天然气非催化部分氧化过程转化炉大型化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以天然气制合成油(GTL)核心技术之一的天然气非催化部分氧化制备合成气转化炉技术的大型化为目标,以天然气非催化转化技术的工业应用实践为基础,研究了转化炉大型化工艺操作条件的优化选择、转化烧嘴与炉体合理匹配等关键技术的理论依据和放大方法,提出了适于百万吨/年GTL合成油装置用大型化天然气非催化部分氧化转化炉系统集成的可实施技术方案。概要如下:
     1.通过对已有的天然气非催化部分氧化转化过程研究结果及其关键技术的分析和热力学平衡计算,探讨了转化炉工艺操作条件对转化结果的影响,提出了优化的大型天然气非催化部分氧化转化炉工艺操作条件。
     2.采用大型冷模实验和数值模拟相结合的方法,研究了转化炉冷态流场。在(?)1000mm大型冷模实验装置上重点研究了转化炉内的轴向速度和炉内气体停留时间分布,通过冷态流场数值模拟计算,验证了实验研究与数值模拟结果的符合性。
     3.采用概率密度函数模型(PDF)模型,研究了现有工业运行装置和未来大型转化炉内流动和反应的状况,考察了工艺条件对大型转化炉内流动与反应过程的影响。模拟结果表明:大型转化炉与已工业运行转化炉两者的炉内流动与混合基本相似;降低氧气入口温度对降低转化炉拱顶附近的温度作用不明显;提高氧气入口温度可以降低拱顶温度;增加水蒸汽量虽然在一定程度上降低拱顶的气体温度,但火焰位置并没有显著的下移。
     4.采用稳态传热理论和灵敏度分析方法,从理论上印证了影响转化炉拱顶外壁温度的关键因素为耐火隔热衬里层各物性参数中的莫来石隔热砖导热系数;采用CFD数值模拟方法,建立了多孔隔热材料的微观结构模型、微观传热物理模型和数学模型,进行了微观传热过程的数值模拟,研究了莫来石隔热砖材料表观(实际)导热系数与转化炉内操作温度、含氢气氛及微观结构尺度(粒径大小及开口气孔率)之间的变化规律和量化关系,提出了转化炉内环境45-70%含氢量气氛下多孔隔热材料的表观(实际)导热系数的预测方法,工业运行转化炉的应用验证表明与实测数据具有较好的偏离度(小于6%),可以指导转化炉拱顶隔热衬里层设置的工程设计;建立了转化炉拱顶耐火隔热衬里衬里层传热过程的整体物理模型,进行了全尺寸、变物性多物理场的整体传热模拟。结果表明:大型天然气转化炉拱顶隔热衬里的温度分布特点与工业运行装置转化炉拱顶基本相似,验证了该拱顶隔热衬里层设计的正确性。
     5.在总结天然气非催化部分氧化的工业化成功工程实践的基础上,建立了适于百万吨/年规模GTL合成油装置的大型天然气非催化部分氧化工艺集成系统,提出了可实施的大型天然气非催化转化关键设备设计和单系列工艺流程的技术方案。该技术方案表明:大型转化炉生产有效合成气(CO+H2)147,100Nm3/h,大然气转化系列数和转化炉数量为5个系列5台,单台转化炉对应的合成油产量为20万吨/年;烧嘴采用与工业成功运行烧嘴相同的物料流道设置技术,为氧气(少量)-氧气(大量)天然气—保护蒸汽四通道;工艺流程可划分为天然气转化工序、合成气热量回收工序和合成气洗涤工序;工艺系统的物料热量模拟计算结果与工业运行装置的实际操作数据基本相同,冷煤气效率为84%,总能量利用效率为99%。
This paper, by taking the large-scale industrial reformer technology for making syngas (CO+H2) by the process of natural gas non-catalytic partial oxidation (POX) being one of the key technologies for synthetic oil production from natural gas (GTL) as the objective and the practical industrial applications of natural gas non-catalytic conversion technology as the basis, has studied both the theoretical basis and enlargement methods for such key technologies as optimized selection of process operation conditions for large-scale industrial reformer and reasonable match of burner with reformer, and put forward some implemented technical solutions in the integration of large-scale industrial reformer system employing natural gas non-catalytic POX process for setting up a GTL unit in the capacity producing a million tons of synthetic oil. A summary is as follows:
     1. With the study results of existing conversion process of natural gas non-catalytic POX and the analysis of its related technologies as well as the thermodynamic equilibrium calculations, the effects on the conversion results by process operation conditions in reformer have been discussed and the principles in optimized selection of process operation conditions in large-scale reformer employing natural gas non-catalytic POX put forward.
     2. The cold flow field in reformer has been studied by the two approaches of both large-scale experiment of cold model and numerical simulation. The study focusing on both the axial velocity and the residence time distribution of gas in the reformer have been carried out on a large-scale cold test device of 01000mm;the result compliance of experimental study and numerical simulation have been verified with the simulation calculations of cold flow field.
     3. The status of flow and reaction both in the existing industrial operating plant and large-scale reformer have been studied and simulated by taking the selected probability density function (PDF) model and the effect on both the flow and reaction in large-scale reformer by process conditions investigated. The simulation results show that both the flow and mix in large-scale reformer and industrial operating reformer are similar; the effect in reducing the inlet oxygen temperature is not obvious in reducing the temperature in the vicinity of reformer vault whereas increasing inlet oxygen temperature may reduce vault temperature; though increasing the steam amount may reduce the gas temperature on vault to a certain extent, yet the flame position has not shown a significant movement downward.
     4. By taking a steady heat-transfer theory and a sensitivity analysis it is theoretically confirmed that the key factor affecting the outer-wall temperature of reformer vault is being the thermal conductivity of Mullite insulation bricks in the various physical parameters of refractory insulation lining; a micro-structural model of porous insulation material, a micro-physical model of heat transfer and a mathematical model have been set up by taking a CFD numerical simulation for numerical simulation of micro process of heat transfer in the study of variation laws and quantitative relationship between the apparent (actual) thermal conductivity of Mullite insulation bricks and the operating temperature, hydrogen atmosphere and micro-structural scale (particle size and open porosity), and a prediction method for a apparent (actual) thermal conductivity of porous insulation material at 45-70% hydrogen atmosphere inside reformer has been proposed; the application verification of industrial operating reformer shows a better deviation (less than 6%) which may guide the arrangement engineering design of insulation lining on reformer vault; an integral physical model of heat transfer process on refractory insulation lining of reformer vault has been established and an integral simulation of heat transfer in full size with variable physical properties and multi-physical fields has been carried out. The results show that the temperature distribution features of insulation lining on large-scale natural gas reformer vault are similar to that of industrial operating plant, thus, the correctness in the design of this vault insulation lining has been verified.
     5. Based upon a summary of engineering practice of successful industrialization of natural gas non-catalytic POX, a large-scale process integration system of natural gas non-catalytic POX for a GTL plant in a million-ton capacity has been set up, an implemented technical scheme for the design of critical equipment and a process flows of a single train of large-scale natural gas non-catalytic conversion technology proposed. The said scheme shows that (1) a large-scale reformer produces an effective syngas (CO+H2) 147,100Nm3/h with 5 trains of natural gas conversion and 5 reformers, the yield of synthetic oil from each single reformer is 200,000t/a; (2) burner uses the same design technique for the arrangement of stream flows as that in the successful industrial operation being 4 channels of oxygen (small amount)-oxygen (large amount)-natural gas-protective steam; (3) process flows may be divided into sections of natural gas conversion, syngas heat recovery and syngas scrubbing; (4) the simulated heat calculation results of process system are basically the same as the actual operating data from industrial operating plant, the efficiency of cold gas is 84% and the total energy efficiency,99%.
引文
[1]崔民选,霍小龙.2010年中国能源发展报告,P2
    [2]BP公司《BP世界能源统计2010》(年鉴),P4
    [3]中国石化集团经济技术研究院《中国石油石化产业经济研究年度报告》2010,P2-3
    [4]余黎明.我国天然气化工产业资源利用的前景分析.化学工业,2008,4:7-14
    [5]贺黎明,沈召军.甲烷的转化和利用.化学工业出版社,ISBN7-5025-7416-6:3-5
    [6]于遵宏,王辅臣等.煤炭气化技术.化学工业出版社[M],北京,2010,345-63
    [7]中国石化集团宁波工程有限公司.GTL合成油概念设计方案(内部资料).2006.6
    [8]Andrew P.E.York et al. Brief overview of the partial oxidation of methane to synthesis gas[J]. Topics in Catalysis.2003,22,:3-4
    [9]Quanli Zhu,Xutao Zhao,Youquan Deng.Advances in the Partial Oxidation of Methane to Synthesis Gas[J].Journal of Natural Gas Chemistry,13(2004)191-203
    [10]Kim Aasberg-Petersen,Thomas S. Christensen, Charlotte Stub Nielsen, Ib Dybkjaer. Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications[J]. Fuel Processing Technology,2003,83:253-261
    [11]王卫等.甲烷制备合成气工艺开发进展.精细石油化工进展,2006,7:27-31
    [12]D.J.Wilhelm et al. Syngas production for gas-to-liquids applications:technologies, issues and outlook[J]. Fuel Processing Technology,2010,71:139-148
    [13]齐心冰等.甲烷水蒸气重整和部分氧化反应制合成气.天然气工业,2005;25(6):125-127
    [14]于遵宏.烃类蒸汽转化.烃加工出版社[M],北京,1987,45-63
    [15]张援越.天然气非催化制合成气的模拟计算及工艺优化[D].天津大学,2006
    [16]黑均安,王琪,贾新海.换热式转化工艺,中氮肥,2001,5:8-10
    [17]刘少文,李永丹.甲烷重整制氢气的研究进展[J].武汉化工学院学报2005,1:20-27
    [18]陈廷花天.然气蒸汽转化工艺新进展[J],大氮肥,1999,22(3):171-173
    [19]张继亨.氨厂天然气蒸汽转化工艺的论述[J],辽宁化工,1991,1:6-11
    [20]Sheng-Guang Wang. A detailed mechanism of thermal CO2 reforming of CH4[J]. Journal of Molecular Structure (Theochem) 673 (2004) 181-189
    [21]Achcroft A T.Cheetham A K.Foord J S. Selectiv.e oxidation of methane to synthesis gas use transition metal catalysts. Nature,1990,344:319-321
    [22]鲁辉,张岩.LiLaNiOx/γ-Al2O3催化剂上甲烷加压部分氧化制合成气,2010,18(12):66-69.
    [23]陈吉祥等.甲烷与二氧化碳重整制取合成气研究进展[J].天然气化工,2003;28:32-37
    [24]纪红兵等.耦合甲烷部分氧化与二氧化碳重整的研究进展[J].天然气化工2005;30(6):41-47
    [25]Gronchi.P, Mazzocchia. C, del Rosso, R. SourceCarbon dioxide reaction with methane on La2O3 supported Rh catalysts. Energy Conversion and Management,1995,36(6): 605-608.
    [26]Brundage, Mark A.; Chuang, Steven S.C.; Hedrick, Scott A.Dynamic and kinetic modeling of isotopic transient responses for Co insertion on Rh and Mn-Rh catalysts Catalysis Today,1998 44(1-4):151-163.
    [27]Ruckenstein, E., Yun Hang Hu. Role of Support in CO2 Reforming of CH4 to Syngas over Ni Catalysts[J]. Journal of Catalysis,1996,162(2):230-238.
    [28]宫丽红,史克英.甲烷二氧化碳转化制合成气稀土助剂抗积炭性能的研究[J].哈尔滨师范大学自然科学学报1999,15(2):73-76
    [29]路勇,沈师孔.甲烷催化部分氧化制合成气研究新进展[J].石油与天然气化工,1997,
    [30]Zhenhua Li,Gar B.Hoflund. A Review on Com plete Oxidation of Methane at Low Tem peratures[J]. Journal of Natural Gas Chemistry,2003,12:153-160
    [31]李振花等.甲烷部分氧化制合成气反应的研究[J].化学反应工程与工艺,2002;18(1):36-41
    [32]Bharadwaj, SS, Schmidt, LD. Catalytic partial oxidation of natural gas to syngas[J]. Fuel Processing Technology,1995;42:109-127.
    [33]王卫,申欣,孙道兴,程玉春.国内外甲烷催化部分氧化技术进展[J].工业催化.2005,11
    [34]孙长庚,刘宗章,张敏华.甲烷催化部分氧化制合成气的研究进展[J].化学工业与工程,2004,7:277-280
    [35]刘志红,丁石,程易.甲烷催化部分氧化制合成气研究进展[J].石油与天然气化工工,2006;35(1):10-13
    [36]臧旭,张敏华,姜浩锡.甲烷部分氧化机理的DFT研究-CH4的活化与解离[J].天然气化工,2004;9(3):13-18
    [37]高蕾等.甲烷氧化偶联催化剂表征研究进展[J].天然气化工,2002;27(5):3944
    [38]万惠霖,翁维正.甲烷部分氧化制合成气反应机理的原位时间分辨IR光谱和Raman光谱表征[J].复旦学报(自然科学版),2002;41(3):243-250
    [39]Yu.P.Tulenin,M.Yu.Sinev,V.V.Savkin,V.N.Korchak.Dynamic behaviour of Ni-containing catalysts during partial oxidation of methane to synthesis gas[J].Catalysis Today 91-92 (2004) 155-159
    [40]Quiceno, Raul,et al.Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze:Detailed gas-phase and surface chemistries coupled with 3D flow field simulations[J]. Applied Catalysis A:General; 2006,4:166-176
    [41]M.Prettre,C. Eichner, M. PerrinN. Catalytic oxidation of Methane to carbon monoxide and hydrogen. Transactions of the Faraday Society,1946,42:335-340
    [42]D. Dissanayake, M. P. Rosynek, Karl C. C. Kharas, et al. Partial oxidation of methane to carbon monoxide and hydrogen over a Ni/A12O3 catalyst[J]. Journal of Catalysis, 1991,132(1):117-127.
    [43]Vaso A. Tsipouriari, Xenophon E. Verykios. Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst.Catalysis Today,2001,64(1):83-90
    [44]F. Van Looij, J.C. Van Giezen, E.R. Stoble and J.W. Geus. Catal. Today 21 (1994), p.495. Mechanism of the partial oxidation of methane to synthesis gas on a silica-supported nickel catalyst
    [45]N Nakamura, R Takahashi, S Sato, ToSodesawa et al. Ni/SiO2 catalyst with hierarchical pore structure prepared by phase separation in sol-gel process. Physical Chemistry Chemical Physics.2000,2(1),4983-4990.
    [46]A Guerrero-Ruiz, P Ferreira-Aparicio, M B Bachiller-Baeza, I Rodriguez-Ramos. Isotopic tracing experiments in syngas production from methane on Ru/A12O3 and Ru/SiO2.Catalysis Today.1998,46(2):99-105
    [47]O. V. Buyevskaya, D. Wolf and M. Baerns. Rhodium-catalyzed partial oxidation of methane to CO and H2. Transient studies on its mechanism. Catalysis Letters 29(2):249-260.
    [48]W.J.M. Vermeiren, E. Blomsma and P.A. Jacobs, Catalytic and thermodynamic approach of the oxyreforming reaction of methane. Catalysis Today.1992 13(2) (1992),427-436.
    [49]D. A. Hickman and L. D. Schmidt Synthesis gas formation by direct oxidation of methane over Pt monoliths.Journal of Catalysis 1992,138(1):1992, Pages 267-282
    [50]A.Bhattacharyya, V.W.Chang. Rapid Catalytic reforming of methane with CO2 and its application of other reactions. Studies in Surface Science and Catalysis,1994,88:207-213
    [51]J.A.Lapszewicz.X.Z.Jiang. Symposium on chemistry and characterisation of supported metal catalysts. Presented before the division of petroleum chemistry. Inc American chemical socity. Chicago,August 22-27.1993
    [52]沈师孔,李春义,余长春.Ni/Al2O3催化剂上甲烷部分氧化制合成气反应机理[J]催化学报,1998,V19(4):309-314
    [53]金荣超,陈燕馨,崔巍,李文钊,于春英,江义.物理化学学报,1999,15(04):313-318
    [54]A.G.Steghuis, J.G. Ommen, J.A Lercher. On the reaction mechanism for methane partial oxidation over yttria/zirconiaCatalysis Today.1998 46(2):91-97.
    [55]DuBois E. Synthesis gas by partial oxidation[J]. Industrial and Engineering Chemistry. 1956.48(7):1118-1122
    [56]Hengyong Xu et al. A study on the reforming of natural gas with steam, oxygen and carbon dioxide to produce syngas for methanol feedstock[J]. Journal of Molecular Catalysis A:Chemical,1999,47:41-46
    [57]F.J.Brykowski.Ammionia and Synthesis Gas.1979:79-91
    [58]Alexander A. Konnov, Jianning Zhu, Johnh. Bromly, and Dong-Ke Zhang, Noncatalytic Partial Oxidation of Methane into Syngas over a wide Temperature Range [J]. Combust. Sci. and Tech.,2004,176:1093-1116
    [59]J. Zhu, D. Zhang, K.D. King. Reforming of CH4 partial oxidation: thermodynamic and kinetic analyses[J]. Fuel,2001,80:899-905
    [60]Vladimir S. Arutyunov. Recent Results on Fast Flow Gas_Phase Partial Oxidation of Lower A1kanes[J]. Journal of Natural Gas Chemistry.2004,10:22-26
    [61]王建忠.天然气部分氧化制合成气的工业应用[J].石油与天然气化工,2002,31(3):114-115
    [62]王建忠.渣油气化炉改烧天然气工艺分析[J].大氮肥,2002,25(2):138-140
    [63]王辅臣、龚欣、王亦飞、郭文元、亢万忠、李晓黎[J].气流床天然气部分氧化制合成气工艺分析.大氮肥,2003,26(1):65-69
    [64]王辅臣,李伟锋,代正华等.天然气非催化部分氧化制合成气过程的研究[J].石油化工,2006;39(1):41-52
    [65]代正华,王辅臣等.天然气部分氧化炉的数值模拟.化学工程,2005,4
    [66]周新文,陈彩霞,王辅臣.天然气非催化部分氧化反应机理模拟[J].华东理工大学学报(自然科学版),2010,36(2):192-197
    [67]周新文.天然气非催化部分氧化炉内反应过程分析与模拟[D].华东理工大学,2009
    [68]乔瑜,徐明厚,徐晓光,Pisi Lu,Viriato Semio,william H.Green.基于自适应化学理论的复杂CH4燃烧模拟[J]..中国电机工程学报,2004;24(2):181-184
    [69]刘宏,杜新.甲烷超声速燃烧过程的数值模拟[J].推进技术,2002;23(1)64-66
    [70]刘君.甲烷、空气超声速燃烧流动数值模拟[J].推进技术,2003;24(4)297-281
    [71]Maryam Younessi-Sinaki,Edgar A.Matida,Feridun Hamdullahpur. Kinetic model of homogeneous thermal decomposition of methane and ethane.international journal of hydrogen energy,2009,34:3710-3716
    [72]董刚,王海峰,陈义良.甲烷/空气湍流射流扩散火焰的化学动力学模拟.燃烧科学与技术,2003;9(6):491-496
    [73]肖保国,钱炜祺,杨顺华,乐嘉陵.甲烷点火燃烧的简化化学反应动力学模型.推进技术,2006;27(2):101-105
    [74]W.P.JONES and M.KAKHI. Pdf Modeling of Finite-rate Chemistry Effects in Turbulent Nonpremixed Jet Flames. COMBUSTION AND FLAME 115:210-229(1998)
    [75]唐敬友等.甲烷气体的一维冲击反应动力学数值模拟.爆炸波与冲击波.2001,4:154-162
    [76]蒋勇,邱榕,董刚,范维澄.耦合天然气详细反应机理的三维湍流预混火焰结构数值预测.燃烧科学与技术,2005;11(2):109-115
    [77]Lemke, B, Roodhouse, C, Glumac, N, Krier, H. Hydrogen synthesis via combustion of fuel-rich natural gas/air mixtures at elevated pressure. Int. J. Hydrogen Energy.2004; 30:893-902.
    [78]Rasmussen, CL, Jakobsen, JG, Glarborg, P. Experimental measurements and kinetic modeling of CH4/O2 and CH4/C2H6/O2 conversion at high pressure,Int. J. Chem. Kinet. 2008; 40:778-807.
    [79]Zahedi nezhad, M, Rowshanzamir, S, Eikani, MH. Autothermal reforming of methane to synthesis gas:Modeling and simulation. International Journal of Hydrogen Energy.2009; 34:1292-1300.
    [80]Kumar, S, Kumar, Surendra, Prajapati, J. Hydrogen production by partial oxidation of methane:Modeling and simulation. International Journal of Hydrogen Energy,2009,6: 43
    [81]Hughes, KJ, Tura'nyi, T, Clague, AR, Pilling, MJ. Development and Testing of a Comprehensive Chemical Mechanism for the Oxidation of Methane. Int J. Chem Kinet. 2001;33:513-538.
    [82]Petersen, EL, Davidson, DF, Hanson, RK. Kinetics Modeling of Shock-Induced Ignition in Low-Dilution CH4/O2 Mixtures at High Pressures and Intermediate Temperatures. Combust. Flame,1999;117:272-290.
    [83]Fernandez-Tarrazo, E, Sanchez, AL, Linan Martinez, A, Williams, FA. A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame. 2006;147:32-38.
    [84]Hilbert, R, Tap, F, El-Rabii, H, Thevenin, D. Impact of detailed chemistry and transport models on turbulent combustion simulations. Progress in Energy and Combustion Science.2004;30:61-117.
    [85]Bilger, RW. Future progresss in turbulent combustion research. Progress in Energy and Combustion Science.2000;26:367-380.
    [86]Veynante, D, Vercisch, L. Turbulent combustion modeling. Progress in Energy and Combustion Science.2002; 28:193-266.
    [87]Liu, Kai, Stephen, B, Pope, DA. Caughey, Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry. Combustion and Flame.2005; 141:89-117
    [88]Gkagkas, K, Lindstedt, RP. Transported PDF modeling with detailed chemistry of pre-and auto-ignition in CH4/air mixtures. Proceedings of the Combustion Institute.2007;31: 1559-1566.
    [89]Barlow, RS, and Frank, J H. Effects of turbulence on species mass fractions in methane/air jet flames. Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute.1998. p.1087-1095
    [90]姚小莉,刘瑾,李自强.天然气制合成油工艺现状及发展前景.化工时刊,2008,22(12):61-65
    [91]中国石化经济技术研究院.中国石化股份公司天然气利用策略研究(内部资料)
    [92]孙晓瑜.我国替代石油能源产业的发展现状分析[J].安阳工学院学报,2009,(2)
    [93]程惠明.基于天然气为原料的化工开发[J].化学工业与工程技术,2009,(6)
    [94]中国石化集团兰州设计院.“油改气”工艺设计包(内部资料).2001.11
    [95]肖雄兵.从天然气制备合成气.化工设计通讯,2004,3:8-10
    [96]姜国新,周文娟.合成气油改气技术方案选择.化工科技,2002
    [97]王忠政.重油气化装置改天然气非催化部分氧化装置设计运行小结.中氮肥,2003,6
    [98]魏有福.天然气非催化部分氧化工艺对油造气制氨厂的改造.化工设计,2000,10(1)
    [99]邢春发,冯俊.天然气转化制备合成气工艺进展.江西化工,2002,1
    [100]曾树彦.天然气非催化部分氧化喷嘴的设计.中氮肥,2004,9
    [101]唐宏青.天然气制氨国产化工艺包的开发.大氮肥,1998,6
    [102]唐宏青.碳一化工新技术概论.氮肥与甲醇编辑部,2006:88-90
    [103]Rob Overtoom, Niels Fabricius, and Wim Leenhouts. Shell GTL, from Bench scale to World scale. Proceedings of the 1st Annual Gas Processing Symposium,2009
    [104]于遵宏,沈才大,王辅臣等.渣油气化过程分析与三区模型.石油学报(石油加工),1993,9(3):61-68
    [105]于遵宏,沈才大,王辅臣等.水煤浆气化炉气化过程的三区模型.燃料化学学报,1993,21(1):90-95
    [106]王辅臣.气流床气化过程研究[D].上海:华东理工大学,1995
    [107]李希,陈甘棠,戎顺熙.微观混合问题的研究(Ⅳ)混合区域的划分.化学反应工程与工艺,1990,6(4):23-29
    [108]列维齐.物理化学流体力学.戴干策,陈敏恒译,上海:上海科技出版社,1965
    [109]I. Wygnanski, H. Fiedler. Some measurements in the self-preserving jet J. Fluid Mech., 1969,38:577
    [110]朱炳辰.无机化工反应工程,北京:化学工业出版社,1981
    [111]R. C. Reid, J. M. Prausnitz and T. K. Sherwood, The Properties of Gases and Liquids, New York:The Kingsport Press,3rd Edition,1972
    [112]孙学信,陈建原.煤粉燃烧物理化学基础,武汉:华中理工大学出版社,1991
    [113]Smoot LD, Smith PJ.Coal combustion and gasification. The plenum chemical engineering series. New York:Plenum Press; 1985.
    [114]Xinwen Zhou, Caixia Chen, Fuchen Wang, Modeling of Non-catalytic Partial Oxidation of Natural Gas under Conditions Found in Industrial Reformers, Chemical Engineering and Processing,2010,49:59-64,
    [115]Xinwen Zhou, Caixia Chen, Fuchen Wang.Multi-dimensional modeling of non-catalytic partial oxidation of natural gas in a high pressure reformer. International Journal of Hydrogen Energy,2010,35:1620-1629.
    [116]张顺利,郑洪涛,穆勇.EDC模型在三维燃烧流场数值模拟的应用.应用科技.2005,32(4):48-50
    [117]蒋勇,邱榕等.耦合天然气详细反应机理的三维湍流预混火焰结构数值预测.燃烧科学与技术.2005,11(2):109-115
    [118]Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et. al., http://www.me.berkeley.edu/gri_mech/
    [119]Sanjay M. Correa. Models for High-intensity Turbulent Combustion. Computing Systems in Engineering,1994,5:135-145.
    [120]http://www.chem.leeds.ac.uk/Combustion/Combustion.html
    [121]Christopher H, Marrten B. Gasification [M]. USA:Gulf Professional Publishing,2003.
    [122]杨世铭,陶文铨.传热学[M]高等教育出版社1998
    [123]华东理工大学,中国石化集团宁波技术研究院.气态烃非催化部分氧化制合成气关键技术及工业应用报告(内部资料).2009.12
    [124]郑铮,刘强.水煤浆气化炉拱顶超温原因探析及预防措施[J].煤化工,2001,(02)
    [125]耐火材料标准汇编组;中国标准出版社第二编辑室编.耐火材料标准汇编[M]中国标准出版社2003
    [126]程远贵,董岱峰,周勇,朱家骅,徐光明.耐火纤维毡的高温导热系数研究[J].化工设计,2001,(02)
    [127]尹斌华,马红安,宿太超,李尚升,贾晓鹏.高温高压下珍珠岩石温性能的研究[J].超硬材料工程,2007,(01)
    [128]Xi-Ren Cao. Stochastic Learning and Optimization-A Sensitivity-Based Approach[M],Springer, New York,2007.
    [129]Gallucci, F.Chiaravalloti,S.Tosti. The effect of mixture gas on hydrogen permeation through a palladium membrane:Experimental study and theoretical approach[J].International Journal Hydrogen Energy,2007,32 (12):1837-1845
    [130]S. Torquato. Random heterogeneous materials:Microstructure and Macroscopic properties[M]. NewYork:Spsinger-Verlag,2002:1-19.
    [131]Z.Y.Yuan,B.L.Su. Insights into hierarchically meso-macroporous structured materials. Journal of Material Chemistry,2006,16(7),663-677.
    [132]Y.Ma,W.Tong,S.L.Suib et al. A review of zeolite-like porous materials. Microporous and Mesoporous Materials,2000,37:243-252.
    [133]薛群虎,徐维忠.耐火材料[M].第2版.冶金工业出版社,2009.
    [134]K.Ishizaki,S.Komarneni,M.Nanko. Porous materials: process technology and applications(First edition).Great Britain:Kluwer Academic Publishers,1998:1-199.
    [135]Holman JP. Heat transfer[M].9th ed. Boston:McGraw Hill Higher Education 2002:410-415.
    [136]姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(02):137-143.
    [137]吴望一.流体力学[M].北京:北京大学出版社,1982.
    [138]Fluent Inc. FLUENT6.3 User's Guide[M].USA:Fluent Inc.,2006.
    [139]陶文铨.数值传热学[M].第2版.西安:西安交通大学出版社,2001
    [140]Aspen Technology, Inc. Aspen Physical Property System [M]. USA:Aspen Technology, Inc.2009.
    [141]朱贤,石芳录,王娟,阎格.聚氨酯真空隔热板[J].真空与低温,2000,(01).
    [142]中国石化集团兰州设计院.中国石油兰州石化公司化肥厂“油改气”项目详细工程设计(内部资料).2002.10
    [143]华东理工大学,中国石化集团宁波技术研究院.天然气非催化部分氧化制合成气关键技术现场考核运行记录报告(内部资料).2009.8