye eosin Y fromaqueous solution using ethylenediamine modified chitosan. Carbohydrate Polymers,2011,84:1350~1356
    [76] Ramos V.M., Rodr′guez N.M., D′az M.F., Rodr′guez M.S., Heras A., Agullo′E.N-methylene phosphonic chitosan: Effect of preparation methods on its properties.Carbohydrate Polymers,2003,52:39~46
    [77] Jung B.O., Kim C.H., Choi K.S., Lee Y.M., Kim J.J. Preparation of amphiphilic chitosan andtheir antimicrobial activities. Journal of Applied polymer Science,1999,72:1713~1719
    [78] Ramos V.M., Rodríguez N.M., Rodríguez M.S., Heras A., Agulló E. Modified chitosancarrying phosphonic and alkyl groups. Carbohydrate Polymers,2003,51:425~429
    [79] Wang L., Xing R.E., Liu S., Qin Y.K., Li K.C., Yu H.H., Li R.F., Li P.C. Studies on adsorptionbehavior of Pb(II) onto a thiourea-modified chitosan resin with Pb(II) as template.Carbohydrate Polymers,2010,81:305~310
    [80] Zhou L.M., Liu J.H., Liu Z.R. Adsorption of platinum(IV) and palladium(II) from aqueoussolution by thiourea-modified chitosan microspheres.2010,182:518~524
    [81] Sakkayawong N., Thiravetyan P., Nakbanpote W. Adsorption mechanism of synthetic reactivedye wastewater by chitosan. Journal of Colloid and Interface Science,2005,286:36~42
    [82] Teotia S., Lata R., Gupta M.N. Chitosan as a macroaffinity ligand: purification of chitinasesby affinity precipitation and aqueous two-phase extractions. Journal of Chromatography A,2004,1052:85~91
    [83] Zeng X.F., Ruckenstein E. Cross-linked macroporous chitosan anion-exchange membranesfor protein separations. Journal of Membrane Science,1998,148:195~205
    [84]姚瑞华,孟范平,张龙军,马冬冬,亢小丹.改性壳聚糖对重金属离子的吸附研究和应用进展.材料导报,2008,22:56~70
    [85]汪东风.一种多功能稀土多糖微粒及其制备工艺.中国专利,2005100422288,2005-03-25
    [86] Wan Ngah W.S., Endud C.S., Mayanar R. Removal of copper(II) ions from aqueous solutiononto chitosan and cross-linked chitosan beads. Reactive&Functional Polymers,2002,50:181~190
    [87]高婷,郭敏杰,樊志,郭艳玲.牛血清白蛋白分子印迹壳聚糖树脂的制备.天津科技大学学报,2010,25(1):20~23
    [88]任慧,丁一刚,吴元欣,李定或.交联球形壳聚糖树脂制备方法研究.化工生产与技术,2002,9(4):9~11
    [89]贺小进,谭伟天,戚以政.球形壳聚糖树脂制备方法及吸附性能研究.离子交换与吸附,2000,16(1):47~53
    [90] Hsieh W.C., Chang C.P., Gao Y.L. Controlled release properties of chitosan encapsulatedvolatile citronella oil microcapsules by thermal treatments. Colloids and Surfaces B:Biointerfaces,2006,53:209~214
    [91] Huanbutta K., Luangtana anan M., Sriamornsak P., Limmatvapirat S., Puttipipatkhachorn S.,Nunthanid J. Factors affecting preparations of chitosan microcapsules for colonic drugdelivery. Journal of Metals, Materials and Minerals,2008,18:79~83
    [92]姜忠义,吴洪.分子印迹技术.北京:化学工业出版社,2003.22~34
    [93]谭天伟.分子印迹技术及应用.北京:化学工业出版社,2010.12~18
    [94] Sun S.L., Wang L., Wang A.Q. Adsorption properties of crosslinked carboxymethyl-chitosanresin with Pb(II) as template ions. Journal of Hazardous Materials,2006, B1:930~937
    [95] Kirsch N., Alexander C. Enhancement of selectivity of imprinted polymers viapost-imprinting modification of recognition sites. Polymer,2000,41:5583~5590
    [96] Zhou L.M., Shang C., Liu Z.R., Huang G.L., Adesina A.A. Selective adsorption ofuranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins.Journal of Colloid and Interface Science,2012,366(1):165~172
    [97] Whitcombe M.J., Rodriguez M.E. A new method for the introduction of recognition sitefunctionality into polymers prepared by molecular imprinting: synthesis and characterizationof polymeric receptors for cholesterol. Journal of the American Chemical Society,1995,117:7105~7111
    [98] Kirsch N., Alexander C. Sacrificial spacer and non-covalent routes toward the molecularimprinting of “poorly-functionalized” N-heterocycles. Analytical Chimica Acta,2004,504:63~71
    [99] Plunkett S.D., Arnold F.H. Molecularly imprinted polymers on silica: selective supports forhigh-performance ligand-exchange chromatography. Journal of Chromatography A,1995,708:19~29
    [100] Biju V.M., Mary G.J., Prasada R.T. Ion imprinted polymer particles: synthesis,characterization and dysprosium ion uptake properties suitable for analytical applications.Analytica Chimica Acta,2003,478:43~51
    [101]黄晓佳,袁光谱,王爱勤.印迹交联壳聚糖对过渡金属离子的吸附性能研究.离子交换与吸附,2000,16(3):262~266
    [102]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究.北京化工大学学报(自然科学版),2003,30(2):19~22
    [103] Simas A.M., Freire R.O., Rocha G.B. Lanthanide coordination compounds modeling:Sparkle/PM3parameters for dysprosium(III), holmium(III) and erbium(III). Journal ofOrganometallic Chemistry,2008,693(10):1952~1956
    [104] Metilda P., Prasad K., Kala R., Gladis J.M., Prasada R.T., Naidu G.R.K. Ion imprintedpolymer based sensor for monitoring toxic uranium in environmental samples. AnalyticalChimica Acta,2007,582:147~153
    [105] Daniel S., Mary G.J., Prasada R.T. Synthesis of imprinted polymer material with palladiumion nanopores and its analytical application. Analytical Chimima Acta,2003,488:173~182
    [106] Garcia R., Pinel C., Madic C., Lemaire M. Ionic imprinting effect in gadolinium/lanthanumseparation. Tetrahedron Letters,1998,39:8651~8654
    [107] Vigneau O., Pinel C., Lemaire M. Solid-Liquid separation of Lanthanide/Lanthanide andLanthanide/Actinide using ionic imprinted polymer based on a DTPA derivative. ChemistryLetters,2002,31(2):202~203
    [108] Say R., Birlik E., Ers z A., Y lmaz F., Gedikbey T., Denizli A. Preconcentration of copperon ion-selective imprinted polymer microbeads. Analytica Chimica Acta,2003,480:251~258
    [109] Sun S.L., Wang A.Q. Adsorption properties of carboxymethyl-chitosan and cross-linkedcarboxymethyl-chitosan resin with Cu(II) as template. Separation and PurificationTechnology,2006,49:197~204
    [110] Ren Y.M., Zhang M.L., Zhao D. Synthesis and properties of magnetic Cu(II) ion imprintedcomposite adsorbent for selective removal of copper. Desalination,2008,228:135~149
    [111] Sun S.L., Wang A.Q. Adsorption properties and mechanism of cross-linkedcarboxymethyl-chitosan resin with Zn(II) as template ion. Reactive&Functional Polymers,2006,66:819~826
    [112] Liu B.J., Wang D.F., Xu Y., Zhang L. Study on adsorption behavior of As(III) onto chitosanresin with As(III) as template ions. Journal of applied polymer science,2012,125:246~253
    [113] Ers z A., Say R., Denizli A. Ni(II) ion-imprinted solid-phase extraction andpreconcentration in aqueous solutions by packed-bed columns. Analytica Chimica Acta,2004,502:91~97
    [114] Rosatzin T., Andersson L.I., Simon W., Mosbach K. Preparation of Ca2+selective sorbentsby molecular imprinting using polymerisable ionophores. Journal of the Chemical Society,Perkin Transactions2,1991,28:1261~1265
    [115] Dhal P.K., Arnold F.H. Template-mediated synthesis of metal-complexing polymers formolecular recognition. Journal of the American Chemical Society,1991,113:7417~7418
    [116] Monier M., El-Sokkary A.M.A. Preparation of molecularly imprinted cross-linkedchitosan/glutaraldehyde resin for enantioselective separation of L-glutamic acid. InternationalJournal of Biological Macromolecules,2010,47:207~213
    [117] Guo T.Y., Xia Y.Q., Wang J., Song M.D., Zhang B.H. Chitosan beads as molecularlyimprinted polymer matrix for selective separation of proteins. Biomaterials,2005,26:5737~5745
    [118] Chen C.Y., Yang C.Y., Chen A.H. Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions bycross-linked metal-imprinted chitosans with epichlorohydrin. Journal of EnvironmentalManagement,2011,92:796~802
    [1] Castelli M, Rossi B, Corsetti F, et a1. Levels of cadmium and lead in blood: an application ofvalidated methods in a group of patients with endocrine/metabolic disorders from the Romearea. Microchemical Journal,2005,79(1/2):349~355
    [2] Robson M. Methodologies for assessing exposures to metals:Human host factors. Ecotoxicologyand Environmental safety,2003,56(1):104~109
    [3] Lauwerys RR, Bernard A, Roels H. Health risk assessment of long-term exposure tonon-genotoxic chemicals: Application of biological indices. Toxicology Letters,1999,77(1/3):39~44
    [4]卫生部食品卫生监督检验所.食品中总砷及无机砷的测定. GB/T5009.11-2003.中华人民共和国国家标准.北京:中国标准出版社,2004-01-01
    [5]江志刚,张建武.氢化物-原子荧光法测定海产品中的微量砷.光谱实验室,1999,16(3):333~336
    [6]国家质量监督检验检疫总局.淀粉及其制品重金属含量第一部分:原子吸收光谱法测定砷含量. GB/T20380.1-2006.中华人民共和国国家标准.北京:中国标准出版社,2006-03-14
    [7]粱文宏.原子荧光光谱法测定出口大酱中的砷.齐齐哈尔大学学报,2009,25(5):54~57
    [8]张萍.关于加标回收率计算方法的探讨.环境监测管理与技术,1997,9(1):37~37
    [9]吴树宏,周春华.加标回收率计算方法的探讨.甘肃环境研究与监测,2000,13(3):179~18
    [1] Dambies L., Guibal E. Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2000,170:19~31
    [2] Boddu V.M., Abburi K., Talbott J.L., Smith E.D., Haasch R. Removal of arsenic(III) and arsenic(V)from aqueous medium using chitosan-coated biosorbent. Water Research,2008,42:633~642
    [3]中华人民共和国卫生部. GB2760-1996.中华人民共和国国家标准.北京:中国标准出版社,1997-02-01
    [4]陈亚妍.生活饮用水检验规范注解.北京:科学技术出版社.2001.60
    [5]陈国,凌建刚,许秀琴,叶宇飞.原子荧光法测定水产品中的无机砷.现代科学仪器,2007,1:53~54
    [6]日本药学会.卫生试验法注解.北京:华文出版社,1995.53
    [7] Strand P.S., V rum K.M., stgaard K. Interactions between chitosans and bacterial suspensions:adsorption and flocculation. Colloids and Surfaces B,2003,27(1):71~81
    [8] Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Separation and PurificationTechnology,2004,38:43~74
    [9] Choong J., Kwang H.P. Adsorption and desorption characteristics of mercury(II) ions using aminatedchitosan bead. Water Research,2005,39(16):3938~3944
    [10]汪东风,刘炳杰,徐莹,张莉,李海燕.一种脱除海带汁中重金属砷的树脂制备工艺.中国专利,ZL201010119859.6,2010-03-04
    [11]任广智,李振华,何炳林.磁性壳聚糖微球用于脲激酶的固定化研究.离子交换与吸附,2000,16(4):304~310
    [12]李海燕.基于水处理的壳聚糖树脂的制备、表征及功能性研究:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2011
    [13] Alakhras F.A., Abu D.K., Mubarak M.S. Synthesis and chelating properties of somepoly(amidoxime-hydroxamic acid) resins toward some trivalent lanthanide metal ions. Journal ofApplied Polymer Science,2005,97:691~696
    [14] Donia A.M., Atia A.A., Elwakeel K.Z. Selective separation of mercury (II) using magnetic chitosanresin modified with Schiff's base derived from thiourea and glutaraldehyde. Journal of HazardousMaterials,2008,151(2-3):372~379
    [15] Ngah W.S.W., Ghani S. A., Kamari A. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueoussolution on chitosan and cross-linked chitosan beads. Bioresource Technology,2005,96(4):443~450
    [16] Basso M., Cerrella E. Activated carbons developed from a rapidly renewable biosource for removal ofcadmium (II) and nickel (II) ions from dilute aqueous solutions. Industrial and Engineering ChemistryResearch,2002,41(2):18~189
    [17] Chen C.Y., Chang T.H., Kuo J.T., Chen Y.F., Chung Y.C. Characteristics of molybdate-impregnatedchitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packedcolumn to remove arsenic from wastewater. Bioresource Technology,2008,99:7487~7494
    [18] Bhattacharyya K.G., Sarma A. Adsorption characteristics of the dye, brilliant green, on neem leafpowder. Dyes Pigments,2003,57:211~222
    [19] Gang D.D., Deng B.L., Lin L.S. As(III) removal using an iron-impregnated chitosan sorbent. Journalof Hazardous Materials,2010,182:156~161
    [20]何炳林,黄文强.离子交换与吸附树脂.上海:上海科技教育出版社,1995.334~337
    [1]曹会兰.砷对人体的危害与防治.化学世界,2003,10:559~560
    [2] Reddad Z., Gerente C., Andres Y. Adsorption of several metal ions onto a low-cost biosorbent:kinetic and equilibrium studies. Environmental Science and Technology,2002,36:2067~2073
    [3] Gotoh T., Matsushima K., Kikuchi K.I. Adsorption of Cu and Mn on covalently cross-linkedalginate gel beads. Chemosphere,2004,55:57~64
    [4]中华人民共和国卫生部. GB5749-2006.中华人民共和国国家标准,北京:中国标准出版社,2006-12-19
    [5] Bhattacharya D., Jumawan Jr.A.B., Grieves R.B. Separation of toxic heavy metals by sulfideprecipitation. Separation Science and Technology,1979,14:441~452
    [6] Tongamp W., Takasaki Y., Shibayama A. Precipitation of arsenic as Na3AsS4fromCu3AsS4–NaHS–NaOH leach solutions. Hydrometallurgy,2010,105:42~46
    [7] Kim J., Benjamin M.M. Modeling a novel ion exchange process for arsenic and nitrate removal.Water Research,2004,38:2053~2062
    [8] Pakzadeh B., Batista J.R. Surface complexation modeling of the removal of arsenic fromion-exchange waste brines with ferric chloride. Journal of Hazardous Materials,2011,188:399~407
    [9] Ghaee A., Shariaty-Niassar M., Barzin J., Matsuura T. Effects of chitosan membrane morphologyon copper ion adsorption. Chemical Engineering Journal,2010,165:46~55
    [10] Baskan M.B., Pala A. A statistical experiment design approach for arsenic removal bycoagulation process using aluminum sulfate. Desalination,2010,254:42~48
    [11] Song S., Lopez-Valdivieso A., Hernandez-Campos D.J., Peng C., Monroy-Fernandez M.G.,Razo-Soto I. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ionsand coarse calcite. Water Research,2006,40:364~372
    [12] Chutia P., Kato S., Kojima T., Satokawa S. Arsenic adsorption from aqueous solution onsynthetic zeolites. Journal of Hazardous Materials,2009,162:440~447
    [13] Banerjee K., Amy G.L., Prevost M., Nour S., Jekel M., Gallagher P.M., Blumenschein C.D.Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide(GFH). Water Research,2008,42:3371~3378
    [14] Wei Y.T., Zheng Y.M., Chen J.P. Uptake of methylated arsenic by a polymeric adsorbent:Process performance and adsorption chemistry. Water Research,2011,45:2290~2296
    [15] Varma A.J., Deshpande S.V., Kennedy J.F. Metal complexation by chitosan and its derivatives: areview. Carbohydrate Polymers,2004,55:77~93
    [16] Bailey S.E., Olin T.J., Bricka R.M., Adrian D.D. A review of potentially low-cost sorbents forheavy metals. Water Research,1999,33(11):2469~2479
    [17] Berger J., Reist M., Mayer J.M., Felt O., Gurny R. Structure and interactions in chitosanhydrogels formed by complexation or aggregation for biomedical applications. EuropeanJournal of Pharmacology,2004,57(1):35~52
    [18] Crini G., Badot P.M. Applicaton of chitosan, a natural aminopolysaccharide, for dye removalfrom aqueous solutions by adsorption processes using batch studies: A review of recentliterature. Progress in Polymer Science,2008,33:399~447
    [19] Muzzarelli R.A.A., Muzzarelli C. Polysaccharides1: structure, characterization and use.Advances in Polymer Science,2005,186:151~209
    [20] Merrifield J.D., Davids W.G., MacRae J.D. Uptake of mercury by thiol-grafted chitosan gelbeads. Water Research,2004,38:3132~3138
    [21] Atia A.A. Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins.Hydrometallurgy,2005,80:13~22
    [22]梁美娜,刘海玲,刘树深,朱义年.纳米氧化铁的制备及其对砷的吸附作用.应用化学,2007,24(12):1418~1423
    [23]欧延,邱晓滨,许宗祥,林敬东,廖代伟.均匀沉淀法合成纳米氧化铁.厦门大学学报(自然科学版),2004,43(6):882~885
    [24]汪东风,刘炳杰,徐莹,张莉,李海燕,姚恒恺.一种脱除海带汁中重金属砷残留的树脂制备工艺.中国专利,201010119859.6,2010-03-04
    [25] Tang, W.J., Wang, C.X., Chen, D.H. Kinetic studies on the pyrolysis of chitin and chitosan.Polymer Degradation and Stability,2005,87:389~394
    [26]于丽娜.壳聚糖树脂的制备、表征及应用研究:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2008
    [1] Tran H.V., Tran L.D., Nguyen T.N. Preparation of chitosan/magnetite composite beads andtheir application for removal of Pb(II) and Ni(II) from aqueous solution. Materials Scienceand Engineering: C,2010,30(2):304~310
    [2] Wang L., Xing R.E., Liu S., Qin Y.K., Li K.C., Yu H.H., Li R.F., Li P.C. Studies on adsorptionbehavior of Pb(II) onto a thiourea-modified chitosan resin with Pb(II) as template.Carbohydrate Polymers,2010,81(2):305~310
    [3] Matlock M.M., Howerton B.S., Atwood D.A. Chemical precipitation of heavy metals fromacid mine drainage. Water Research,2002,36(19):4757~4764
    [4] Berber-Mendoza M.S., Leyva-Ramos R., Alonso-Davila P., Fuentes-Rubio L.,Guerrero-Coronado R.M. Comparison of isotherms for the ion exchange of Pb(II) fromaqueous solution onto homoionic clinoptilolite. Journal of Colloid and Interface Science,2006,301(1):40~45
    [5] Liu M.H., Chen Z.W., Yu S.C., Wu D.H., Gao C.J. Thin-film composite polyamide reverseosmosis membranes with improved acid stability and chlorine resistance by coatingN-isopropylacrylamide-co-acrylamide copolymers. Desalination,2011,270:248~257
    [6] Crini G. Recent developments in polysaccharide-based materials used as adsorbents inwastewater treatment. Progress in Polymer Science,2005,30(1):37~70
    [7] Guibal E. Heterogeneous catalysis on chitosan-based materials: a review. Progress in PolymerScience,2005,30(1):71~109
    [8] Crini G. Non-conventional low-cost adsorbents for dye removal: a review. BioresourceTechnology,2006,97(9):1061~1085
    [9] Ramesh A., Hasegawa H., Sugimoto W., Maki T., Ueda K. Adsorption of gold(III),platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin.Bioresource Technology,2008,99(9):3801~3809
    [10] Liu Y., Liu Z.C., Gao J., Dai J.D., Han J., Wang Y., Xie J.m., Yan Y.S. Selective adsorptionbehavior of Pb(II) by mesoporous silica SBA-15-supported Pb(II)-imprinted polymer based onsurface molecularly imprinting technique. Journal of Hazardous Materials,2011,186(1):197~205
    [11]杨苏宁,丁玉.分子印迹技术的研究进展及其在分离中的应用.山西化工,2011,33(4):30~33
    [12]汪东风.一种多功能稀土多糖微粒及其制备工艺.中国专利,200510042228.8,2005-03-25
    [13]程珊珊,杨锡洪,章超桦,解万翠,卢虹玉.壳聚糖对镉铅混合离子吸附作用的研究.现代食品科技,2011,27(3):257~262
    [14] Sun S.L., Wang A.Q. Adsorption properties of N-succinyl chitosan and cross-linkedN-succinyl chitosan resin with Pb(II) as template ions. Separation and PurificationTechnology,2006,51:409~415
    [15] Paulino A.T., Belfiore L.A., Kubota L.T., Muniz E.C., Almeida V.C., Tambourgi E.B. Effectof magnetite on the adsorption behavior of Pb(II), Cd(II), and Cu(II) in chitosan basedhydrogels. Desalination,2011,275:187~196
    [16]魏现航,曲丽君,郭肖青.戊二醛交联壳聚糖树脂的性能表征及其吸附性能研究.山东纺织科技,2010(4):1~4
    [17]于丽娜.壳聚糖树脂的制备、表征及应用研究:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2008
    [1] Wan Ngah W.S., Fatinathan S. Adsorption characterization of Pb(II) and Cu(II) ions ontochitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies. Journal ofEnvironmental Management,2010,91:958~969
    [2] Copello G.J., Varela F., Mart′nez Vivot R., D′az L.E. Immobilized chitosan as biosorbent forthe removal of Cd(II), Cr(III) and Cr(VI) from aqueous solutions. Bioresource Technology,2008,99:6538~6544
    [3] Tran H.V., Tran L.D., Nguyen T.N. Preparation of chitosan/magnetite composite beads andtheir application for removal of Pb(II) and Ni(II) from aqueous solution. Materials Scienceand Engineering C,2010,30:304~310
    [4] Ruiz M., Sastre A.M., Guibal E. Palladium sorption on glutaraldehyde crosslinked chitosan.Reactive and Function Polymer,2000,45:155~173
    [5] Vieira R.S., Beppu M.M. Interaction of natural and crosslinked chitosan membranes withHg(II) ions. Colloids Surfaces A,2006,279:196~207
    [6] Li N., Bai R.,2006. Development of chitosan-based granular adsorbents for enhanced andselective adsorption performance in heavy metal removal. Water Science and Techonlogy,2006,54:103~113
    [7]汪东风,于丽娜,苏琳,孙丽平.一种多功能稀土多糖微粒及其制备工艺.中国专利,200510042228.8,2005-03-25
    [8]于丽娜.壳聚糖树脂的制备、表征及应用研究:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2008
    [9] Kannamba B., Laxma Reddy K., AppaRao B.V. Removal of Cu(II) from aqueous solutionsusing chemically modified chitosan. Journal of Hazardous Materials,2010,175:939~948
    [10] Wang G.H., Liu J.S., Wang X.G., Xie Z.Y., Deng N.S. Adsorption of uranium(VI) fromaqueous solution onto cross–linked chitosan. Journal of Hazardous Materials,2009,168:1053~1058
    [11] Li Z.Z., Tang X.W., Chen Y.M., Wei L.M., Wang Y. Activation of Firmiana Simplex leaf andthe enhanced Pb(II) adsorption performance: equilibrium and kinetic studies. Journal ofHazardous Materials,2009,169:386~394
    [12] Kul A.R., Koyuncu H. Adsorption of Pb(II) ions from aqueous solution by native andactivated bentonite: kinetic, equilibrium and thermodynamic study. Journal of HazardousMaterials,2010,179:332~339
    [13]周利民.磁性壳聚糖改性以及对金属离子的吸附特性研究:[博士学位论文].天津:天津大学化学化工学院,2007
    [14] Wan Ngah W.S., Ghani S., Kamari A. Adsorption behavior of Fe(II) and Fe(III) ions inaqueous solution on chitosan and cross–linked chitosan beads. Bioresource Technology,2005,96:443~450
    [15] Septhum C., Rattanaphani S., Bremner J.B., Rattanaphani V. An adsorption study of Al(III)ions onto chitosan. Journal of Hazardous Materials,2007,148:185~191
    [1] Wan Ngah W.S., Fatinathan S. Adsorption characterization of Pb(II) and Cu(II) ions ontochitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. Journal ofEnvironmental Management,2010,91:958~969
    [2] Laus R., Costa T.G., Szpoganicz B., Fávere V.T. Adsorption and desorption of Cu(II), Cd(II) andPb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent.Journal of Hazardous Materials,2010,183:233~241
    [3] Wang L., Xing R.E., Liu S., Qin Y.K., Li K.C., Yu H.H., Li R.F., Li P.C. Studies on adsorptionbehavior of Pb(II) onto a thiourea-modified chitosan resin with Pb(II) as template.Carbohydrate Polymers,2010,81(2):305~310
    [4] Bai L., Hua H.P., Fu W., Wan J., Cheng X.L., Zhuge L., Xiong L., Chen Q.Y. Synthesis of anovel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavymetal ions. Journal of Hazardous Materials,2011,195:261~275
    [5] Jing X.S., Liu F.Q., Yang X., Ling P.P., Li L.J., Long C., Li A.M. Adsorption performances andmechanisms of the newly synthesized N, N-di(carboxymethyl) dithiocarbamate chelating resintoward divalent heavy metal ions from aqueous media. Journal of Hazardous Materials,2009,167:589~596
    [6] Vuchkova L., Arpadjan S. Behaviour of the dithiocarbamate complexes of arsenic, antimony,bismuth, mercury, lead, tin and selenium in methanol with a hydride generator. Talanta,1996,43(3):479~486
    [7]赵纪强.壳聚糖改性及其对重金属离子吸附性能研究:[硕士学位论文].青岛:青岛科技大学材料科学与工程学院,2005
    [8]唐星华.壳聚糖交联接枝改性及性能研究:[博士学位论文].湖南:湖南大学应用化学系,2008
    [9] Zhou L.M., Wang Y.P., Liu Z.R., Huang Q.W. Characteristics of equilibrium, kinetics studies foradsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosanmicrospheres. Journal of Hazardous Materials,2009,161:995~1002
    [10]于丽娜.壳聚糖树脂的制备、表征及应用研究:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2008
    [11] Ramesh A., Hasegawa H., Sugimoto W. Adsorption of gold(III), platinum(IV) and palladium(II)onto glycine modified crosslinked chitosan resin. Bioresource Technology,2008,99:3801~3809