枯草芽孢杆菌BE-91木聚糖酶基因多样性及其克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木聚糖酶是一类特异降解不同木聚糖的酶的总称,在制浆造纸工业、食品工业、饲料工业和纤维提取工业具有广泛的应用价值。自20世纪80年代对木聚糖酶进行研究以来,已筛选到很多能产木聚糖酶的资源,但到目前为止,木聚糖酶还没能大规模工业化生产,主要原因有产酶菌株产量不高、分离纯化困难、酶学性质存在应用缺陷等,因此,木聚糖酶高产菌株的筛选、分离纯化方法的优化和利用基因工程手段对产木聚糖酶菌株进行分子改造等仍是目前的研究热点。
     本研究从筛选木聚糖酶高产菌株入手,系统地研究了枯草芽孢杆菌(Bacillus subtilis)木聚糖酶的分离纯化、酶学性质和木聚糖酶基因的多样性、克隆与表达、分子改造等内容。主要结果是:
     1、筛选到1株木聚糖酶高产菌株,编号为Bacillus subtilis BE-91。BE-91菌株在优化的发酵条件下,发酵液中木聚糖酶活力达423.24 U/mL;两步纯化法从BE-91菌株发酵液中分离出SDS-PAGE纯木聚糖酶,回收率69.2%,纯化倍数18倍,比酶活28453.6 U/mg;酶学性质研究表明,其分子量为22.54 kD,等电点为9.63,稳定pH 3.4~6.4,稳定温度0-65℃, Fe2+、Co2+对其有激活作用,Cu2+有强烈的抑制作用,以燕麦木聚糖为底物时,Km和Vmax分别为0.5 mg/mL和533U;该木聚糖酶含有YNAPSIDGDR, TTFTQYWSVR、SDGGTYDIYTTR、RPTGS NATITFSNHVNAWK和SPLIEYYVVDSWGTYRPTGTYK等氨基酸序列。
     2、从BE-91菌株中克隆到木聚糖酶基因xynA (GeneBank登录号为DQ845010)。xynA的ORF为642 bp,编码213个氨基酸,理论分子量为20 kD,可能N端第1-26位氨基酸为信号肽,与已知的Bacillus subtilis木聚糖酶基因xynA的同源性为98%;将xynA克隆进E. coli表达载体pET-28a(+)和pEASY-El,在E.coli BL21(DE3)中都得到特异性表达;重组菌pEASY-El-xynA-BL21在优化的诱导条件下,发酵液中木聚糖酶活力达1226 U/mL;用组氨酸标记纯化试剂盒对重组木聚糖酶进行分离纯化,获得SDS-PAGE纯重组酶,酶学性质研究表明其最适作用温度65℃,最适作用pH值6.4;同时,将xynA克隆进P. pastoris表达载体pPIC9k,在P.pastoris GS115中得到特异性表达,重组菌在甲醇诱导3 d后,发酵液中的木聚糖酶活力为27.45 U/mL。
     3、采用改良鸟枪法构建了Bacillus subtilis基因组文库。根据特异性底物水解圈和酶谱分析从文库中筛选出含功能基因的阳性重组子,提取质粒进行序列测定、比对、分析,获得木聚糖酶基因xynA、xynB、xynC、xynD和xynP的核苷酸序列;将xynB、xynC、xynD和xynP分别与表达载体pEASY-E1连接,转化入E. coli BL21,获得特异性表达阳性重组菌;用重组菌降解木聚糖,对产物进行HPLC分析,结果表明,xynA、xynC和xynD编码木聚糖酶基因,xynB和xynP编码木糖苷酶基因,且xynA、xynC、xynD和xynP的核苷酸序列和氨基酸序列之间同源性极低。
     4、采用缺失表达手段验证了木聚糖酶基因xynA表达木聚糖酶活性的关键位点。对木聚糖酶基因xynA的核苷酸序列和氨基酸序列进行比对、分析及分子结构预测,设计引物,PCR扩增出缺失部分序列的基因片段,与表达载体pET-28a(+)连接,转入E. coli BL21,获得多个特异性表达的重组菌;对重组菌的木聚糖酶表达情况进行分析,结果表明,BE-91菌株木聚糖酶基因xynA的5’-端第29-38位AA和3’-端第174~197位AA对木聚糖酶的分泌表达很关键。
     上述研究结果,可为构建可商业化应用的木聚糖酶高效表达基因工程菌株提供重要科学依据。
Xylanase is the general term of a group of enzymes that can specifically degrade different xylans. It has a wide range of applications in papermaking, food processing, plant fiber extraction and feed additives. Since the 1980s, have started researching in xylanase, researchers have obtained many resources that can produce xylanase. The main reasons for xylanase can't large-scale industrialized were the low xylanase production, difficult to separation and purification, and limited application enzyme properties, so screening of high-yield xylanase-producing strains, optimization the methods of separation and purification, using genetic engineering means to molecular modify strains were currently the domestic and international research hotspots.
     Firstly, the study screened a high-yield xylanase strain, then systematically studied purification, enzyme properties of xylanase and the diversity, cloning and expression, molecular modification of the xylanase gene from the strain. Main results were as follows:
     1, The high-yield xylanase strain was Bacillus subtilis BE-91, with the xylanase activity of 423.24 U/mL at the optimization fermentation process. Electrophoretically pure xylanase was separated and purified from the fermentation broth with the recovery rate of 69.2%, purification factor of 18, and specific activity of 28453.6 U/mg. Its molecular weight was measured as 22.54 kD, isoelectric point 9.63, stabilizing pH 3.4-6.4, stabilizing temperature 0-65℃. It can be activated by Fe2+ and Co2+, and strongly inhibited by Cu2+; Km and Vmax were 0.5 mg/mL and 533 U, respectively, with oat spelt xylan as the substrate; Part amino acid sequences were YNAPSIDGDR, TTFTQYWSVR, SDGGTYDIYTTTR, RPTGSNATITFSNHVNAW and SPLIEYYVVDSWGTYRPTGTYK.
     2, The xylanase gene xynA was cloned from Bacillus subtilis BE-91 (Gene Bank accession number GQ845010). The complete ORF of xynA was 642 bp, coding 213 amino acids, theory molecular was 20 kD,1-26 amino acids was signal peptide; Compared with xylanase gene from Bacillus subtilis logged by others, homology was 98%; xynA was efficiently expressed in E. coli BL21 with pET-28a (+), pEASY-E1 vector, and the xylanase activity of recombinant pEASY-xynA-BL21 was 1226 U/mL at the optimization induce condition; SDS-PAGE pure recombinant xylanase was obtained by His-tagged purification kits, the optimal temperature of recombinant xylanase was 65℃, the optimal pH was 6.4; At the same time, xynA was also expressed in P. pastoris GS115 with the expression vector pPIC9k, and the recombinant xylanase activity was 27.45 U/mL with methanol induced 3 days.
     3, The genome library of Bacillus subtilis was constructed by improved shotgun method. The positive recons containing the function gene were extracted from the library using specific substrate enzyme hydrolysis and spectrum analysis, and determined the sequences of positive recons and compared with each other by bioinformatics analysis software, then obtained the nucleotide sequences of xynA, xynB, xynC, xynD and xynP. XynB, xynC, xynD, xynP were expressed in E. coli BL21 with pEASY-E1 vector, respectively. The products of recons degradated xylan were analysis by HPLC, and the results showed that xynA, xynC and xynD coding xylanase, xynB and xynP coding xylosidase, the nucleotide and amino acid sequences of xynA, xynC, xynD and xynB, xynP were extremely low homology.
     4, Determined the key sites for xylanase activity by delete expression. The nucleotide and amino acid sequences of xylanase gene xynA were analysed by bioinformatics analysis software, then designed primers and PCR amplificatied the genes with deleted part sequences, expressed in E. coli BL21 with pET 28a (+) vector, and obtained multiple recons. The xylanase activity of recons showed that the 5' 29~38 AA and 3'174~197 AA of xylanase gene xynA from Bacillus subtilis BE-91 were the key sites for xylanase activity.
     The results can provide important scientific basis for establishing efficiently genetic engineering strain to produce commercial xylanase.
引文
[1]Peng Y, Huang Q, Zhang R H, et al. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food [J]. Comparative Biochemistry and Physiology B.,2003,134:45~52.
    [2]Kiers J L, Van laeken A E A, Rombouts F M, et al. In vitro digestibility of Bacillus fermented soyabean [J]. International Journal of Food Microbiology,2000,60:163~169.
    [3]Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis [J]. Nature,1997,390 (6657):249~256.
    [4]Prade R. Xylanases:from biology to biotechnology [J]. Biotechnology and Genetic Engineering Reviews,1995,13 (12):101~131.
    [5]Gregory A C E, Conell A O, Bolewll P G Xylans [J]. Biotechnology and Genetic Engineering Review,1998,15 (4):439~455.
    [6]Gregory A, Connell A, Paul B. Xylans [J]. Biotechnology and Gentic Engineering Reviews, 1998,15 (4):439~455.
    [7]谢响明,何晓青.微生物木聚糖酶及其生物漂白研究进展[J].北京林业大学学报,2003,25(3):1~6.
    [8]丁长河.链霉菌高产木聚糖酶及其酶学性质的研究[D].北京,中国农业大学,2003.
    [9]Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanases [J]. FEMS Microbiology Reviews,1999,23:411~456.
    [10]Li K, Azadi P, Collins R, et al. Relationships between activities of xylanases and xylan structures [J]. Enzyme and Microbial Technology,2000,27:89~94.
    [11]邹永龙,王国强.木聚糖降解酶系统[J].植物生理学通讯,1999,35(5):404~410.
    [12]Beg Q K, Kapoor M, Mahajan L, et al. Microbial xylanases and their industrial applications: a review [J]. Appl Microbiol Biotechnol,2001,56:326-38.
    [13]甘瑜,孟柳燕,樊明文等.哈茨木霉菌非水溶性葡聚糖酶的理化及生物学性质研究[J].中华口腔医学杂志,2006,41(1):33~36.
    [14]张晓晖,郭春华,江晓霞.饲用木聚精酶生产菌株的筛选及部分酶学性质的研究[J].兽药与饲料添加剂,2007,12(2):4-6.
    [15]韩峰,孙彩云,宋小众等.拟康氏木霉纤维素酶合成的诱导与阻遏[J].工业微生物,2003,33(1):23~26.
    [16]Deshpande S K, Bhotmange M G, Chakrabarti T, et al. Production of cellulase and xylanase by Trichoderma reesei (QM 9414 mutant), Aspergillus niger and mixed culture by solid state fermentation (SSF) of water hyacinth (Eichhornia crassipes) [J]. Indian Journal of Chemical Technology.2008,15 (5):449~456
    [17]李江华,房峻.半纤维素酶高产菌种的选育及产酶条件[J].无锡轻工大学学报,2004,23(5):48~52.
    [18]符丹丹,谢慧,邻敏辰.宇佐美曲霉产木聚糖酶的固态发酵条件研究[J].食品与发酵工业,2005,31(4):50~53.
    [19]禹慧明,林勇.木聚糖酶高产菌株选育[J].工业微生物,2002,32(1):43~44.
    [20]吴小刚,曾莹,周丽明等.米曲霉产压葡萄糖苷酶发酵条件的研究[J].食品科技,2005,6:11~13.
    [21]江均平,严自正,张树政等.海枣曲霉木聚糖酶的纯化及末端序列研究[J].生物化学与生物物理学报,1995,2:159~164.
    [22]彭中健,翁照南,梁淑娃等.棒曲霉GM-69深层发酵生产木聚糖酶的研究[J].广州食品工业科技,2004,20(2):43~45.
    [23]Sunna A, Antranikian G Xylanolytic enzymes from fungi and bacteria [J]. Critical Reviews in Biotechnology,1997,17(1):39~67.
    [24]杨瑞金,许时婴,王璋.顶青霉木聚糖酶的纯化与性质[J].无锡轻工大学学报,2001(1):35~39.
    [25]Li Y, Liu Z Q, Zhao H, et al. Statistical optimization of xylanase production from new isolated Penicillium oxalicum ZH-30 in submerged fermentation [J]. Biochemical Engineering Journal.2007,34:82~86.
    [26]李里特,丁长河,江正强等.一株产木聚糖酶链霉菌的鉴定及发酵产酶[J].微生物学报,2003,30(6):59~64.
    [27]孙晓霞,谢响明,吴玉英等.白色链霉菌产木聚糖酶规律及其耐热碱性的初步研究[J].北京林业大学学报,2005,27(3):72~75.
    [28]洪新.黑根霉发酵产木聚糖酶的条件优化[J].中国畜牧兽医,2005,32(7):15~17.
    [29]Morosoli R, Roy C, Yaguchi M. Isolation and partial primary sequence of a xylanase from the yeast Cryptococcus albidus [J]. Biochem Biophy Acta,1986,870:473~478.
    [30]丛倩千,江正强,吕顺意等.毛壳霉CQ31的鉴定及固体发酵产木聚糖酶条件的优化[J].微生物学通报,2009,36(8):1269~1274.
    [31]李秀婷,李里特,江正强.嗜热真菌耐热木聚糖酶的产酶条件和酶谱分析[J].微生物学通报,2004,31(2):49-54.
    [32]朱崇淼,毛胜勇,孙云章等.产木聚糖酶厌氧真菌菌株筛选及产酶培养条件研究[J].微生物学通报,2004,31(3):11~15.
    [33]黄玉杰,杨合同,丁爱云等.巨大芽孢杆菌内切葡聚糖酶编码基因的克隆及序列分析[J].中国生物防治,2004,20(4):256~259.
    [34]黄国勇,吴振强.Bacillus subtilis产木聚糖酶发酵条件的研究[J].河南工业大学学报(自然科学版),2006,27(1):32~35.
    [35]刘巍,范树田.地衣芽孢杆菌H-1的鉴定及其产木聚糖酶性质的研究[J].工业微生物,1996,26(4):11~15.
    [36]代义,吕淑霞,林英等.高产木聚糖酶菌株筛选、鉴定及产酶条件的研究[J].生物技术,2008,18(2):70~73.
    [37]Julio X H, Luis H B S, Plinho F H, et al. Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation [J]. Biochemical Engineering Journal,2006, 32:179-184
    [38]Julio X H, Simone H F, Plinho F H, et al. Optimization of cellulase-free xylanase activity produced by Bacillus coagulans BL69 in solid-state cultivation [J]. Porcess Biochemistry,2005, 40:107~112.
    [39]夏剑辉,龙中儿,黄运红等.蜂房芽孢杆菌利用蔗渣发酵产木聚糖酶的研究[J].江西师范大学学报(自然科学报),2003,27(1):80~84.
    [40]Licia L, Valeria C, Agata G, et al. Purification and characterization of thermostable xylanase and xylosidase by the thermophilic bacterium Bacillus thermantarcticus [J]. Research in Micorbiology,2004,155:283~289.
    [41]孙振涛,刘建军,赵祥颖.一株产木聚糖酶菌株的分离、鉴定及其酶学性质研究[J].生物技术,2007,17(4):74~77.
    [42]Karen M H, Keiko T, Yasuki F, et al. Paenibacillus sp. Strain HC1 xylanases responsible for degradation of rice bran hemicellulose [J]. Microbio. Research,2008,163:293~298.
    [43]胡源媛,张守文,谢应根.紫外诱变芽孢杆菌选育木聚糖酶高产菌株[J].中国食品添加剂,2006,6:113~117.
    [44]肖竞,孙建义,周德平.一株产生内切木聚糖酶的菌株的分离、鉴定及其酶学特性研究[J].浙江农业学报,2003,15(2):55~61.
    [45]Gashaw M, Rajni H K, Bo M. A thermostable alkaline active endo-1-4-xylanase from Bacillus halodurans S7:Purification and characterization [J]. Enzyme and Microbial Technology, 2006,39:1492-1498.
    [46]Khandeparkar R D S, Bhosle N B. Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC5214 when grown in solid-state fermentation [J]. Enzyme and Microbial Technology,2006,39:732-742.
    [47]Do Y K, Mi K H, Jong S L, et al. Isolation and characterization of a cellulase-free xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13 [J]. Process Biochemistry,2009,44:1055~1059.
    [48]Rakhee K, Narayan B B. Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC5112 [J]. Research in Microbiology,2006,157:315-325.
    [49]许正宏,毛文扬,徐志军等.木聚糖酶菌种库的建立及霉菌木聚糖酶的合成条件[J].林产化学与工业,2002,22(1):43~46.
    [50]Gupta S, Bhushan B, Hoondal G S. Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp [J]. Journal of Applied Microbiology,2000,88,325-334.
    [51]胡源媛,张守文,谢应根.紫外诱变芽孢杆菌选育木聚糖酶高产菌株[J].中国食品添加剂,2006,8:113-118,205.
    [52]乐易林,熊涛,曾哲灵等.紫外诱变里氏木霉Rut C-30提高木聚糖酶活力及发酵条件的研究[J].食品与发酵工业,2005,31(1):74~76.
    [53]Deng W, Jiang Z Q, Li L T, et al. Variation of xylanosomal subunit composition of Streptomyces olivaceoviridis by nitrogen sources [J]. Biotechnology Letters, 2005,27 (6): 429~433.
    [54]洪枫,陈牧,勇强等.里氏木霉制备木聚糖酶的产酶历程[J].南京林业大学学报,1998,22(1):31~36.
    [55]刘超钢,勇强,余世袁.里氏木霉诱导合成木聚糖酶的调控[J].南京林业大学学报,1999,23(3):29~32.
    [56]孙迅,马远忠,孙宝聚等.产胞外木聚糖酶链霉菌发酵条件的正交试验[J].微生物学杂志,1999,19(4):22~24.
    [57]Kenji O, Yoshihiro T, Shinobu O, et al. Production of Xylanase with a transformant of Aspergillus oryzae RIB40 in a Liquid-Surface Immobilization (LSI) System [J]. Journal of Bioscience and Bioengineering,2009,10:1016~1019.
    [58]Paula S, Helena P, Maria C F, et al. A New Look at Xylanases-An Overview of Purification Strategies [J]. Molecular Biotechnology,2003,3:257-281.
    [59]Chakrit T, Khin L K, Khanok R. Purification of xylanase from alkaliphilic Bacillus sp. K-8 by using corn husk column [J]. Process Biochemistry,2006,41:2441-2445.
    [60]闫欣,李延兰,丰慧根等.黑曲霉木聚糖酶XynⅢ的纯化与酶学性质[J].河南农业大学学报,2007,41(1):81~84,98.
    [61]刘宏波,杨昌柱,濮文虹等.中空超滤在酶纯化浓缩中的应用[J].膜科学与技术, 2006,26(5):81~85.
    [62]符丹丹,李爱江,谢慧等.宇佐美曲霉木聚糖酶的纯化及其性质[J].食品科学,2006,27(2):116~120.
    [63]许正宏,陶文沂.Bacillis pumilus WL-11木聚糖酶A的纯化、鉴定及其底物降解方式[J].生物工程学报,2005,21(3):407-413.
    [64]邬敏辰,符丹丹,朱劫等.宇佐美曲霉木聚糖酶的纯化和性质[J].食品与生物技术学报,2005,24(6):29~33.
    [65]Yuan X P, Wang J, Yao H Y, et al. Separation and identification of endoxylanases from Bacillus subtilis and their actions on wheat bran insoluble dietary fibre [J]. Process Biochemistry, 2005,40:2339-2343.
    [66]袁小平,姚惠源.Bacillus subtilis木聚糖酶的纯化及其对小麦麸皮的作用[J].无锡轻工大学学报,2005,24(1):19~23.
    [67]孙雷,朱孝霖,李环等.木聚糖酶分离纯化技术[J].生物技术通报,2005,51~54.
    [68]Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanases [J]. FEMS Microbiology Reviews,1999,23:411-456.
    [69]John M, Schmidt B, Schmidt J. Purification and some properties of five endo-1,4-beta-D-xylanases and a beta-D-xylosidase produced by a strain of Aspergillus niger [J]. Can J Biochem.1979,57 (2):125-134.
    [70]Saraswat V, Bisaria V. Purification characterization and substrate specificities of xylanase isoenzymes from Melanocarpus albomyces [J]. Biosci Biotechnol Biochem 2000,64 (6): 1173-1180.
    [71]Gouka R J, Stam H, et al. Kinectics of mRNA and protein synthesis of genes controllen by the xylanases A in controlled fermentation of Aspergillus awamori [J]. Appl Environ Microbio, 1996,62:3640-3649.
    [72]Peter B. Sensitive detection of endo-1,4-β-glycanases in gels [J]. Anal Biochem,1985,144: 147~151.
    [73]朱静,严自正.微生物产生的木聚糖酶的功能和应用[J].生物工程学报,1996,12(4):375~378.
    [74]Coughlan M P, Hazlewood G P. Xylan-degrading enzyme systems:biochemistry, molecular biology and application [J]. Biotechnol. Appl. Biochem.1993,17:259~289.
    [75]Chiaki K, Atsushi O, Toshiaki K, et al. Extracellular production of xylanase in Escherichia coli using excretion vector pEAP2 [J]. Agric. Biol. Chem.,1986,50 (4),1067~1068.
    [76]Toshiaki K, Atsushi O, Koki H. Molecular cloning and expression of a xylanase gene of alkalophilic Aeromonas sp. no. 212 in Escherichia coli [J]. Jouniul of General Microhiology. 1985, 131,2825~2830.
    [77]Wong K K Y, Tan L U L, Saddler J N. Multiplicity of xylanase in microorganisms function and applications [J]. Microbi Rev,1988,52:305~317.
    [78]Zhu H, Buchmer J, Dyk D K, et al. Enzymatic speciticihes and modes of action of the tw-catalytic domains of the xynC:xylanase from Fibrobacter stremogenes S85 [J]. J. Bacteriol, 1994,176:3885~3894.
    [79]MariaV, Claire D, James W M, et al. Understanding the Structural Basis for Substrate and Inhibitor Recognition in Eukaryotic GH11 Xylanases [J]. J. Mol. Biol.,2008,375:1293-1305.
    [80]Zui F, Atsushi K, Satoshi K, et al. Crystal structure of Streptomyces olivaceoviridis E-86 xylanase containing xylan-binding domain [J]. J Mol Biol.2000,300:575~585.
    [81]Gilbert H J, Hazlewood G P. Bacterial cellulases and xylanases [J]. J Gene Microbiol,1993, 139:187~194.
    [82]Flint H J, Zhang J X. Molecular biology of xylanases from the rumen cellulolytic anaerobe Rummococct flavefacrens 17-mutiple gened and bifunctional enzymes [A]. Xylans and xylanase [M]. Amsterdam Elsevier,1992.
    [83]刘瑞田,曲音波.木聚糖酶分子的结构区域[J].生物工程进展,1998.18(6):26~28.
    [84]Ali M K, Fukumura M, Sakano K, et al. Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli [J]. Biosci Biotechnol Biochem,1999,(63):1596-1604.
    [85]Bao Y H, Liu W F, Dong Z Y. Studies on the over-expression of alkali-tolerant xylanase in Bacillus pumilus [J]. Journal of Chinese institute of food science and technology,2008,8(5): 37~43.
    [86]Zheng R J. Homologous expression and characterization of the xylanase from Aspergillus Niger [D]. Shanghai:Tongji University.2006.
    [87]Grange D C, Pretorius I S, Zyl W H. Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae [J]. Appl Environ Microbiol.1996,62 (3):1036~1044.
    [88]FabioM S, Andrew J M, Stephen R D, et al. Xylan decomposition by Aspergillus clavatus endo-xylanase [J]. Protein Expression and Purification,2009,68:65-71.
    [89]Jialin S, Tetsu K, Tetsuya K, et al. High expression of the xylanase B gene from Clostridium stercorarium in tobacco cells [J]. Journal of Fermentation and Bioengineering,1997,84 (3): 219~223.
    [90]Bae H J, Kim H J, Kim Y S. Production of a recombinant xylanase in plants and its potential for pulp biobleaching applications [J]. Bioresource Technology,2008,99:3513-3519.
    [91]Wu S C, Jeffrey E H, Christopher L, et al. Identification of an endo-1,4-D-Xylanase from Magnaporthe grisea by Gene Knockout Analysis, Purification, and Heterologous Expression [J]. Applied and Environmental Microbiology,2006,72 (2):986-993.
    [92]Jeong K J, Park I Y. Molecular cloning and characterization of an endoxylanase gene of Bacillus sp. in E. coli [J]. Enzyme Microb Technol,1998,22 (7):599-605.
    [93]Gupta N, Reddy. Cloning, expression, and sequence analysis of the gene encoding the alkali-stable, thermostable endoxylanase from alkalophilic, mesophilic Bacillus sp. strain NG27 [J]. Appl Environ Microbiol,2000,66 (6):2631~2635.
    [94]刘伟丰,毛爱军,祝令香等.耐碱性木聚糖酶基因在短小芽孢杆菌中的高效分泌表达的研究[J].微生物学报,2004,44(4):487~490.
    [95]江正兵,宋慧婷,马立新.短小芽孢杆菌木聚糖酶基因在P. pastoris中的分泌表达及酶学性质研究[J].生物工程学报,2003,19(1):50~55.
    [96]Sriastava P, Mukherijee K J. Cloning of xylanase gene of Streptomyces flavogriseus in E. coli and bacteriophage lambda-induced lysis for the release of cloned enzyme [J]. Prep Biochem Biotechnol,2001,31 (4):389~400.
    [97]Qureshy A F, Khan L A. Expression of Bacillus circulans Teri-42 xylanase gene in Bacillus subtilis [J]. Enzyme Microb Technol,2000,27:227~233.
    [98]Lapidot A, Mechaly A, Shoham Y. Over-expression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus [J]. J Biotechnol.1996,51,259~264.
    [99]Nuyens F, van Zyl W H, Fserentant D, et al. Heterologous expression of the Bacillus pumilusen beta-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol,2001,56 (3-4):431~-434.
    [100]Fukumura M, Sakka K. Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product [J]. Biosci Biotechnol Biochem,1995,59 (1):40~46.
    [101]Bergquist P, Gibbs M D, Morris D, et al., Hyper-thermophilic xylanase [J]. Method Enzymol,2001,10:330~331.
    [102]Leskinen S A, Mantyla R, Fagerstorom J. et al. Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomutara flexuosa:Isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei [J]. Appl Microbiol Biotechnol,2005,67:495~505.
    [103]Lee H J, Shin D J, Nam C C, et al. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. [J]. Biotechnology Letters,2000,22:387-392.
    [104]Chavez R, Navarro C. Secretion of endoxylanase A from Penicillium purpurogenum by Saccharomyces cerevisiae transformed with genomic fungal DNA [J]. FEMS Microbiol Lett, 2002,212 (2):237~241.
    [105]Walsh D J, Gibbs M D, Bergquist P L. Expression and secretion of a xylanase from the extreme thermophile thermotoga strain FjSS3B in Kluyveromyces lactis [J]. Extremophiles,1998, 2(1):9-14.
    [106]David J S, Liam C W, Rosalind A R. Sequence and expression of a xylanase gene from the hyperthermophile Thermotoga sp. strain FjSS3-B.1 and characterization of the recombinant enzyme and its activity on kraft pulp [J]. Applied and Environmental Microbiology,1995,10: 4110~4113.
    [107]江正强,李里特,林清等.极端嗜热菌海栖热袍菌木聚糖酶B的克隆和表达[J].应用与环境生物学报,2002,8(3):280~284.
    [108]Cheng Y F, Yang C H, Liu W H. Cloning and expression of Thermobifida xylanase gene in the methylotrophic yeast P. pastoris [J]. Enzyme Microb Technol,2005,37:541~546.
    [109]Arkaki T, Hashhikawa S. Cloning, sequense, and expression in E. coli of the new gene encoding xylanase from a marine bacterium Vibrio sp. strain XY-214 [J]. Appl Environ Microbiol, 2000,66:1741~1747.
    [110]唐胜球,策小英,邹晓庭等.木聚糖酶的研究及其在动物饲料中的应用[J].中国畜牧杂志,2004,40(2):42~44.
    [111]伏显华,伍明俊,刘勇.饲用酶制剂中木聚糖酶酶学性质的研究[J].饲料工业,2006,27(12):18~20.
    [112]李富伟,汪勇,汤海鸥.重组毕赤酵母工程菌产木聚糖酶酶学性质的研究[J].中国畜牧杂志,2009,45(3):43~45,61.
    [113]付五兵,朱涛,张勤良.Bacillus subtilis T15产木聚糖酶的酶学特性及其在禽饲料中应用的初步研究[J].饲料工业.2005,26(16):27~30.
    [114]苏纯阳,程学慧,刘涛等.新一代饲用酶制剂——细茵性木聚糖酶[J].饲料广角.2004.12:41~43.
    [115]唐胜球,董小英,邹晓庭等.木聚糖酶的研究及其在动物饲料中的应用[J].中国畜牧杂志.2004,40(2):42~44.
    [116]张晓晖,郭春华,江晓霞.饲用木聚精酶生产菌株的筛选及部分酶学性质的研究[J].兽药与饲料添加剂.2007,12(2):4~6.
    [117]伏显华,伍明俊,刘勇等.饲用酶制剂中木聚糖酶酶学性质的研究[J].饲料工业, 2006,27(12):18~20.
    [118]江正强,陈思思,李道义.利用固定化耐高温木聚糖酶生产木二糖[M].第二届中国资源生物技术与糖工程学术研讨会论文集,2007,威海.
    [119]包怡红,李雪龙.木聚糖酶在食品中的应用及其发展趋势[J].食品与机械,2006,22(4):130~133.
    [120]阮同琦,赵祥颖,刘建军.酸性木聚糖酶及其在酿酒中的应用[J].酿酒,2008,35(2):26~29.
    [121]孙振涛,赵祥颖,刘建军等.微生物木聚糖酶及其应用[J].生物技术,2007,17(2):93~97.
    [122]李秀婷.微生物木聚糖酶及在食品工业中的应用[J].农业机械学报,2008,39(2):175~179.
    [123]黄家骥,许正宏,陶文沂.以Bacillus pumlis木聚糖酶水解玉米芯制备木寡糖[J].食品与发酵工业,2004,30(5):5-9.
    [124]陈嘉川,王保民,杨桂花等.黑曲霉An-76粗酶液的分离纯化及对漂白麦草浆的酶法改性[J].中国造纸学报,2003,18(2):74~77.
    [125]占纪勋,刘廷志,田胜燕等.黑曲霉S13所产木聚糖酶的性质及应用研究[J].北京工商大学学报(自然科学版),2003,21(2):4~6.
    [126]葛培锦,赵建,陈建宏等.麦草生物化机浆木聚糖酶预处理H202漂白研究[J].中国造纸学报,2005,20(1):66~69.
    [127]周学飞.木聚糖酶、木素过氧化物酶-过氧化氢生物漂白废液分析[J].中国造纸学报,2004,19(1):57~61.
    [128]李雪芝,赵建,曲音波.木聚糖酶处理对麦草化学组成及其纸浆纤维长度的影响[J].林产化学与工业,2006,26(2):127~130.
    [129]陈嘉川,曲音波,杨桂花等.芽孢杆菌A-30碱性木聚糖酶用于麦草浆酶法改性的研究[J].中国造纸学报,2006,21(1):25~28.
    [130]Saurabh S D, Jitender S, Bindu B. Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX [J]. Enzyme and Microbial Technology,2008,43: 262-269.
    [131]Rahman A K, Sugitani N, Hatsu M, et al. A role of xylanase, a-L-arabinofuranosidase, and xylanase in xylan degradation [J]. Can J Microbiol,2003,49:58~64.
    [132]Tuncer M, Ball A S. Cooperative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan [J]. Journal ofApplied Biochemistry,2003,94 (6):1030-1035.
    [133]Mao L S, You J X, Song X Y, et al. Effects of endo-xylanase and xylosidase pretreatment on bleaching properties of wheat straw pulp [J]. Chemistry and Industry of Forest Products,2003,23 (2):7-11.
    [134]邵蔚蓝,薛业敏.以基因重组技术开发木聚糖类半纤维素资源[J].食品与生物技术,2002,21(1):88~93.
    [135]陆健,曹钎,陈坚等.木聚糖酶的产生、性质和应用[J].酿酒.2001,28(6):30~34.
    [136]栾宏伟,胡莹,刘兴宝等.一种来源于Leifsonia shinshuensis DICP 16菌体的β-D-木糖苷酶的分离纯化及其性质[J].生物工程学报,2008,24(5):867~873.
    [137]薛业敏,于谨谨,戴军等.耐热p.木糖苷酶的构建及在木糖制备中的应用[J].中国食品学报,2007,7(6):6~12.
    [138]Takenishi S, Tsujisaka Y. Studies on hemicellulases. Purification and properties of the xylosidase produced by Aspergillus niger van Tieghem [J]. J Bio,1973,73:335~343.
    [139]Yanai T, Sato M. Purification and characterization of an beta-D-xylosidase from Candida utilis IFO 0639 [J]. Biosci Biotechnol Biochem,2001,65 (3):527~533.
    [140]栾宏伟,胡莹,刘兴宝.一种来源于Leifsonia shinshuensis DICP 16菌体的木糖苷酶的分离纯化及其性质[J].生物工程学报,2008,24(5):867~873.
    [141]薛业敏,毛忠贵,邵蔚蓝.极耐热性阿拉伯糖苷酶基因的表达、纯化及酶学性质研究[J].微生物学报,2004,44(2):220~225.
    [142]Chen X Z, Xu S Q, Zhu M S, et al. Site-directed mutagenesis of an Aspergillus niger xylanase B and its expression, purification and enzymatic characterization in Pichia pastoris [J]. Process Biochemistry,2009.
    [143]Bassam A B, Kristof B, Kurt G, et al. Xylanase XYLlp from Scytalidium acidophilum: Site-directed mutagenesis and acidophilic adaptation [J]. Bioresource Technology,2009,100: 6465~6471.
    [144]陆健,曹钰,陈坚.运用定点突变提高重组木聚糖酶在毕赤氏酵母中的表达[J].微生物学报.2002,42(4):425~430.
    [145]杨浩萌,孟昆,罗会颖等.通过N端替换提高木聚糖酶的热稳定性[J].生物工程学报.2006,22(1):26~32.
    [146]杨浩萌,王亚茹,伍宁丰等.N13D、S40E点突变提高木聚糖酶XYNB的热稳定性.微生物通报,2007,34(3):533~536.
    [147]周晨妍,李东峰,邬敏辰等.木聚糖酶XynⅡ的D37N突变、表达及酶学性质变化[J].生物加工过程,2008,6(3):62~67.
    [148]Matsumoto K, Satoh T, Irie A, et al. Loss expression of uroplakin III is associated with clinicopathologic features of aggressive bladder cancer [J]. Urology.2008,72 (2).
    [149]Kakar S, Burgart L J, Thibodeau S N, et al. Frequency of loss of hMLHl expression in colorectal carcinoma increases with advancing age [J]. Cancer,2003,97 (6):1421-1427.
    [150]Krystyna S M, Slawomir A, Grazyna K, et al. Loss of FHIT expression in gastric mucosa of patients with family histories of gastric cancer and Helicobacter pylori infection [J]. World Journal of Gastroenterology,2005,1:17~21.
    [151]Tanjore H, Kalluri R, Ikeda K, et al. Loss of expression of type IV collagen α5 and a6 chains in colorectal cancer associated with the hypermethylation of their promoter region [J]. The American journal of pathology 2006,168 (3):715~717,856~865.
    [152]汪浩,汪天虹.瑞氏木霉木聚糖酶Ⅰ基因的克隆、序列分析及在酵母中的表达[J].山东轻工业学院学报,2002,16(3):13~16.
    [153]Marja P, Arja M, Jarno K, et al. Increased production of xylanase by expression of a truncated version of the xyn11 A gene from Nonomuraea flexuosa in Trichoderma reesei [J]. Applied and Environmental Microbiology,2007,73 (10):3215-3224.
    [154]Fernando C N, Concepcion H, Antonio D P. Regulatory elements mediating expression of xylanase genes in Fusarium oxysporum [J]. Fungal Genetics and Biology,2008,45:28-34.
    [155]聂国兴,王俊丽,明红.木聚糖酶的应用现状与研发热点[J].工业微生物,2008,38(1):53~59.
    [156]黄运红,龙中儿,李素珍等.木聚糖酶高产微生物的筛选和鉴定[J].江西师范大学学报(自然科学版),2002,26(3):245~248.
    [157]李用芳,李学梅,张建新等.木聚糖酶生产菌的选育及发酵条件研究[J].生物技术,2004,14(1):25~27.
    [158]许君,任艳,陈红歌等.碱性木聚糖酶产生菌的筛选与产酶条件[J].生物技术,2004,14(3):52-54.
    [159]Lino M R, Teresa P N. Isolation of a hyperxylanolytic Cellulomonas flavigena mutant growing on continuous culture on sugar cane bagasse [J]. Biotechnology Letter,1998,20 (5): 443~446.
    [160]Rodrigo P N, Susana M, Luis A, et al.A nobel strain of Streptomyces malaysiensis isolated from Brazilian soil produces high endo-1,4-xylanase titres [J]. World Journal of Microbiology &Biotechnology,2003,19:879~881.
    [161]Amita R, Shah D M. Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization [J]. Process Biochemistry,2005,40:1763~1771.
    [162]Sonia K G, Chadha B S, Saini H S. Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W3) under solid-state fermentation [J]. Bioresource Technology, 2005,96:1561~1569.
    [163]Anwat S, Peter L B. A gene encoding a novel extremely thermostable xylanase isolated directly from an environmental DNA sample [J]. Extremop Hiles.2003,7:63~70.
    [164]虢国成.高产木聚糖酶菌株的筛选及其产酶特性研究[J].食品与机械,2008,24(2):22~25,145.
    [165]刘同军,张玉臻.半纤维素酶的应用进展[J].食品与发酵工业.2003,24(6):58~61.
    [166]李彩霞,房桂干,刘书钗.木聚糖酶活的具体测定方法[J].林产化工通讯,2001,35(1):20~23.
    [167]汪世华,胡开辉.木聚糖酶高产菌株的诱变育种及产酶条件研究[J].江西农业大学学报,2005,27(4):496~500.
    [168]曾莹,钟晓凌,夏服宝.木聚糖酶活力测定条件研究[J].生物技术,2003,13(5):21~22.
    [169]寇林元,凌建春,赵丽彦等.正交试验与均匀试验优化效果比较[J].中国卫生统计.2009,26(2):139~142.
    [170]王钦德,杨坚.食品试验设计与统计分析[M].北京:中国农业大学出版社,2003:368~383.
    [171]张桂敏,饶辑,叶戋等.棉花黄萎病真菌Verticillium dahliae木聚糖酶基因的克隆、表达和酶学性质分析[J].微生物学报,2008,48(6):765~771.
    [172]肖丽,王贵学,陈国娟.苎麻脱胶过程中木聚糖酶最佳作用条件探讨[J].重庆大学学报,2004,27(6):48~50.
    [173]张龙翔,张庭芳,李令媛.生化实验方法和技术[M].高等教育出版社.1997.
    [174]余冰宾.生物化学实验指导[M].清华大学出版社.2004.
    [175]陈石根,周润琦.酶学[M].上海:复旦大学出版社.2001.2.
    [176]符丹丹,李剑芳,邬敏辰.宇佐美曲霉木聚糖酶粗酶性质研究[J].江苏食品与发酵,2004.4:4~7.
    [177]聂国兴,王修启,明红等.黑曲霉产木聚糖酶稳定性的研究[J].华北农学报,2003,19(1):112~115.
    [178]符丹丹,周晨妍.发酵液中木聚糖酶的纯化和性质的研究[J].安徽农业科学,2008,36(28):12069-12071,12074.
    [179]Amita R S, Datta M. Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization [J]. Process Biochemistry,2005,40:1763~1771.
    [180]Julio X H, Luis H B S, Plinho F H, et al. Purification and properties of a xylanase produced by Bacillus circulans BL53 on solid-state cultivation [J]. Biochemical Engineering Journal,2006, 32:179-184.
    [181]Aurora M T, Odilia P A, Teresa P N. Enzymatic properties of a purified xylanase from mutant PN-120 of Cellulomonas flavigena [J]. Enzyme and Microbial Technology,2003,32: 401-406.
    [182]孙爱萍,谌晓华,贾伟等.毕赤酵母摇瓶产木聚糖酶发酵条件的优化[J].江西化工,2009,1:69~71.
    [183]王涛,万红贵,蔡恒.毕赤酵母液态发酵产木聚糖酶条件研究[J].食品与发酵工业,2009,35(2):108~111.
    [184]万红贵,贾伟,蔡恒等.毕赤酵母产耐热木聚糖酶发酵工艺的研究[J].食品工业科技,2008,29(8):135~137.
    [185]胡春霞,陆平,李卫芬等.短芽孢杆菌耐碱性木聚糖酶(xylB)的分子生物学研究[J].食品与生物技术学报,2009,28(1):86~90.
    [186]周晨妍,符丹丹,朱劼.宇佐美曲霉木聚糖酶基因的克隆和序列分析[J].食品与发酵工业,2005,31(10):29~32.
    [187]周晨妍,白剑宇,邬敏辰等.宇佐美曲霉木聚糖酶(xynⅡ)基因在大肠杆菌中的表达[J].农业生物技术学报,2007,15(3):514~518.
    [188]崔罗生,祝茂生,徐顺清等.黑曲霉木聚糖酶基因(xynA)在大肠杆菌中的表达及酶学分析[J].2009,28(1):48~53.
    [189]Huang J L, WangG X, Li X. Cloning, sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli [J]. Bioresource Technology,2006,97:802-808.
    [190]周晨妍,邬敏辰,李东峰等.宇佐美曲霉木聚糖酶基因xynⅡ在不同毕赤酵母中的分泌表达[J].生物加工过程,2008,6(2):38~42.
    [191]Liu M Q, Liu G F. Expression of recombinant Bacillus licheniformis xylanaseA in Pichia pastoris and xylooligosaccharides released from xylans by it [J]. Protein Expression and Purification,2008,57:101-107.
    [192]靖梅贞,黄慧敏,赵纪莹等.重组毕赤酵母高产木聚糖酶菌株的筛选及诱导条件优化[J].安徽农业科学,2008,36(29):12612~12615.
    [193]刘明启,孙建义,翁晓燕等.重组毕赤酵母产木聚糖酶条件优化[J].浙江大学学报(农业与生命科学版),2006,32(2):222~226.
    [194]白剑宇,周晨妍,王瑾等.宇佐美曲霉木聚糖酶基因在大肠杆菌中的表达与优化[J].食品工业科技,2007,128(6):100~103.
    [195]Santosh O R, Olle H, EVA N K. Effect of postinduction nutrient feed composition and use of lactose as inducer during production of thermostable xylanase in Escherichia coli glucose-limited fed-batch cultivations [J]. J. Biosci. Bioengineering,2005,99 (5):477~484.
    [196]邬敏辰,周晨妍,李剑芳.宇佐美曲霉E001菌株XynⅡ基因的克隆和融合表达[J].西北农林科技大学学报(自然科学版),2007,35(5):47~52.
    [197]包怡红,刘伟丰,董志扬.耐碱性木聚糖酶在短小芽孢杆菌中高效分泌表达的研究[J].中国食品学报,2008,5:37~43.
    [198]J萨姆布鲁克,D W拉塞尔.分子克隆实验指南(第三版)[M].科学出版社,2002.
    [199]胡爱红,陈丽芝,史宝军等.重组毕赤酵母产木聚糖酶酶学性质的研究[J].湖南农业大学学报(自然科学版),2008,34(1):22~24.
    [200]Mario T M, Raghuvir K A, Davi S V, et al. Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain168 (1A1) [J]. FEBS Letters,2005,579:6505-6510.