用于二甲醚水蒸气重整制氢金属铜基催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的日渐枯竭和环境污染的日趋加重,促使人们寻找新型可替代能源。氢气作为一种洁净的可再生能源,符合未来能源的发展趋势。二甲醚水蒸气重整(DME SR)是制氢的有效途径之一,该过程的核心技术是催化剂的开发。目前报道的催化剂需要克服的主要困难是如何提高催化剂的低温活性及选择性。本文分别对CuZnAl和CuFe_2O_4与固体酸γ-Al_2O_3组成的复合催化剂进行了研究,考察了催化剂的焙烧温度、活性组分担载量、重整反应工艺条件、催化剂的取代或掺杂改性等对催化剂性能的影响,采用BET、XRD、H_2-TPR、N_2O化学吸附、XAFS(包括XANES和XAFS)等技术对催化剂进行了详细表征,并对催化剂的结构与性能进行了关联。
     通过对DME SR过程的热力学分析可知:在温度大于200oC,S/C>1.5时,二甲醚水蒸气重整不存在热力学平衡限制,DME可以完全转化;CH_4和C是热力学上容易生成的产物,但是CH_4和C的产生会大大降低产物氢气的收率。因此,要求催化剂对反应产物具有优良的选择性,抑制CH_4和C的形成。
     采用共沉淀法通过水滑石前驱体制备了CuZnAl催化剂,对其进行了活性测试和表征,考察了焙烧温度、活性组分含量对催化剂性能的影响。根据XRD和TPR结果,500oC焙烧样品中Cu与载体相互作用适中,无CuAl_2O_4相生成,CuO物种在还原气氛或反应条件下较易被还原为活性物种(Cu~0和Cu~+),活性较高。活性组分Cu含量为40%时,能够形成结晶较好的水滑石前驱体,焙烧后为晶粒较小的CuO和ZnO物种,其对DME SR反应活性最好。
     为了进一步提高催化剂的活性和选择性,对金属催化剂进行取代或掺杂改性,主要分为两部分工作。(1)以Zr取代部分Al。少量Zr的加入可以削弱Cu-Al之间的相互作用,提高Cu物种的还原性能,但过量Zr的引入会造成Cu物种的聚集长大,降低Cu的分散度。ZrO_2/(Al_2O_3+ZrO_2)的重量比为20wt%时,对应的催化剂CuZnAl_(0.8)Zr_(0.2)O具有最高的Cu分散度,最小的Cu晶粒尺寸以及最佳的催化性能。另外,通过对XANES图的线性拟合发现,反应后的CuZnAl0.8Zr0.2O催化剂含有最多的Cu~+物种,在DME SR反应中可以有效地抑制副产物CO的生成,提高CO_2选择性。(2)在CuZnAl催化剂中掺杂少量Na,K助剂。碱性组份的引入可以中和催化剂表面的部分酸中心,提高了产物中CO_2的选择性。从表征结果来看,在CuZnAl中引入助剂K,促进了Cu物种在载体表面的分散,使其具有较小的粒径,同时降低Cu-Al之间的相互作用,但K负载量太大会过度中和催化剂表面的酸中心,降低催化剂对DME水解反应的活性,从而使DME转化率下降。
     最后对CuFe_2O_4和Al_2O_3复合催化剂用于DME SR反应进行了考察。发现催化剂较适宜的还原条件为350oC还原1h。还原时间过长或还原温度过高会导致Fe_3O_4被还原为金属Fe,削弱Cu与Fe_3O_4之间的相互作用,使Cu晶粒长大,引起活性下降。同时金属Fe的生成会促进甲醇分解反应的发生,导致CO选择性升高。在CuFe_2O_4中掺杂第二种金属组分Co后,促进了分解反应的发生,使DME转化率有一定程度的提升,低温下H_2收率也相应有所提高;高温下掺杂Co的样品比未掺杂的样品DME转化率高,但此时副反应较严重,导致H_2收率变化不大。掺杂Ni后,无论是对DME转化率还是对CO_2的选择性都有不利影响。45h的连续活性测试结果表明,CuFe_2O_4结构有利于Cu物种的稳定,使催化剂保持较高的活性。
The rapid consumption of fossil fuels and as-induced many kinds of environmentpollution have driven extensive exploration of new energy alternatives. Hydrogen is akind of clean and renewable energy, which is more suitable for future energydevelopment. Dimethyl ether steam reforming (DME SR) is an effective way toproduce hydrogen. For the production of hydrogen via DME SR, the development ofhighly efficient catalysts is crucial. Currently, the greatest challenge is to improve thecatalytic performance of the catalysts, including low-temperature activity andselectivity. In this work, a kind of complex catalysts consisting of metal (CuZnAl orCuFe_2O_4) and solid acid (γ-Al_2O_3) is employed for DME SR reaction, andsystematically studied from several aspects, including the effect of calcinationtemperature, contents of active components, reaction conditions and active phasemodifications. Multiple techniques such as BET, XRD, H_2-TPR, N_2O chemisorptionand XAFS (including XANES and EXAFS) were employed for catalystcharacterization. The structures and the properties of the catalysts are well correlated.
     Firstly, we performed thermodynamics analysis and drew a conclusion that DMESR reaction is not controlled by thermodynamics equilibrium and DME can beconverted totally when reaction temperature is higher than200oC and S/C>1.5.Besides, CH_4and C are thermodynamically favorable products; however, theappearance of them will decrease the hydrogen yield. Therefore, high selectivity isrequired for the catalysts to inhibit the formation of CH_4and C.
     Coprecipitation method was employed to prepare CuZnAl catalysts viahydrotalcite precursor, the effect of calcination temperature and contents of activecomponents are investigated based upon catalytic test and characterization results.According to XRD and TPR results, the sample calcined at500oC which is moreactive has a proper interaction between Cu and carrier, besides, no CuAl_2O_4wasidentified and the CuO species in it can be easily reduced to active spieces (Cu~0andCu~+). When CuO content reached40wt.%, hydrotalcite precursor was well formed,and the particle size of CuO and ZnO in the calcined catalyst is quite small from theXRD results, as a result, the catalyst shows the highest DME conversion.
     Metal catalysts are often modified to achieve better catalytic activity andselectivity. In the first step, Al was partially substituted by Zr. The partial substitution of Al by Zr can decrease the Cu-Al ineration and improve the reducibility of Cuspeices. But the presence of excessive amount of Zr results in the aggregation of Cuspecies, decreasing the dispersion of copper species and the catalytic performance ofthe catalysts. The optimal content of Zr is20wt%according to ZrO_2/(Al_2O_3+ZrO_2)ratio. The catalyst CuZnAl_(0.8)Zr_(0.2)O with the highest Cu dispersion and smallest Cucrystallite size exhibits the best performance for DME SR reaction. In addition, it isrevealed by XANES that among all catalyst CuZnAl0.8Zr0.2O contains the highestamount of Cu~+species, which effectively inhibits the formation of CO and increasesthe selectivity of CO_2during dimethyl ether steam reforming. In the second step, Naand K were introduced to CuZnAl catalyst, neutralized a part of acid sites on catalystsurface and improved CO_2selectivity. From the characterization results, theintroduction of K, decreased the Cu-Al interation, made Cu speices more dispersed;however, excessive amount of K would neutralize more acid sites, decrease the activesites of DME hydrolysis, and then decrease DME conversion.
     Finally, a study on the complex catalyst of CuFe_2O_4and Al_2O_3for DME SR wascarried out. Too long time or too high temperature of reduction will transform Fe_3O_4to metallic Fe and decrease the interation between Cu and Fe_3O_4, leading to increaseof Cu particles size and decrease of DME conversion. Meanwhile, the generation ofmetallic Fe will promote methanol decomposition reaction and increase CO selectivity.When the catalyst was doped with Co, the DME conversion increased due to thepromotion of methanol decomposition reaction. Although DME conversion on thecatalyst doped with Co is higher than that on the undoped one, H_2yield of the twocatalysts does not show much difference. Ni as the dopant has a negative effect onDME conversion and CO_2selectivity. The results of long-term DME SR reaction test(45h) shows that the complex catalyst of CuFe_2O_4and Al_2O_3exhibited high stability.
引文
[1] Das D, Veziro lu T N, Hydrogen production by biological processes: a survey ofliterature, International Journal of Hydrogen Energy,2001,26(1):13-28.
    [2]王艳辉,王树东,吴迪镛, PEMFC制氢技术现状,环境污染治理技术与设备,1999,7(1):73-77.
    [3] Carrette L, Friedrich K A, Stimming U, Fuel cells–fundamentals andapplications, Fuel Cells,2001,1(1):5-39.
    [4] Holladay J D, Hu J, King D, et al., An overview of hydrogen productiontechnologies, Catalysis Today,2009,139(4):244-260.
    [5] Zhang Q, Du F, He X, et al., Hydrogen production via partial oxidation andreforming of dimethyl ether, Catalysis Today,2009,146:50-56.
    [6] Lindstr m B, Pettersson L J, Hydrogen generation by steam reforming ofmethanol over copper-based catalysts for fuel cell applications, InternationalJournal of Hydrogen Energy,2001,26(9):923-933.
    [7] Akiyama M, Oki Y, Nagai M, Steam reforming of ethanol over carburizedalkali-doped nickel on zirconia and various supports for hydrogen production,Catalysis Today,181(1):4-13.
    [8] Ashok J, Subrahmanyam M, Venugopal A, Hydrotalcite structure derivedNi-Cu-Al catalysts for the production of H2by CH4decomposition, InternationalJournal of Hydrogen Energy,2008,33(11):2704-2713.
    [9] Ahmed S, Krumpelt M, Hydrogen from hydrocarbon fuels for fuel cells,International Journal of Hydrogen Energy,2001,26(4):291-301.
    [10] Brown L F, A comparative study of fuels for on-board hydrogen production forfuel-cell-powered automobiles, International Journal of Hydrogen Energy,2001,26(4):381-397.
    [11] Semelsberger T A, Borup R L, Greene H L, Dimethyl ether (DME) as analternative fuel, Journal of Power Sources,2006,156(2):497-511.
    [12] Galvita V V, Semin G L, Belyaev V D,et al., Production of hydrogen fromdimethyl ether, Applied Catalysis A: General,2001,216:85-90.
    [13]魏文德,有机化工原料大全,1989,177-181.
    [14]杨晓刚,司芳,郭林,等,二甲醚的生产现状及发展前景,精细与专用化学品,2005,13(15):5-14.
    [15]王乃继,纪任山,王纬,等,含氧燃料——二甲醚合成技术发展现状分析(二),洁净煤技术,2004,10(3):38-41.
    [16]李奋明,甲醇燃料在我国能源结构调整中的作用,小氮肥设计技术,2004,25(1):19-23.
    [17] Dubois J L, Sayama K, Arakawa H, Conversion of CO2to dimethyl ether andmethanol over hybrid catalysts, Chemistry Letters,1992,21(7):1115-1118.
    [18]王铁军,常杰,祝京旭,生物质合成燃料二甲醚的技术,化工进展,2003,22(11):1156-1159.
    [19]李伟,张希良,国内二甲醚研究述评,煤炭转化,2007,30(3):88-95.
    [20] Semelsberger T A, Borup R L, Thermodynamic equilibrium calculations ofdimethyl ether steam reforming and dimethyl ether hydrolysis, Journal of PowerSources,2005,152(1):87-96.
    [21]蒋剑春,生物质能源应用研究现状与发展前景,林产化学与工业,2002,22(2):75-80.
    [22] Semelsberger T A, Borup R L, Thermodynamic equilibrium calculations ofhydrogen production from the combined processes of dimethyl ether steamreforming and partial oxidation, Journal of Power Sources,2006,155(2):340-352.
    [23] Wang S, Ishihara T, Takita Y, Partial oxidation of dimethyl ether over varioussupported metal catalysts, Applied Catalysis A: General,2002,228:167-176.
    [24] Zhang Q, Li X, Fujimoto K, et al., Hydrogen production by partial oxidation andreforming of DME, Applied Catalysis A: General,2005,288:169-174.
    [25] Song L, Li X, Zheng T, Onboard hydrogen production from partial oxidation ofdimethyl ether by spark discharge plasma reforming, International Journal ofHydrogen Energy,2008,33(19):5060-5065.
    [26] Sobyanin V A, Cavallaro S, Freni S, Dimethyl ether steam reforming to feedmolten carbonate fuel cells (MCFCs), Energy&Fuels,2000,14(6):1139-1142.
    [27] Lwin Y, Daud W R W, Mohamad A B, et al., Hydrogen production fromsteam–methanol reforming: thermodynamic analysis, International Journal ofHydrogen Energy,2000,25(1):47-53.
    [28] Armor J N, The multiple roles for catalysis in the production of H2, AppliedCatalysis A: General,1999,176(2):159-176.
    [29] Park S J, Lee D W, Yu C Y, et al., Dimethyl ether reforming in a mesoporousγ-Alumina membrane reactor combined with a water gas shift reaction, Industrial&Engineering Chemistry Research,2008,47(5):1416-1420.
    [30] Kamata H, Ibashi W, Muramoto T, et al., Steam reforming of dimethyl ether overCu/ZnO/ZrO2and gamma-Al2O3mixed catalyst prepared by extrusion, Journalof the Japan Petroleum Institute,2008,51(3):157-164.
    [31] Faungnawakij K, Kikuchi R, Eguchi K, Thermodynamic analysis of carbonformation boundary and reforming performance for steam reforming of dimethylether, Journal of Power Sources,2007,164(1):73-79.
    [32] Faungnawakij K, Shimoda N, Viriya-Empikul N, et al., Limiting mechanisms incatalytic steam reforming of dimethyl ether, Applied Catalysis B: Environmental,2010,97:21-27.
    [33]毛东森,卢冠忠,陈庆龄,等,固体酸代替液体酸催化剂的环境友好新工艺,石油化工,2001,30(2):152-156.
    [34] Solymosi F, Cserényi J, Ovári L, A comparative study of the complete oxidationof dimethyl ether on supported group VIII metals, Catalysis Letters,1997,44(1):89-93.
    [35] Bugyi L, Solymosi F, Adsorption and dissociation of dimethyl ether on clean andoxygen-dosed Rh(111), Surface Science,1997,385:365-375.
    [36] Fukunaga T, Ryumon N, Shimazu S, The influence of metals and acidic oxidespecies on the steam reforming of dimethyl ether (DME), Applied Catalysis A:General,2008,348(2):193-200.
    [37] Takezawa N, Iwasa N, Steam reforming and dehydrogenation of methanol:Difference in the catalytic functions of copper and group VIII metals, CatalysisToday,1997,36(1):45-56.
    [38] Peppley B A, Amphlett J C, Kearns L M, et al., Methanol–steam reforming onCu/ZnO/Al2O3catalysts, Part2. A comprehensive kinetic model, AppliedCatalysis A: General,1999,179:31-49.
    [39] Patel S, Pant K K, Activity and stability enhancement of copper–aluminacatalysts using cerium and zinc promoters for the selective production ofhydrogen via steam reforming of methanol, Journal of Power Sources,2006,159(1):139-143.
    [40]王晓蕾,任克威,潘相敏,等,固体酸催化剂对二甲醚水蒸气重整制氢过程的影响,催化学报,2009,30(4):297-304.
    [41] Feng D M, Zuo Y Z, Wang D Z, et al., Steam reforming of dimethyl ether overcoupled catalysts of CuO-ZnO-Al2O3-ZrO2and solid-acid catalyst, ChineseJournal of Chemical Engineering,2009,17(1):64-71.
    [42] Faungnawakij K, Tanaka Y, Shimoda N, et al., Influence of solid-acid catalystson steam reforming and hydrolysis of dimethyl ether for hydrogen production,Applied Catalysis A: General,2006,304(1):40-48.
    [43] Faungnawakij K, Kikuchi R, Matsui T, et al., A comparative study of solid acidsin hydrolysis and steam reforming of dimethyl ether, Applied Catalysis A:General,2007,333:114-121.
    [44] Benito P L, Gayubo A G, Aguayo A T, et al., Effect of Si/Al ratio and of acidityof H-ZSM5zeolites on the primary products of methanol to gasoline conversion,Journal of Chemical Technology&Biotechnology,1996,66(2):183-191.
    [45] Matsumoto T, Nishiguchi T, Kanai H, et al., Steam reforming of dimethyl etherover H-mordenite-Cu/CeO2catalysts, Applied Catalysis A: General,2004,276(1-2):267-273.
    [46] Iwasa N, Kudo S, Takahashi H, et al., Highly selective supported Pd catalysts forsteam reforming of methanol, Catalysis Letters,1993,19(2):211-216.
    [47] Penner S, Jenewein B, Gabasch H, et al., Growth and structural stability ofwell-ordered PdZn alloy nanoparticles, Journal of Catalysis,2006,241(1):14-19.
    [48] Gabasch H, Knop-Gericke A, Schl gl R, et al., Zn adsorption on Pd(111): ZnOand PdZn alloy formation, The Journal of Physical Chemistry B,2006,110(23):11391-11398.
    [49]Iwasa N, Mayanagi T, Ogawa N, et al., New catalytic functions of Pd–Zn, Pd–Ga,Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol, CatalysisLetters,1998,54(3):119-123.
    [50] Iwasa N, Masuda S, Ogawa N, et al., Steam reforming of methanol over Pd/ZnO:Effect of the formation of PdZn alloys upon the reaction, Applied Catalysis A:General,1995,125(1):145-157.
    [51] Iwasa N, Mayanagi T, Masuda S, et al., Steam reforming of methanol over Pd-Zncatalysts, Reaction Kinetics and Catalysis Letters,2000,69(2):355-360.
    [52] Iwasa N, Mayanagi T, Nomura W, et al., Effect of Zn addition to supported Pdcatalysts in the steam reforming of methanol, Applied Catalysis A: General,2003,248:153-160.
    [53] Iwasa N, Takezawa N, New supported Pd and Pt alloy catalysts for steamreforming and dehydrogenation of methanol, Topics in Catalysis,2003,22(3):215-224.
    [54] Iwasa N, Masuda S, Takezawa N, Steam reforming of methanol over Ni, Co, Pdand Pt supported on ZnO, Reaction Kinetics and Catalysis Letters,1995,55(2):349-353.
    [55] Lorenz H, Turner S, Lebedev O I, et al., Pd–In2O3interaction due to reductionin hydrogen: Consequences for methanol steam reforming, Applied Catalysis A:General,2010,374:180-188.
    [56] Conant T, Karim A M, Lebarbier V, et al., Stability of bimetallic Pd–Zn catalystsfor the steam reforming of methanol, Journal of Catalysis,2008,257(1):64-70.
    [57] Suwa Y, Ito S I, Kameoka S, et al., Comparative study between Zn–Pd/C andPd/ZnO catalysts for steam reforming of methanol, Applied Catalysis A: General,2004,267:9-16.
    [58] Yamada Y, Mathew T, Ueda A, et al., A novel DME steam-reforming catalystdesigned with fact database on-demand, Applied Surface Science,2006,252(7):2593-2597.
    [59] Takeishi K, Suzuki H, Steam reforming of dimethyl ether, Applied Catalysis A:General,2004,260(1):111-117.
    [60] Kobayashi H, Takezawa N, Minochi C, Methanol reforming reaction overcopper-containing mixed oxides, Chemistry Letters,1976,5(12):1347-1350.
    [61] Minochi C, Kobayashi H, Takezawa N, The catalytic activities of methanolreforming catalysts and their preparations, Chemistry Letters,1979,8(5):507-510.
    [62] Sun Q, Zhang Y L, Chen H Y, et al., A novel process for the preparation ofCu/ZnO and Cu/ZnO/Al2O3ultrafine catalyst: Structure, surface properties, andactivity for methanol synthesis from CO2+H2, Journal of Catalysis,1997,167(1):92-105.
    [63] Lima A A G, Nele M, Moreno E L, et al., Composition effects on the activity ofCu–ZnO–Al2O3based catalysts for the water gas shift reaction: A statisticalapproach, Applied Catalysis A: General,1998,171(1):31-43.
    [64] Fridman V Z, Davydov A A, Dehydrogenation of cyclohexanol oncopper-containing catalysts: I. The influence of the oxidation state of copper onthe activity of copper sites, Journal of Catalysis,2000,195(1):20-30.
    [65] Saito M, Murata K, Development of high performance Cu/ZnO-based catalystsfor methanol synthesis and the water-gas shift reaction, Catalysis Surveys fromAsia,2004,8(4):285-294.
    [66] Matter P H, Ozkan U S, Effect of pretreatment conditions on Cu/Zn/Zr-basedcatalysts for the steam reforming of methanol to H2, Journal of Catalysis,2005,234(2):463-475.
    [67] Matter P H, Braden D J, Ozkan U S, Steam reforming of methanol to H2overnonreduced Zr-containing CuO/ZnO catalysts, Journal of Catalysis,2004,223(2):340-351.
    [68] Agrell J, Boutonnet M, Melian-Cabrera I, et al., Production of hydrogen frommethanol over binary Cu/ZnO catalysts-Part I. Catalyst preparation andcharacterisation, Applied Catalysis A: General,2003,253(1):201-211.
    [69] Spencer M S, The role of zinc oxide in Cu/ZnO catalysts for methanol synthesisand the water–gas shift reaction, Topics in Catalysis,1999,8(3):259-266.
    [70] Günter M M, Ressler T, Jentoft R E, et al., Redox behavior of copper oxide/zincoxide catalysts in the steam reforming of methanol studied by in situ X-raydiffraction and absorption spectroscopy, Journal of Catalysis,2001,203(1):133-149.
    [71] Shishido T, Yamamoto Y, Morioka H, et al., Active Cu/ZnO and Cu/ZnO/Al2O3catalysts prepared by homogeneous precipitation method in steam reforming ofmethanol, Applied Catalysis A: General,2004,263(2):249-253.
    [72] Shen J P, Song C, Influence of preparation method on performance ofCu/Zn-based catalysts for low-temperature steam reforming and oxidative steamreforming of methanol for H2production for fuel cells, Catalysis Today,2002,77:89-98.
    [73] Tang Y, Liu Y, Zhu P, et al., High-performance HTLcs-derived CuZnAl catalystsfor hydrogen production via methanol steam reforming, AIChE Journal,2009,55(5):1217-1228.
    [74] Tang X L, Zhang B C, Li Y, et al., CuO/CeO2catalysts: redox features andcatalytic behaviors, Applied Catalysis A: General,2005,288(1-2):116-125.
    [75] Papavasiliou J, Avgouropoulos G, Ioannides T, Production of hydrogen viacombined steam reforming of methanol over CuO–CeO2catalysts, CatalysisCommunications,2004,5(5):231-235.
    [76] Papavasiliou J, Avgouropoulos G, Ioannides T, In situ combustion synthesis ofstructured Cu-Ce-O and Cu-Mn-O catalysts for the production and purificationof hydrogen, Applied Catalysis B: Environmental,2006,66(3–4):168-174.
    [77] Yao C Z, Wang L C, Liu Y M, et al., Effect of preparation method on thehydrogen production from methanol steam reforming over binary Cu/ZrO2catalysts, Applied Catalysis A: General,2006,297(2):151-158.
    [78] Purnama H, Girgsdies F, Ressler T, et al., Activity and selectivity of ananostructured CuO/ZrO2catalyst in the steam reforming of methanol, CatalysisLetters,2004,94(1):61-68.
    [79] Liu Q, Wang L C, Chen M, et al., Waste-free soft reactive grinding synthesis ofhigh-surface-area copper–manganese spinel oxide catalysts highly effective formethanol steam reforming, Catalysis Letters,2008,121(1):144-150.
    [80] Jeong H, Kim K I, Kim T H, et al., Hydrogen production by steam reforming ofmethanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3catalyst,Journal of Power Sources,2006,159(2):1296-1299.
    [81] Agrell J, Birgersson H, Boutonnet M, et al., Production of hydrogen frommethanol over Cu/ZnO catalysts promoted by ZrO2and Al2O3, Journal ofCatalysis,2003,219(2):389-403.
    [82] Lindstr m B, Pettersson L J, Steam reforming of methanol over copper-basedmonoliths: the effects of zirconia doping, Journal of Power Sources,2002,106:264-273.
    [83] Wu G S, Mao D S, Lu G Z, et al., The role of the promoters in Cu based catalystsfor methanol steam reforming, Catalysis Letters,2009,130(1):177-184.
    [84] Ma L, Gong B, Tran T, et al., Cr2O3promoted skeletal Cu catalysts for thereactions of methanol steam reforming and water gas shift, Catalysis Today,2000,63:499-505.
    [85] Huang X, Ma L, Wainwright M S, The influence of Cr, Zn and Co additives onthe performance of skeletal copper catalysts for methanol synthesis and relatedreactions, Applied Catalysis A: General,2004,257(2):235-243.
    [86] Valdés-Solís T, Marbán G, Fuertes A B, Nanosized catalysts for the production ofhydrogen by methanol steam reforming, Catalysis Today,2006,116(3):354-360.
    [87] Liu Y, Hayakawa T, Tsunoda T, et al., Steam reforming of methanol overCu/CeO2catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts,Topics in Catalysis,2003,22(3):205-213.
    [88] Houteit A, Mahzoul H, Ehrburger P, et al., Production of hydrogen by steamreforming of methanol over copper-based catalysts: The effect of cesium doping,Applied Catalysis A: General,2006,306:22-28.
    [89] Russo N, Fino D, Saracco G, et al., N2O catalytic decomposition over variousspinel-type oxides, Catalysis Today,2007,119:228-232.
    [90] Stoyanova D, Christova M, Dimitrova P, et al., Copper–cobalt oxide spinelsupported on high-temperature aluminosilicate carriers as catalyst for CO–O2andCO–NO reactions, Applied Catalysis B: Environmental,1998,17(3):233-244.
    [91] Tanaka Y, Utaka T, Kikuchi R, et al., Water gas shift reaction for the reformedfuels over Cu/MnO catalysts prepared via spinel-type oxide, Journal of Catalysis,2003,215(2):271-278.
    [92] Tanaka Y, Kikuchi R, Takeguchi T, et al., Steam reforming of dimethyl ether overcomposite catalysts of gamma-Al2O3and Cu-based spinel, Applied CatalysisB:Environmental,2005,57(3):211-222.
    [93] Faungnawakij K, Kikuchi R, Fukunaga T, et al., Catalytic hydrogen productionfrom dimethyl ether over CuFe2O4spinel-based composites: Hydrogen reductionand metal dopant effects, Catalysis Today,2008,138(3-4):157-161.
    [94] Faungnawakij K, Shimoda N, Fukunaga T, et al., Cu-based spinel catalystsCuB2O4(B=Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming ofdimethyl ether, Applied Catalysis A: General,2008,341:139-145.
    [95] Faungnawakij K, Tanaka Y, Shimoda N, et al., Hydrogen production fromdimethyl ether steam reforming over composite catalysts of copper ferrite spineland alumina, Applied Catalysis B:Environmental,2007,74:144-151.
    [96] Choi Y, Stenger H G, Fuel cell grade hydrogen from methanol on a commercialCu/ZnO/Al2O3catalyst, Applied Catalysis B: Environmental,2002,38(4):259-269.
    [97] Szizybalski A, Girgsdies F, Rabis A, et al., In situ investigations ofstructure–activity relationships of a Cu/ZrO2catalyst for the steam reforming ofmethanol, Journal of Catalysis,2005,233(2):297-307.
    [98] Natesakhawat S, Watson R B, Wang X, et al., Deactivation characteristics oflanthanide-promoted sol–gel Ni/Al2O3catalysts in propane steam reforming,Journal of Catalysis,2005,234(2):496-508.
    [99] Laosiripojana N, Assabumrungrat S, Catalytic dry reforming of methane overhigh surface area ceria, Applied Catalysis B: Environmental,2005,60:107-116.
    [100] Faungnawakij K, Fukunaga T, Kikuchi R, et al., Deactivation and regenerationbehaviors of copper spinel-alumina composite catalysts in steam reforming ofdimethyl ether, Journal of Catalysis,2008,256(1):37-44.
    [101] Shimoda N, Faungnawakij K, Kikuchi R, et al., Catalytic performanceenhancement by heat treatment of CuFe2O4spinel and gamma-aluminacomposite catalysts for steam reforming of dimethyl ether, Applied Catalysis A:General,2009,365(1):71-78.
    [102] Faungnawakij K, Kikuchi R, Shimoda N, et al., Effect of Thermal Treatment onActivity and Durability of CuFe2O4-Al2O3Composite Catalysts for SteamReforming of Dimethyl Ether, Angewandte Chemie International Edition,2008,47(48):9314-9317.
    [103] Cavani F, Trifirò F, Vaccari A, Hydrotalcite-type anionic clays: preparation,properties and applications, Catalysis Today,1991,11(2):173-301.
    [104] Du H, Lo P-K, Hu Z, et al., Lewis acid-activated oxidation of alcohols bypermanganate, Chemical Communications,2011,47:7143-7147.
    [105] Reid R C, Prausnitz J M, Poling B E, The properties of gases and liquids,4thedition, New York: McGraw Hill,1987.
    [106] Avgouropoulos G, Ioannides T, Selective CO oxidation over CuO-CeO2catalysts prepared via the urea–nitrate combustion method, Applied Catalysis A:General,2003,244(1):155-167.
    [107] Li Y, Chen J, Chang L, et al., The doping effect of copper on the catalyticgrowth of carbon fibers from methane over a Ni/Al2O3catalyst prepared fromfeitknecht compound precursor, Journal of Catalysis,1998,178(1):76-83.
    [108] Hines D R, Seidler G T, Treacy M M J, et al., Random stacking of acommensurate guest layer in an ordered host: NiAl layer-double-hydroxides,Solid State Communications,1997,101(11):835-839.
    [109] Chmielarz L, Ku trowski P, Rafalska-asocha A, et al., Influence of Cu, Co andNi cations incorporated in brucite-type layers on thermal behaviour ofhydrotalcites and reducibility of the derived mixed oxide systems,Thermochimica Acta,2002,395:225-236.
    [110] Xu Z P, Zeng H C, Decomposition processes of organic-anion-pillared claysCoaMgbAl(OH)c(TA)d·nH2O, The Journal of Physical Chemistry B,2000,104(44):10206-10214.
    [111] Behrens M, Kasatkin I, Kuhl S, et al., Phase-pure Cu,Zn,Al hydrotalcite-likematerials as precursors for copper rich Cu/ZnO/Al2O3catalysts, Chemistry ofMaterials,2010:386-397.
    [112] Chinchen G C, Hay C M, Vandervell H D, et al., The measurement of coppersurface areas by reactive frontal chromatography, Journal of Catalysis,1987,103(1):79-86.
    [113] Tanabe K, Surface and catalytic properties of ZrO2, Materials Chemistry andPhysics,1985,13(3–4):347-364.
    [114] Chang C C, Chang C T, Chiang S J, et al., Oxidative steam reforming ofmethanol over CuO/ZnO/CeO2/ZrO2/Al2O3catalysts, International Journal ofHydrogen Energy,2010,35(15):7675-7683.
    [115] Huang G, Liaw B J, Jhang C J, et al., Steam reforming of methanol overCuO/ZnO/CeO2/ZrO2/Al2O3catalysts, Applied Catalysis A: General,2009,358(1):7-12.
    [116] Lindstrom B, Agrell J, Pettersson L J, Combined methanol reforming forhydrogen generation over monolithic catalysts, Chemical Engineering Journal,2003,93(1):91-101.
    [117] Patel S, Pant K, Influence of preparation method on performance ofCu(Zn)(Zr)-alumina catalysts for the hydrogen production via steam reformingof methanol, Journal of Porous Materials,2006,13(3):373-378.
    [118] Velu S, Suzuki K, Okazaki M, et al., Oxidative steam reforming of methanolover CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen forfuel cells: catalyst characterization and performance evaluation, Journal ofCatalysis,2000,194(2):373-384.
    [119] Li Y F, Dong X F, Lin W M, Effects of ZrO2-promoter on catalytic performanceof CuZnAlO catalysts for production of hydrogen by steam reforming ofmethanol, International Journal of Hydrogen Energy,2004,29(15):1617-1621.
    [120] Velu S, Suzuki K, Gopinath C S, et al., XPS, XANES and EXAFSinvestigations of CuO/ZnO/Al2O3/ZrO2mixed oxide catalysts, PhysicalChemistry Chemical Physics,2002,4(10):1990-1999.
    [121] Fox E B, Velu S, Engelhard M H, et al., Characterization of CeO2-supportedCu–Pd bimetallic catalyst for the oxygen-assisted water–gas shift reaction,Journal of Catalysis,2008,260(2):358-370.
    [122] Sobczak J W, Sobczak E, Drelinkiewicz A, et al., Local structure of a Pd-dopedpolymer investigated using a linear combination of XANES spectra, Journal ofAlloys and Compounds,2004,362:162-166.
    [123] Oguchi H, Kanai H, Utani K, et al., Cu2O as active species in the steamreforming of methanol by CuO/ZrO2catalysts, Applied Catalysis A: General,2005,293:64-70.
    [124] Huang Y J, Wang H P, Lee J F, Speciation of copper in ZSM-48during NOreduction, Applied Catalysis B: Environmental,2003,40(2):111-118.
    [125] Kulkarni G U, Rao C N R, EXAFS and XPS investigations of Cu/ZnO catalystsand their interaction with CO and methanol, Topics in Catalysis,2003,22(3):183-189.
    [126]叶志良,碱金属离子对PtSn/Al2O3催化剂丙烷脱氢活性的影响,精细石油化工进展,2002,3(9):7-10.
    [127]何代平,丁云杰,尹红梅,等,碱金属助剂对MnOx/ZrO2催化合成甲醇及异丁醇反应性能的影响,催化学报,2003,24(2):111-114.
    [128]曹平,严菁,李平,等,富氢气氛中CO的选择性氧化——碱金属助剂对Pt/γ-Al2O3催化剂性能的影响,工业催化,2004,12(1):41-44.
    [129] Zhai Y, Alkali-stabilized Pt-OHxspecies catalyze low-temperature water-gasshift reactions, Science,2010,329(5999):1633-1636.
    [130] Kameoka S, Tanabe T, Tsai A, Spinel CuFe2O4: a precursor for copper catalystwith high thermal stability and activity, Catalysis Letters,2005,100(1):89-93.
    [131] Grzegorczyk W, Denis A, Gac W, et al., Hydrogen formation via steamreforming of ethanol over Cu/ZnO catalyst modified with nickel, cobalt andmanganese, Catalysis Letters,2009,128:443-448.
    [132] Wang X, Pan X, Lin R, et al., Steam reforming of dimethyl ether overCu–Ni/γ-Al2O3bi-functional catalyst prepared by deposition–precipitationmethod, International Journal of Hydrogen Energy,2010,35(9):4060-4068.
    [133] Mizuno K, Yoshikawa K, Wakejima N, et al., Production of synthesis gas withvarious compositions of H2, CO, and CO2from methanol and water on aNi-K/Al2O3catalyst, Chemistry Letters,1986,15(11):1969-1972.