GNSS单频接收机精密点定位统一性方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自全球卫星导航系统(GNSS)问世以来,由于其具有全球性、全天候、高精度、高效率、保密性强等一系列特点,现已被广泛应用于卫星导航、测量定位、形变监测、大气探测等领域。
     目前,GNSS精密导航与定位一般都采用双频接收机,其主要原因是为了消除电离层误差的影响。在利用GNSS技术开展区域变形监测、大气探测等研究中,由于需要采集高时空分辨率的信息,不得不布设大量的GNSS接收机。如全部采用GNSS双频接收机进行施测,其成本无疑将非常昂贵,这必然会极大限制GNSS技术在这些领域未来的发展和应用。正因为如此,如何消除电离层误差的影响,利用相对廉价的单频接收机实现大范围、高精度定位是目前国内外卫星大地测量研究的热点和难点问题之一;此外,实现对现有GNSS技术的统一,即:PPP与网络RTK技术的统一,区域与全球数据处理模式的统一,单频与双频数据处理策略的统一也是目前亟待解决的难点问题。本文旨在研究和推进这两个难题的解决,主要内容是深入研究单频接收机进行精密定位的方法,突破解决其关键技术难题,推进GNSS技术统一问题的解决,并研制实用的软件。
     首先,本文深入研究了现有各类区域误差改正模型构建方法,发展了历元差分电离层模型(SEID),并将其成功应用于大规模参考网内GNSS单频接收机精密定位,取得了不错的实验分析结果。其次,本文研究并提出了一种基于非差改正数的网络RTK方法。虽然,这两种方法都可被有效应用于各类GNSS卫星导航系统的事后、实时或准实时单频接收机精密定位服务。但基于非差改正数的网络RTK方法更体现了对现有各类区域误差融合技术的统一,是更为一般性的模型构建方法。该方法综合了PPP技术与网络RTK技术各自的优点,使用现有的各类卫星轨道和钟差产品,实现了GNSS双频接收机用户采用全球PPP与区域RTK时在技术上的统一和服务上的无缝连接。使网内和网外用户基于同样的精密点定位数据处理模式(PPP模式)获得不同精度需求的精密定位服务:网内接收到区域误差改正信息的用户站可获得与网络RTK模式相等价的快速、精密定位结果,而网外或未接收到该区域误差改正信息的用户则得到PPP模式的定位精度。最后,本文基于以上方法和已有的PANDA软件采用fortran语言开发实现了单频/双频数据逐历元处理功能,并对未来将基于非差改正数的网络RTK方法应用于PPP模式实时精密定位的应用前景进行了有效的模拟分析。论文的主要工作和研究成果包括:
     1)在广泛查阅文献的基础上,从GNSS数学模型、误差改正技术、精密定位方法、以及软件开发等四个方面全面综述了GNSS精密定位在国内外的研究现状。针对本文的重点研究内容,还对GNSS单频接收机精密定位这个研究热点以及区域误差改正模型构建这个研究难点进行了较为深入的探讨与总结;
     2)深入研究了GNSS精密定位理论,包括精密定位中涉及到的各种时空框架及其转换关系,观测方程与误差改正,以及最小二乘参数估计算法;
     3)系统描述和分析了现有各种区域误差改正模型构建方法,是对该类技术的一次全面总结;
     4)论证了网络RTK与HiRIM方法当电离层薄层高度假定为0时在理论上是一致的,指出其只是具体实现时有细微区别。本文对网络RTK与HiRIM方法进行了理论上的描述和误差改正侧重点上的比较分析,脉络清晰地推导论证了两类方法的等价性和差异,进而得出了一些有益的结论;
     5)发展了SEID方法,并提出了一套完整的GNSS单频接收机精密定位数据处理策略。对于小于90km的参考网,利用网内单频数据并基于SEID方法,其单天静态测量精度基本可达到双频数据的解算结果,能够满足单频接收机高程方向mm级单天静态精密定位的应用要求;
     6)提出了基于非差改正数的网络RTK方法,该方法是对现有各类区域误差融合技术的统一,是更为一般性的模型构建方法。该方法有效消除了电离层、对流层、接收机硬件延迟、卫星轨道和卫星钟差等误差影响,实现了对全球PPP与区域RTK在技术上的统一和服务上的无缝连接;
     7)严密推导论证了历元差分电离层模型和基于非差改正数的网络RTK方法,采用fortran语言开发了两套区域误差模型构建软件;
     8)研究了GNSS单频数据处理软件的模块组成,描述了数据质量控制、模糊度固定以及最小二乘参数估计方法的原理和公式,给出了单频接收机数据处理算法的实现流程,在此基础上参与了GNSS单频数据处理软件研制,并结合大量算例验证了新方法和软件的解算能力和精度水平,特别是对未来将基于非差改正数的网络RTK方法应用于PPP模式实时精密定位的应用前景进行了有效的模拟分析。
Since the development of Global Navigation Satellite System (GNSS), it has been widely applied in many fields, such as satellite navigation, surveying and positioning, deformation monitoring, together with atmospheric detection, thanks to its global coverage, all-weather, high precision and efficiency as well as strong security.
     At present, dual-frequency receivers have been commonly used in GNSS precise navigation and positioning mainly to eliminate the ionospheric error. When carrying out researches on regional deformation monitoring and atmospheric probing based on GNSS technology, massive GNSS receivers have to be laid out in order to collect information with high spatial and temporal resolution. Under this circumstance, using GNSS dual-frequency receivers for all stations would no doubt be expensive, which will definitely limit the future development and application of GNSS technology greatly in these fields. Because of this, how to eliminate the ionospheric error and realize high-precision positioning using relatively cheaper single-frequency receivers in a wide area has become one of the research hot spot in the present satellite geodesy at home and abroad. In addition, how to realize the unification of existing GNSS technology that:the unification of PPP and network RTK technology, the unification of regional and global data-processing, the unification of single-and dual-frequency data-processing strategy are also the currently difficult problems to be solved. This dissertation paper focuses on investigating and solving the problems, mainly include performing in-depth research on the method of precise positioning using single frequency receivers, breaking through its key technologies, promoting the unification of existing GNSS technology and developing practical software for real application.
     Firstly, thorough investigations have been done on various kinds of model construction method for current regional error correction. Some improvement has been made to the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID), which then has been applied successfully in the GNSS precise positioning using single-frequency receivers for large-scale reference network, yielding very good results.
     Secondly, the author has proposed a new network RTK approach based on undifferenced observation corrections. Although both methods could be used effectively in various GNSS single-frequency precise positioning services for post processing, real time or near real time applications, this new network RTK approach based on undifferenced observation corrections exhibits more general characteristics, which is a unification of various regional error fusion technologies. Integrating with advantages of PPP and network RTK, this new method realizes a technological unification and seamless joint service between global PPP and regional RTK by using the existing various kinds of satellite orbit and clock error products. Users inside and outside network could obtain precise positioning service with different accuracy requirements under the same data processing mode (that is PPP mode). Those who could receive regional error correction information inside the network would achieve rapid precise positioning results equivalent with network RTK, while others who haven't receive error correction from this region or outside the network would achieve PPP positioning accuracy.
     Finally, based on the existing PANDA software and the above methods, this paper has realized an epoch by epoch processing function for single-frequency data by using fortran programming language, and carried out effective simulation analysis towards the future prospect of this new network RTK approach based on undifferenced observation corrections to be used in real time PPP-mode precise positioning application. Main contributions and innovative achievements of this dissertation paper include:
     1) Current status of GNSS precise positioning at home and abroad has been thoroughly reviewed from aspects of GNSS mathematical model, error correction technology, precise positioning method as well as software development. Aiming at the key contents of this paper, deep discussion and summarization have been made on the GNSS precise positioning using single-frequency receivers together with model construction for regional error correction;
     2) Detailed investigation has been done on the theory of GNSS precise positioning, including various spatial-temporal frames involved in precise positioning and their transformation, observation equation and error correction, as well as least square parameter estimation algorithm;
     3) Various regional error correction model construction methods have been illustrated and analyzed systematically, which could be demonstrated as a comprehensive summary towards this kind of technology;
     4) Theoretical consistency between network RTK and the HiRIM method has been proved, pointing out that there is only little difference in concrete implementation between them. This paper has conducted theoretical description for network RTK and the HiRIM method, and focused on the comparison of their error correction effects. The equivalence and difference between these two kinds of method have been demonstrated clearly. Then some beneficial conclusions have been drawn;
     5) The SEID method has been developed, and a complete set of data processing strategy for GNSS precise positioning using single-frequency receivers has been proposed. As for the reference network ranging smaller than 90km, its daily static measuring accuracy could almost achieve the precision obtained by dual-frequency data based on the SEID method by only using single-frequency data inside the network, which could satisfy the requirement of mm-level daily static precise positioning at the vertical component for single-frequency receivers;
     6) A new network RTK approach based on undifferenced observation corrections has been put forward in this paper, which exhibits a unification of the current regional error fusion technologies, and belongs to a more general model construction method. By effectively eliminating the influences of ionospheric delay, tropospheric delay, receiver hardware delay, as well as satellite orbit and clock error, this method realizes a technological unification and seamless joint service between global PPP and regional RTK;
     7) Mathematical models for epoch-differenced ionospheric delay correction and network RTK approach based on undifferenced observation corrections have been rigorously deduced. Two sets of software for regional error correction model construction have been developed;
     8) Module composition for GNSS single-frequency data processing software has been investigated. Principle and formula for data quality control, ambiguity resolution, as well as least square parameter estimation method has been illustrated. Also the realization flow for data processing algorithm from single-frequency receivers has been given in this paper. Under these backgrounds, the author has participated in the development of GNSS single-frequency data processing software, verified the resolving ability and precision level of the new method as well as the software by using massive numerical examples, and in particular carried out effective simulation analysis towards the future prospect of this network RTK approach based on undifferenced observation corrections to be used in real time PPP-mode precise positioning application.
引文
[1]Abidin H. Z., Wells D. E. and Kleusberg A. (1992). Some aspects of'On-the-fly'ambiguity resolution. Proceedings of Sixth International Geodetic Symposium on Satellite Postioning. Columbus, OH, March 17-20, pp.660-669.
    [2]Bender, M., G. Dick, J. Wickert, M. Ramatschi, M. Ge, G. Gendt, M. Rothacher, A. Raabe, and G. Tetzlaff (2009), Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications, J. Geophys. Res.,114, D06303, doi:10.1029/2008JD011008.
    [3]Blewitt L. (1990), an Automatic Editing Algorithm for GPS Data[J]. Geophysical Research Letters, 17(3):199-202.
    [4]Braun, J., C. Rocken, C. Meertens, and R. Ware (1999), Development of a Water Vapor Tomography System Using Low Cost L1 GPS Receivers, Ninth ARM Science Team Meeting Proceedings, San Antonio, Texas, March 22-26.
    [5]Collins, P. (2008) Isolating and Estimating Undifferenced GPS integer Ambiguities, Proceedings of the 2008 National Technical Meeting of the Institute of Navigation, San Diego, California,720-732.
    [6]L. Dai, J. Wang, C. Rizos, S. Han (2003) Predicting atmospheric biases for real-time ambiguity resolution in GPS/GLONASS reference station networks. Journal of Geodesy 76:617-628.
    [7]Deng Z., M. Bender, G. Dick, M. Ge, J. Wickert, M. Ramatschi and X. Zou (2009), Retrieving Tropospheric Delays from GPS Networks Densified with Single Frequency Receivers, Geophys. Res. Lett., doi:10.1029/2009GL040018.
    [8]Frei E., Beutler G. (1990). Rapid static positioning based on the fast ambiguity resolution approach "FARA":theory and first results. Manuscripta Geodaetica, Vol.15, No.4, pp.325-356.
    [9]Gao Y., Liu Z.Z. (2002) Precise Ionosphere Modeling Using Regional GPS Network Data, Journal of Global Positioning Systems, Vol.1, No.1,18-24.
    [10]Ge M. R., Gendt G, Dick G., Zhang F. P. (2005), Improving Carrier-phase Ambiguity Resolution in Global GPS Network Solutions[J], Journal of Geodesy,79:103-110.
    [11]Ge M. R., Gendt G., Dick G., Zhang F. P., Rothacher M. (2006), A New Data Processing Strategy for Huge GNSS Global Networks[J], Journal of Geodesy,80:199-203
    [12]Ge M. R., G. Gendt, M. Rothacher, C. Shi and J. Liu (2008), Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations, Journal of Geodesy, vol.82, no.7, pp 389-399
    [13]Ge M. R., Zou X., Dick G., Jiang W. P., Wickert J., Liu J. N. (2010) An alternative Network RTK approach based on undifferenced observation corrections, ION GNSS 2010 (submitted)
    [14]Gerhard Wubbena, Andreas Bagge(2002). RTCM Message Type 59-FKP for transmission of FKP. Geo++(?) White Paper Nr.2002.01
    [15]GSFC (1989), Goddard Trajectory Determination System (GTDS) Mathematical Theory, Revision 1[R]. Goddard Space Flight Center, Greenbelt, Maryland.
    [16]Han S (1997b).Comparing GPS Ambiguity Resolution Techniques, GPS Wrold, October 1997
    [17]Han S., Rizos C. (1996). GPS Network Design and Error Mitigation for Real-Time Continuous Array Monitoring System. Proc. ION GPS-96,9th Int. Tech. Meeting of the Satellite Division of The U.S. Institute of Navigation, Kansas City, Missouri,17-20 September,1827-1836
    [18]Han S. (1997a). Carrier Phase-Based Long-Range GPS Kinematic Positioning, PhD dissertation, UNISURV report No. S-49, School of Geomatic Engineering, the University of New South Wales
    [19]Hatch R.R. (1982). The Synergism of Code and Carrier Measurements. Proceedings of the Third International Symposium on Satellite Doppler Positioning, Las Crues, NM, Feb.
    [20]Hopfield H. S. (1969). Two-Quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res.,74(18),4487-4499.
    [21]Janssen,V (2007), Volcano Deformation Monitoring Using GPS, Journal of Spatial Science
    [22]Janssen, V., Rizos, C (2005) Mixed-mode GPS deformation monitoring-A cost-effective and accurate alternative, International Association of Geodesy Symposia, A Window on the Future of Geodesy, pp 533-537
    [23]Jonge de P.J., Tiberius C.C.J.M. (1995). Integer ambiguity estimation with the LAMBDA method. Proceedings IAG Symposium No.115, GPS trends in precise terrestrial, airborne and spaceborne applications, XXI General Assembly of IUGG, July 2-14, Boulder, CO, July 2-14,1995, G. Beutler et.al., (Eds.), Springer Verlag, pp.280-284.
    [24]Jonge de, Tiberius P J C (1996). The LAMBDA method for integer ambiguity estimation: implementation aspects[J]. Delft Geodetic Computing Centre LGR Series, (12):562.
    [25]Joostern Peter, Tiberius Christian (2002). LAMBDA:FAQS. GPS Solutions (2002) 6, pp 109-114
    [26]King R W, and Bock Y. Documentation for the GAMIT Analysis Software release10.3, Mass. Inst. Technol., Cambridge, MA, USA.2006
    [27]Kouba, J. (2009), A GUIDE TO USING INTERNATIONAL GNSS SERVICE (IGS) PRODUCTS. URL:http://igscb.jpl.nasa.gov/components/usage.html. last updated:14 May.
    [28]Kouba, J., Heroux, P. (2001), Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solution,5(2):12-28.
    [29]Kim D., Langley R. B. (1999). An optimized least-squares technique for improving ambiguity resolution performance and computational efficiency. Proceedings of ION GPS'99, ashville, Tennessee,14-17 September, pp.579-1588.
    [30]King R.W. and Y. Bock (1999), "Documentation for the GAMIT GPS Analysis Software," Mass. Inst. of Technol., Cambridge Mass
    [31]Klobuchar J.A. (1987). Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users, IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-23, No.3, pp.325-331.
    [32]Kouba J., Heroux P. (2001), Precise Point Positioning Using IGS Orbit and Clock Products[J], GPS Solutions,5 (2):12-28.
    [33]Landau H., Vollath U., Deking A. and Pagels C.(2001):Virtual Reference Station Networks-Recent Innovations by Trimble, Proceedings of GPS symposium 2001, Tokyo, Japan, November 14-16.
    [34]Laurichesse, D., Mercier, F. (2007), Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP, ION GNSS 2007, Fort Worth, Tex, US.
    [35]Liu G C (2001). Ionosphere Weighted Global Positioning System Carrier Phase Ambiguity Resolution. Master Thesis, UCGE Report 20155, Geomatics Engineering, The University of Calgary, April,2001,157pages.
    [36]Liu J. N., and Ge M. R. (2003), PANDA Software and Its Preliminary Result of Positioning and Orbit Determination[J], Wuhan University Journal of Natural Sciences,8 (2):603-609
    [37]Liu,Z, Skone, S., Gao, Y, and Komjathy, A. (2005), Ionospheric Modeling Using GPS Data, GPS Solutions, Springer Verlag,10.1007/s 10291-004-0129-z:63-66
    [38]McCarthy D. D., Petit G. (2004), IERS Conventions (2003). IERS Conventions Centre, BKG, Frankfurt, Germany.
    [39]Mervart L, Lukes Z, Rocken C, Iwabuchi T (2008), Precise point positioning with ambiguity resolution in real-time,21 st International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2008, v 4, p 2280-2288.
    [40]Montenbruck O., and Gill E. (2001), Satellite Orbit Models, Methods, and Application[M], Springer, New York.
    [41]Montenbruck, O., Gill, E., Kroes, R. (2005), Rapid orbit determination of LEO satellites using IGS clock and ephemeris products. GPS Solutions,9(3):226-235.
    [42]Muellerschoen, R. J., W. I. Bertiger, M. F. Lough, D. Dong (2000), An Internet-Based Global Differential GPS System, Initial Results, Proceedings of ION National Technical Meeting, Anaheim, California, January,2000.
    [43]Ragheb A. E, P. J. Clarke and S. J. Edwards (2007), GPS sidereal filtering:coordinate-and carrier-phase-level strategies, Journal of Geodesy,81 (5):325-335
    [44]Ray J, Dong D, Altamimi Z (2004) IGS reference frames:status and future improvements. GPS Sol 8(4):251{266 DOI:10.1007/s10291-004-0110-x
    [45]Reza Ghoddousi-Fard (2009). Modelling Tropospheric Gradients and Parameters from. NWP Models: Effects on GPS Estimates. Ph.D. dissertation, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Canada
    [46]Rizos, C. (2002) Network RTK research and implementation:A geodetic perspective, Journal of Global Positioning Systems,1(2),144-150.
    [47]Rizos, C and S. Han (2003) Reference station network based RTK systems-concepts and progress, Wuhan University Journal of Natural Sciences,8(2),566-574.
    [48]Rocken C, James M. Johnson, John J. Braun (2000), Improving GPS surveying with modeled ionospheric corrections, Geophysical Research Letters, vol.27, no.23, pp 3821-3824
    [49]Saastaminen J. (1973). Contribution to the Theory of Atmospheric regraction. Bulletion Geod-esique, 107, pp.13-14.
    [50]Sagiya T, S. Miyazaki and T. Tada (2000) Continuous GPS Array and Present-day Crustal Deformation of Japan, Pure and Applied Geophysics, vol.157, no.11-12, pp 2303-2322
    [51]Schaer S, Beutler G, Rothacher M, Brockmann E, Wiger A, Wild U (1999) The impact of the atmosphere and other systematic errors on permanent GPS networks. IAG Symp Positioning, Birmingham, UK,19-24 July.
    [52]Sergey Revnivykh (2004). Developments of the Glonass system and Glonass Service.10 years IGS Workshop, Berne,1-5 March 2004.
    [53]Sibson R (1978). Locally Equiangular Triangulations. Computer Journal,21 (3):pp 243-245
    [54]Teunissen P. J. G. (1994a). A new method for fast carrier phase ambiguity estimation. Proceedings IEEE Position, Location and Navigation Symposium PLANS'94, Las Vegas, NV, April 11-15, pp. 562-573.
    [55]Teunissen P. J. G., P.J. de Jonge, and C.C.J.M. Tiberius(1994b). On the spectrum of the GPS DD-ambiguities. Proceedings of ION GPS-94,7th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, UT, September 20-23, pp.115-124
    [56]Teunissen P. J. G. (1995a). The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation. Journal of Geodesy, Vol.70, No.1-2,1995, pp.65-82.
    [57]Teunissen P. J. G.., de Jonge P.J., Tiberius C.C.J.M. (1995b). The LAMBDA method for fast GPS surveying. Proceedings of International Symposium'GPS technology applications', Bucharest, Romania, September 26-29, pp.203-210.
    [58]Teunissen P. J. G, de Jonge P.J., Tiberius C.C.J.M. (1995c). A new way to fix carrier-phase ambiguities. GPS World, Vol.6, No.4, pp.58-61.
    [59]Teunissen P. J. G., de Jonge P.J., Tiberius C.C.J.M. (1996a). The volume of the GPS ambiguity search space and its relevance for integer ambiguity resolution. Proceedings of ION GPS-96,9th International Technical Meeting of the Satellite Division of the Institute of Navigation, Kansas City, Missouri, Sept.17-20, pp.889-898.
    [60]Teunissen P. J. G. (1996b). On The Geometry of the Ambiguity Search Space with and Without Ionosphere. Z.F.Verm.wesen. Vol.121, No.7,1996, pp332-341.
    [61]Teunissen P. J. G., de Jonge P.J., Tiberius C.C.J.M. (1997a). The least-squares ambiguity decorrelation adjustment:its performance on short GPS baselines and short observation spans, Journal of Geodesy, Vol.71, No.10, pp.589-602.
    [62]Teunissen P. J. G. (1997b). A canonical theory for short GPS baselines Part Ⅰ:The baseline precision, Journal of Geodesy,1997,71:320-336
    [63]Teunissen P. J. G. (1997c). A canonical theory for short GPS baselines. Part Ⅱ:the ambiguity precision and correlation Journal of Geodesy,1997,71:389-401
    [64]Teunissen P J G(1997d). Some Remarks on GPS Ambiguity Resolution. presented at the symposium of the'Geodatische Woche',6-11 Oct.97, Berlin, Germany.
    [65]Teunissen P.J.G. (2000). On the GNSS Integer Ambiguity Success Rate, Lustumboek Snellius, The 5th Element, pp.103-108
    [66]Tiberius C.C.J.M, Teunissen P.J.G., de Jonge P.J. (1997). Kinematic GPS:performance and quality control. Proceedings of International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation KIS'97, Banff, Canada, June 3-6, pp.289-299.
    [67]Trimble Terrasat GMBH(2005). Support of Network Fomats by Trimble GPSNet Network RTK Solution, Haringstrasse 19,85635 Hoehenkir Chen, Germany.
    [68]Ulrich Vollath, Herbert Landau, Xiaoming Chen et al (2002). Network RTK Versus Single Base RTK-Understanding the Error Characteristics. ION GPS 2002,24-27 September 2002, Portland, OR
    [69]Wanninger L. (1995). Improved Ambiguity Resolution by Regional Differential Modeling of the Ionosphere. Proc. ION GPS-95,8th Int. Tech. Meeting of the Satellite Division of The U.S. Institute of Navigation, Palm Springs, California 12-15 September,55-62.
    [70]Webster I., Kleusberg A. (1992). Regional Modeling of Ionosphere for single frequency users of Global Positioning System. Proc.6th Int. Geodetic Symp. on Satellite Positioning, Columbus, Ohio, 17-20 March,230-239
    [71]Wei Erhu, Hua Chai, Zhiguo An. (2006), VRS Virtual Observations Generation Algorithm, Journal of Global Positioning Systems, Vol.5, No.1-2:76-81
    [72]Wubbena G., Bagge A., Seeber G., Boder V, Hankemeier P. (1996). Reducing Distance Dependent Errors for Real-Time Precise DGPS Applications by Establishing Reference Station Networks. Proc. ION GPS-96,9th Int. Tech, Meeting of The Satellite Division of the U.S. Institute of Navigation, Kansas City, Missouri,17-20 September,1845-1852
    [73]Wubbena G, Schmitz M, Bagge A (2005),PPP-RTK:Precise Point Positioning using state-space representation in RTK networks, Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, ION GNSS 2005, v 2005,2584-2594.
    [74]Zheng Dawei, P. Zhong, X.L. Ding, W. Chen (2005), Filtering GPS time-series using aVondrak filter and cross-validation, Journal of Geodesy, vol 79, pp 363-369
    [75]Zhong Ping, Xiaoli Ding, Linguo Yuan, Youlin Xu, Kenny Kwok and Yongqi Chen (2009) Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines, Journal of Geodesy,0949-7714 (Print) 1432-1394
    [76]蔡昌盛,李征航,张小红(2002),利用GPS载波相位观测值建立区域电离层模型研究[J],测绘通报,11:14-16
    [77]陈春明(2003).正交多项式在GPS数据处理中的应用[J],大地测量与地球动力学,2003(3):74-76
    [78]陈俊勇(2009).全球导航卫星系统进展及其对导航定位的改善[J],大地测量与地球动力学,2009(2):1-3
    [79]陈小明(1997).《高精度GPS动态定位的理论与实践》[D],武汉:武汉测绘科技大学.
    [80]陈永奇,James Lutes (1998),单历元GPS变形监测数据处理方法的研究[J],武汉测绘科技大学学报,23(4):324-328
    [81]崔希璋,於宗俦等(2000),广义测量平差[M],武汉测绘科技大学出版社.
    [82]鄂栋臣,詹必伟,姜卫平,张胜凯(2005).应用GAMIT/GLOBK软件进行高精度GPS数据处理[J],极地研究,2005(3):173-182
    [83]高星伟(2002),GPS/GLONASS网络RTK算法研究与程序实现[D],武汉大学,2002.
    [84]葛茂荣(1995),GPS卫星精密定轨理论及软件研究[D],武汉:武汉测绘科技大学测绘学院.
    [85]郭际明,史俊波,汪伟(2007).天线相位中心偏移和变化对高精度GPS数据处理的影响[J],武汉大学学报(信息科学版),2007(12):1143-1146
    [86]何晓薇,牟其锋,向淑兰(2008),GPS信号的电离层延迟误差及改正[J],中国民航飞行学院学报,19(1):16-18
    [87]何秀凤,华锡生,丁晓利,陈永奇,孙永荣(2002),GPS一机多天线变形监测系统[J],水电自动化与大坝监测,26(3):34-36
    [88]黄声享,李沛鸿,杨保岑,向东(2005).GPS动态监测中多路径效应的规律性研究[J],武汉大学学报(信息科学版),2005(10):877-880
    [89]黄智,袁洪(2008),WAAS系统中电离层折射校正的新方法及计算结果[J],空间科学学报,28(2):132-136
    [90]花向红,王新洲,陈建锋,吴继忠(2007).地面塌陷对建筑物安全状况影响分析[J],工程勘察,2007(6):58-60
    [91]胡丛玮,刘大杰(2003),基于GPS基准站网的GPS测量[J],现代测绘,26(1):10-13
    [92]匡翠林(2008),利用GPS非差数据精密确定低轨卫星轨道的理论及方法研究[D],武汉:武汉大学测绘学院.
    [93]姜卫平,刘经南,叶世榕(2001),GPS形变监测网基线处理中系统误差的分析[J],武汉大学学报(信息科学版),26(3):196-199
    [94]姜卫平,马强,刘鸿飞(2008),CORS系统中坐标移动转换方法及应用[J],武汉大学学报(信息科学版),33(8):775-778
    [95]蓝悦明,贾媛(2008).GPS观测值误差分布的研究[J],测绘通报,2008(4):12-13
    [96]宁津生,王正涛(2006).测绘学科发展综述[J],测绘科学,2006(1):9-16
    [97]刘根友(2001),单频GPS接收机动态定位的相位与伪距联合算法及其周跳检测[J],地壳形变与地震,21(3):26-31
    [98]柳景斌,王泽民,王海军,章红平(2008),利用球冠谐分析方法和GPS数据建立中国区域电离层TEC模型[J],武汉大学学报(信息科学版),33(8):792-795
    [99]柳景斌,王泽民,章红平,朱文耀(2008),几种地基GPS区域电离层TEC建模方法的比较及其一致性研究[J],武汉大学学报(信息科学版),33(5):479-483
    [100]刘经南,陈俊勇,张燕平等(1999),广域差分GPS原理和方法[M].北京:测绘出版社.
    [101]刘经南,刘晖(2003),连续运行卫星定位服务系统—城市空间数据的基础设施[J],武汉大学学报(信息科学版),28(3):259-264
    [102]刘经南,叶世榕(2002),GPS非差相位精密单点定位技术探讨[J],武汉大学学报(信息科学版),27(3):234-240
    [103]李建成,姜卫平(2001).长距离跨海高程基准传递方法的研究[J],武汉大学学报(信息科学版),2001(6):514-517
    [104]李济生(1992),人造卫星精密轨道确定[M],郑州:解放军出版社.
    [105]刘基余(2003),GPS卫星导航定位原理与方法[M],北京:科学出版社.
    [106]刘林(2000),航天器轨道理论[M],北京:国防工业出版社.
    [107]刘立龙(2005),动态对动态GPS高精度定位理论及其应用研究[D],武汉大学
    [108]刘焱雄,彭琳,周兴华,吴永亭(2005),网解和PPP解的等价性[J],武汉大学学报(信息科学版),30(8):736-738
    [109]李征航,陈锴,刘万科,黄欢(2007),顾及f3项的电离层延迟模型[J],武汉大学学报(信息科学版),32(2):139-143
    [110]李征航,陈锴,刘万科,王文丽(2007),GNSS电离层延迟模型的数学统一与方法扩展[J],武汉大学学报(信息科学版),32(8):699-703
    [111]楼益栋(2008),导航卫星实时精密定轨与钟差确定[D],武汉:武汉大学测绘学院.
    [112]刘晖,刘经南,祁芳(2005).广域差分GPS定位算法在通用DSP系统上的实现[J],武汉大学学报(信息科学版),2005(7):597-600
    [113]邱卫宁,陈永奇(2004).用载波相位宽巷组合高精度确定大数值变形[J],武汉大学学报(信息科学版),2004(10):889-892
    [114]施闯(1995),国家高精度GPS网数据处理方案、模型和软件研究[D],武汉:武汉测绘科技大学
    [115]施昆,张能武,字成波(2004),GPS电离层改正模型的评价[J],昆明理工大学学报(理工版),29(4):73-78
    [116]宋伟伟,施闯,姚宜斌,叶世榕(2009),单频精密单点定位电离层改正方法和定位精度研究[J],武汉大学学报(信息科学版),34(7):778-781
    [117]孙海燕(2003).测量平差函数模型的若干讨论[J],武汉大学学报(信息科学版),2003(s1):62-64
    [118]孙红星(2004),差分GPSINS组合定位定姿及其在MMS中的应用[D],武汉:武汉大学测绘学院
    [119]唐卫明(2006),大范围长距离GNSS网络RTK技术研究及软件实现[D],武汉:武汉大学测绘学院.
    [120]唐卫明,孙红星,刘经南(2005),附有基线长度约束的单频数据单历元LAMBDA方法整周模糊度的确定[J],武汉大学学报(信息科学版),30(5):444~446
    [121]王刚,魏子卿(2000).格网电离层延迟模型的建立方法与试算结果[J],测绘通报,2000(9):1-2
    [122]王解先,何妙福,朱文耀,黄诚(1994),EPOCH92全球GPS联测部分站资料的处理结果[J],测绘学报,23(3):210-215
    [123]王解先,季善标,曹月玲,余美义(2008),建筑群负荷引起的大地水准面起伏及对高程的影响[J],武汉大学学报(信息科学版),33(6):616-618
    [124]王泽民,邱蕾,孙伟,王海军(2008).GPS现代化后L_2载波的定位精度研究[J],武汉大学学报(信息科学版),2008(8):779-782
    [125]魏二虎,柴华,刘经南(2006).VRS定位算法的研究[J],武汉大学学报(信息科学版),2006(11): 1007-1010
    [126]魏子卿,葛茂荣(1998),GPS相对定位的数学模型[M],北京:测绘出版社.
    [127]武晓波,王世新,肖春生(1999), Delaunay三角网的生成算法研究[J],测绘学报,28(1):28-35
    [128]吴星华,吕振业,Joel VanCranenbroeck (2005),徕卡最新主辅站技术在昆明市GPS参考站网中的应用[J],http://www.leica-geosystems.com.cn
    [129]伍岳(2005),第二代导航卫星系统多频数据处理理论及应用[D],武汉:武汉大学测绘学院.
    [130]吴云,郭际明,孙海燕(2007).逐次滤波方法在GPS单点定位中的应用研究[J],武汉大学学报(信息科学版),2007(1):31-34
    [131]向淑兰,何晓薇,牟奇锋(2008),GPS电离层延迟Klobuchar与IRI模型研究[J].微计算机信息,2008,24(16):200-202.
    [132]夏林元(2001),GPS观测值中的多路径效应理论研究及数值结果[D],武汉大学.
    [133]徐亚明,刘经南(2002).GPS跟踪站天线几何中心偏移量的测定[J],大地测量与地球动力学,2002(4):124-126
    [134]姚宜斌,刘经南,陶本藻,施闯(2006).基于坐标模式的广义网平差模型研究[J],武汉大学学报(信息科学版),2006(1):16-18
    [135]叶世榕(2002),GPS非差相位精密单点定位理论与实现[D],武汉大学.
    [136]袁洪,万卫星,宁百齐,李静年(1998),基于三差解检测与修复GPS载波相位周跳新方法[J],测绘学报,27(3):189-194.
    [137]袁运斌,欧吉坤(2005),广义三角级数函数电离层延迟模型[J],自然科学进展,15(8):1015-1019
    [138]喻国荣(2003),基于移动参考站的GPS动态相对定位算法研究[D],武汉大学.
    [139]章红平(2006),基于地基GPS的中国区域电离层监测与延迟改正研究[D],中国科学院上海天文台
    [140]章红平,平劲松,朱文耀,黄珹(2006),电离层延迟改正模型综述,天文学进展[J],24(1):16-26
    [141]张守建(2009),GNSS非差模式的卫星精密定轨及快速精密定位理论与方法[D],武汉:武汉大学测绘学院.
    [142]张小红,李征航,蔡昌盛(2001),用双频GPS观测值建立小区域电离层延迟模型研究[J],武汉大学学报(信息科学版).26(2):140-143.
    [143]张小红,李星星,郭斐,张明(2008),GPS单频精密单点定位软件实现与精度分析[J],武汉大学学报(信息科学版),33(8):783-787
    [144]张正禄,汪宏晨,邓勇,谢年生(2009).滑坡变形分析与预报的新方法[J],武汉大学学报(信息科学版),2009(12):1387-1389
    [145]赵建虎,王胜平,张红梅,闻卫东(2008).基于GPSPPK/PPP的长距离潮位测量[J],武汉大学学报(信息科学版),2008(9):910-913
    [146]郑作亚(2005),GPS数据预处理和星载GPS运动学定轨研究及其软件实现[D],上海:中国科学院上海天文台.
    [147]邹蓉,刘晖等(2005),Delaunay三角网构网技术在连续运行卫星定位服务系统中的应用[J],测绘信息工程,30(6):9-11