5-HT→5-HT_(2A)R→PKC通路参与大鼠膈神经长时程易化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景】
     呼吸是维持机体新陈代谢和功能活动所必须的基本生理过程,呼吸节律可因内、外环境的变化而发生改变。我们把机体为适应环境变化需要而发生的呼吸运动输出的改变称为呼吸可塑性。呼吸可塑性的异常可引起呼吸功能的障碍,如婴儿猝死综合症(sudden infant death syndrome,SIDS)和阻塞性睡眠呼吸暂停综合症(obstructive sleep apnea syndrome,OSAS)等。因为与疾病发生的密切关系,人们更加关注病理状态下呼吸可塑性的调控机制。到目前为止,长时程易化(long-term facilitation,LTF)模型是研究呼吸可塑性最常用的动物模型。LTF是指经过重复性的缺氧或药物干预后,诱导膈神经产生超出正常水平、持续增强长达1小时以上的高大放电效应。LTF的出现可以稳定上呼吸道并维持气道通畅,对睡眠呼吸紊乱疾病有潜在的治疗意义。
     膈神经LTF(phrenic LTF,pLTF)在体情况下通常采用重复性缺氧来诱博士研究生:刘津平导师:刘莹莹鞠躬导,而在离体脑片培养模型中则采用间断性5-羟色胺(5-HT)灌流的方法来诱导。5-HT/5-HT2A受体(5-HT2AR)系统是LTF表达的必要条件,这一系统的异常往往导致呼吸紊乱的发生,然而对于5-HT系统激活后的细胞内信号转导途径还缺乏研究。在本研究中,我们通过低压氧仓间断性缺氧刺激模拟高海拔条件下的缺氧模式,建立了一个新的pLTF动物模型;另外,我们发现一次性系统给予外源性5-HT,可以兴奋膈神经放电并产生pLTF,这在以往研究中尚未有报导。应用我们构建的两种大鼠模型,结合药物干预实验,我们对pLTF的细胞内信号机制进行了研究。
     【目的】
     利用低压氧舱缺氧诱导和外源性5-HT诱导的pLTF模型,探讨5-HT→5-HT2AR→PKC通路在大鼠呼吸神经可塑性机制中的作用。
     【方法】
     (1)将大鼠置于密闭容器内,快速进行空气抽提,模拟9000~10000m高海拔环境,持续5分钟后,常氧通气5分钟,每日重复循环12小时,持续7天,进行慢性间断性缺氧(chronic intermittent hypoxia, CIH)预处理;第8天早晨给予3个循环的急性间断性缺氧(acute intermittent hypoxia, AIH)刺激,立即进行膈神经放电记录;(2)大鼠经腹腔麻醉后,切断双侧迷走神经,腹腔注射箭毒阻断自主呼吸,股动脉插管以便进行血气和血压监测,股静脉插管建立药物及液体通道。颈部分离右侧膈神经,给予药物或间断性缺氧刺激,记录膈神经放电情况。
     【结果】
     大鼠经低压氧舱CIH预处理后,AIH诱导的膈神经放电幅度较正常对照组(单纯AIH诱导)增高近一倍,缺氧30min、60min后仍然维持高大放电,形成增强的pLTF;静脉给予5-HT2AR拮抗剂ketanserin,可以部分阻断低压氧舱CIH诱导的pLTF,而静脉给予PKCθ抑制剂,不仅完全阻断pLTF的发生,而且影响了膈神经的规律性放电。
     不同剂量5-HT对与膈神经放电的影响有所差异,但是基本都有短暂抑制现象的发生。20μg/kg仅引起了轻微的膈神经放电抑制,但很快恢复正常水平;40μg/kg对放电幅度和频率均有短暂抑制,但是仍较快恢复正常水平;100μg/kg的5-HT可引起先抑制后兴奋的双相膈神经放电,膈神经放电幅度较正常增高约30%并持续1小时以上,最终形成pLTF。静脉给予5-HT2AR拮抗剂ketanserin可完全阻断5-HT诱导的pLTF,而5-HT1AR拮抗剂WAY100635则没有作用。静脉注射PKC抑制剂staurosporine虽不影响初始抑制,但抑制了兴奋效应,完全阻断pLTF。我们还发现5-HT引起的双相放电依赖于两种相对独立的机制,其中初始抑制与结神经节相关,而后续的兴奋作用则与颈动脉体密切联系。摘除结神经节后,初始抑制消失,5-HT引起膈神经放电的增强,形成更加高大的pLTF,而摘除颈动脉体后,5-HT使抑制增强并延长,兴奋作用消失,pLTF无法形成。
     【结论】
     复杂的呼吸网络主要由连续性的感觉神经传入、中枢信号整合及膈神经的运动输出所构成,pLTF的表达无疑需要整个呼吸网络系统的激活。事实上,我们在本研究中揭示了一种由颈动脉体兴奋和结神经节抑制作用形成的外周动态平衡机制,而这种机制在5-HT诱导的pLTF中起关键作用。无论是在间断性低压氧舱诱导还是在5-HT诱导的pLTF大鼠模型中,我们的实验结果均表明5-HT→5-HT2AR→PKC信号通路对于pLTF形成的重要性。我们的研究将拓宽对于LTF发生机制的认识水平,并且为睡眠呼吸紊乱疾病的治疗提供潜在的可能性。
【Background】Respiration, a spontaneous rhythmic motor and one of the basiclife behaviors in maintaining body metabolism and function, varys with internaland external circumstances of each individual. The ability that alters respiratorymotor output to accommodate the ever-changing needs of the individual isregarded as respiratory plasticity. Failure of respiratory plasticity often leads tomalfunctions, such as sudden infant death syndrome and obstructive sleepapnea syndrome . Considering the tight relationship of respiratory plasticity withdiseases, people have paid much attention to the mechanism underlyingrespiratory plasticity, especially under pathological state. To date, the mostfrequently studied model of respiratory plasticity is long-term facilitation (LTF)model. LTF is a type of neuronal plasticity characterized by a progressiveincrease in phrenic nerve activity that lasts for at least one hour after stimuli(repetitive hypoxia, drug exposure, etc.), resulting in the increased pulmonaryventilation. LTF expression will help stabilize upper airways and maintain airwaypatency, implicating a potential clinical promise in treatment of sleep disorders.
     Phrenic LTF (pLTF) is usually induced by repetitive hypoxia in vivo, orrepetitive 5-HT application in vitro slice preparation. 5-HT/5-HT2A receptor (5-HT2AR) system is necessary and sufficient for pLTF expression, andabnormalities of this system often lead to respiratory disorders. However, thedownstream intracellular signalings activated by 5-HT system are little known sofar. In the present study, we established a novel pLTF model through eposodichypobaric hypoxia to mimik a high-altitude hypoxic situation. Additionally, wefound that a bolus of systemic 5-HT admistration could exert the enhancedphrenic nerve activity and pLTF, which was proviously uncharacterized. Based onour established two pLTF models in combination with drugs’intervention, theunderlying intracellular signalings were then investigated in the present study.
     【PurposPurpose】Using eposodic hypobaric- and 5-HT-induced pLTF models, we aimedto explore the roles of 5-HT→5-HT2AR→PKC pathway in respiratoryneuroplasticity in rats.
     【Methods】(1) Rats were housed in a chamber and maintained alternately under 5min of hypobaric hypoxia and 5 min of normoxia between for 7 consecutive days.Hypobaric hypoxia was achieved by continuous air evacuation to gradually reacha high altitude of about 9000~10000 m. On the morning of the eighth day,phrenic nerve activity was recorded after three episodic hypoxia. (2) Animalswere anaesthetized intraperitoneally and subjected to bilateral midcervicalvagotomy and paralyzed with intraperitoneal injection of curarine to preventspontaneous breathing effort. A femoral arterial catheter was placed to allowblood sample withdrawal for blood gases and blood pressure measurement. Afemoral venous catheter was implanted for drugs and fluid administration. Theright phrenic nerve was isolated unilaterally and recorded after drugsadministration or episodic hypoxia.
     【ResultResults】An augmented pLTF lasting for at least 60 min after AIH stimulus wasidentified in CIH-pretreated rats, which was almost doubled in comparison withcontrol animals (receiving AIH alone). Ketanserin, a selective 5-HT2ARantagonist, partly blocked the augmented pLTF induced by CIH. PKCθinhibitorcompletely blocked pLTF, and led to irregular patterns of phrenic nerve activity inCIH rats.
     An immediate inhibition of phrenic nerve activity was consistentlydetectable in all animals with systemic 5-HT exposure, though the extent to whichdifferent doses of a bolus of 5-HT exerted was different. A bolus of 5-HTapplication at 20μg/kg dose elicited a slight inhibition of phrenic nerve activity,which returned to baseline immediately. 5-HT at 40μg/kg caused a transientinhibition in both the amplitude and the frequency. 5-HT at 100μg/kg dose gaverise to an immediate, marked inhibition and a subsequent striking facilitation ofphrenic nerve activity. The enhanced phrenic nerve activity could last for at least60 min after 5-HT pretreatment, representing the characteristic of pLTF.Ketanserin completely blocked 5-HT-induced pLTF, whereas WAY100635, aselective 5-HT1AR antagonist, didn’t work. PKC inhibitor, staurosporine, didn’taffect the initial inhibition induced by 5-HT, but substantially inhibited thesubsequent facilitation, leading to a complete blockage of pLTF. We then foundthat 5-HT-induced biphasic pattern formation and pLTF expression werecontributed by two separate mechanisms, the initial inhibition in association withthe nodose ganglion, and the subsequent brisk facilitation with the carotid body.Hence, 5-HT led to an enhanced pLTF when the initial inhibition was eliminatedwith bilateral nodose ganglionectomy. On the other hand, with bilateral carotidbody excision, the subsequent robust facilitation was abolished, and also the pLTF.
     【Conclusions】Continuous sensory afferent inputs, central signal integration, and phrenic motor output constitute the complex respiratory network. pLTFexpression no doubt needs entire respiratory network activity. Indeed, the presentstudy unraveled a peripheral dynamic balance between carotid body excitationand nodose ganglion inhibition that contributed critically to 5-HT-induced pLTFexpression. 5-HT→5-HT2AR→PKC pathway plays an important role in pLTFformation, which is evident in both our established hypobaric- and 5-HT-inducedpLTF rat models. Our findings will extend our understanding of the mechanismundertaking LTF expression, and provide the potential likelihood for clinicaltreatment of sleep disorders.
引文
1. Aboubakr SE, Taylor A, Ford R, Siddiqi S, Badr MS. Long-term facilitation inobstructive sleep apnea patients during NREM sleep. J Appl Physiol91:2751-57, 2001.
    2. Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity.Trends Neurosci 19:126-30, 1996.
    3. Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generateoxygen free radicals in neurons and contribute to cell death during anoxia andreoxygenation. J Neurosci 27:1129-38, 2007.
    4. Ahuja D, Mateika JH, Diamond MP, Badr S. Ventilatory sensitivity to carbondioxide before and after episodic hypoxia in females treated with testosterone.J Appl Physiol 102:1832-38, 2007.
    5. Arata A, Onimaru H, Homma I. Respiration-related neurons in the ventralmedulla of newborn rats in vitro. Brain Res Bull 24:599-604, 1990.
    6. Bach KB, Mitchell G.S. Hypoxia-induced long-term facilitation ofrespiratory activity is serotonin dependent. Respir Physiol 104:251-60, 1996.
    7. Baker TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ,Johnson RA, Watters JJ, Mitchell GS. BDNF is necessary and sufficient forspinal respiratory plasticity following intermittent hypoxia. Nat Neurosci7:48-55, 2004.
    8. Baker TL, Fuller DD, Zabka AG, Mitchell GS. Respiratory plasticity:differential actions of continuous and episodic hypoxia and hypercapnia.Respir Physiol 129:25-35, 2001.
    9. Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, DoperalskiNJ, Johnson RA, Watters JJ, Mitchell GS. BDNF is necessary and sufficientfor spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci7:48-55, 2004.
    10. Balis UJ, Morris KF, Lindsay BG. Simulations of a ventrolateral medullaryneural network for respiratory rhythmogenesis inferred from spike traincross-correlation. Biol Cybern 70:311-27, 1994.
    11. Ballanyi K, Onimaru H, Homma I. Respiratory network function in theisolated brainstem-spinal cord of newborn rats. Prog Neurobiol 59:583-634,1999.
    12. Bamford OS, Sterni LM, Wasicko MJ, Montrose MH, Carroll JL. Postnatalmaturation of carotid body and type I cell chemoreception in the rat. Am JPhysiol 276:L875-84, 1999.
    13. Bavis RW, Mitchell GS. Long-term effects of the perinatal environment onrespiratory control. J Appl Physiol 104:1220-29, 2008
    14. Bavis RW, Mitchell GS. Plasticity in respiratory motor control selectedcontribution: intermittent hypoxia induces phrenic long-term facilitation incarotid body-denervated rats. J Appl Physiol 94:399-409, 2003.
    15. Bell HJ, Syed NI. Hypoxia-induced modulation of the respiratory CPG. FrontBiosci 14:3825-35, 2009.
    16. Bianchi AL, Denavit-Saubie M, Champagnat J. Central control of breathingin mammals: neuronal circuitry, membrane properties, and neurotransmitters.Physiol Rev 75:1-45, 1995.
    17. Bliss TV, Collingridge GL. A synaptic model of memory: long-termpotentiation in the hippocampus. Nature 361:31-39, 1993.
    18. Blitz DM, Ramirez JM. Long-term modulation of respiratory network activityfollowing anoxia in vitro. J Neurophysiol 87:2964-71, 2002.
    19. Bocchiaro CM, Feldman JL. Synaptic activity-independent persistentplasticity in endogenously active mammalian motoneurons. Proc Natl AcadSci 101:4292-95, 2004.
    20. Bodineau L, Cayetanot F, Marlot D, Collin T, Gros F, Frugière A.Endogenous 5-HT1/2 systems and the newborn rat respiratory control acomparative in vivo and in vitro study. Respir Physiol Neurobiol 141:47-57,2004.
    21. Bonham AC. Neurotransmitters in the CNS control of breathing. RespirPhysiol 101:219-30, 1995.
    22. Borday C, Wrobel L, Fortin G, Champagnat J, Tha?ron-Ant?no C, Thoby-Brisson M.. Developmental gene control of brainstem function: views fromthe embryo. Prog Biophys Mol Biol 84:89-106, 2004.
    23. Bradford A, McGuire M, O’Halloran KD. Does episodic hypoxia affect upperairway dilator muscle function? Implications for the pathophysiology ofobstructive sleep apnoea. Respir Physiol Neurobiol 147:223-34, 2005.
    24. Branco LG, Moreira TS, Guyenet PG, Lalley PM, Kawai A, Putnam RW,Chamberlin NL, Saper CB, Gourine AV, Kanamaru M, Homma I.Commentaries on Viewpoint: Central chemoreception is a complex systemfunction that involves multiple brain stem sites. J Appl Physiol 106:1467-70,2009.
    25. Brown TH, Chapman PF, Kairiss EW, Keenan CL. Long-term synapticpotentiation. Science 242:724-8, 1988.
    26. Buchanan GF, Richerson GB. Role of chemoreceptors in mediating dyspnea.Respir Physiol Neurobiol 11, 2008.
    27. Cann-Moisan C, Girin E, Giroux JD, Le Bras P, Caroff J. Changes incerebrospinal fluid monoamine metabolites, trytophan. Biol Neonate 75:152-59, 1999.
    28. Cao KY, Zwillich CW, Berthon-Jones M, Sullivan CE. Increased normoxicventilation induced by repetitive hypoxia in conscious dogs. J Appl Physiol73: 2083-88, 1992.
    29. Carley DW, Radulovacki M. Pharmacology of vagal afferent influences ondisordered breathing during sleep. Respir Physiol Neurobiol 164:197-203,2008.
    30. Chakraborty R, Chatterjee A, Choudhary S, Chakraborty PK. Neuroplasticity--a paradigm shift in neurosciences. J Indian Med Assoc 105:513-4, 516-8,520-1, 2007.
    31. Chowdhuri S, Pierchala L, Aboubakr SE, Shkoukani M, Badr MS. Longtermfacilitation of genioglossus activity is present in normal humans duringNREM sleep. Respir Physiol Neurobiol 160:65-75, 2008.
    32. Chuaychoo B, Lee MG, Kollarik M, Undem BJ. Effect of 5-hydroxytryptamine on vagal C-fiber subtypes in guinea pig lungs. PulmPharmacol Ther 18:269-76, 2005.
    33. Coleridge JCG, Coleridge HM. Afferent vagal C-fiber innervation of thelungs and airways and its functional significance. Rev Physiol BiochemPharmacol 99: 1-110, 1984.
    34. D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms thatgenerate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813-24,2007.
    35. Di Giulio C, Huang WX, Mokashi A, Roy A, Cacchio M, MacrìMA, Lahiri S.Sustained hypoxia promotes hyperactive response of carotid body in the cat.Respir Physiol Neurobiol 134:69-74, 2003.
    36. Dinger B, He L, Chen J, Liu X, Gonzalez C, Obeso A, Sanders K, Hoidal J,Stensaas L, Fidone S. The role of NADPH oxidase in carotid body arterialchemoreceptors. Respir Physiol Neurobiol 157: 45-54, 2007.
    37. Dirnagl U, Lindauer U, Them A, Schreiber S, Pfister HW, Koedel U, Reszka R,Freyer D, Villringer A. Global cerebral ischemia in the rat: online monitoringof oxygen free radical production using chemiluminescence in vivo. J CerebBlood Flow Metab 15:929-40, 1995.
    38. Duffin J. Functional organization of repiratory neurons:a brief review ofcurrent questions and speculations. Exp Physiol 89:517-29, 2004.
    39. Eldridge FL, Millhorn DE. Oscillation, gating and memory in the respiratorycontrol system. In: Handbook of Physiology, Section 3: The RespiratorySystem, Vol. II: Control of Breathing, part 1. American Physiological Society93-114, 1986.
    40. Ellenberger HH, Feldman JL. Brainstem connections of the rostral ventralrespiratory group of the rat. Brain Res 513:35-42, 1990.
    41. Ezure K, Tanaka I, Saito Y. Brainstem and spinal projections of augmentingexpiratory neurons in the rat. Neurosci Res 45:41-51, 2003.
    42. Ezure K. Synaptic connections between medullary respiratory neurons andconsiderations on the genesis of respiratory rhythm. Prog Neurobiol 35:429-50, 1990.
    43. Fabian RH, DeWitt DS, Kent TA. In vivo detection of superoxide anionproduction by the brain using a cytochrome c electrode. J Cereb Blood FlowMetab 15:242-47, 1995.
    44. Fabian RH, Perez-Polo RJ, Kent T.A. Extracellular superoxide concentrationincreases following cerebral hypoxia but does not affect cerebral blood flow.Int J Devl Neurosci 22:225-30, 2004.
    45. Feldman JL, Del Negro CA. Looking for inspiration: new perspectives onrespiratory rhythm. Nat Rev Neurosci 7:232-42, 2006.
    46. Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity,chemosensitivity. Annu Rev Neurosci 26:239-66, 2003.
    47. Fischer TM, Blazis DE, Priver NA, Carew TJ. Metaplasticity at identifiedinhibitory synapses in Aplysia. Nature 389:860-65, 1997.
    48. Fortuna MG, West GH, Stornetta RL, Guyenet PG. B?tzinger expiratoryaugmentingneurons and the parafacial respiratory group. J Neurosci28:2506-15, 2008.
    49. Foster GE, McKenzie DC, Milsom WK, Sheel AW. Effects of two protocolsof intermittent hypoxia on human ventilatory, cardiovascular and cerebralresponses to hypoxia. J Physiol 567:689-99, 2005.
    50. Fregosi RF, Mitchell GS. Long-term facilitation of inspiratory intercostalnerve activity following carotid sinus nerve stimulation in cats. J Physiol477:469-79, 1994.
    51. Freudenthal R, Romano A. Participation of Rel/NF-κB transcription factors inlong-term memory in the crab Chasmagnathus. Brain Res 855:274-81, 2000.
    52. Fukuda H, Koga T. Most inspiratory neurons in the pre-B?tzinger complex aresuppressed during vomiting in dogs. Brain Res 763:30-8, 1997.
    53. Fuller DD, Bach KB, Kinkead BR, Mitchell GS. Long term facilitation ofphrenic motor output. Respir Physiol 121:135-46, 2000.
    54. Fuller DD, Zabka AG, Baker TL, Mitchell GS. Phrenic long-term facilitationrequires 5-HT receptor activation during but not following episodic hypoxia.J Appl Physiol 90:2001-6, 2001.
    55. Funk GD, Johnson SM, Smith JC, Dong XW, Lai J, Feldman JL. Functionalrespiratory rhythm generating networks in neonatal mice lacking NMDAR1gene. J Neurophysiol 78:1414-20, 1997.
    56. Funk GD, Smith JC, Feldman JL. Generation and transmission of respiratoryoscillations in medullary slices: role of excitatory amino acids. JNeurophysiol 70:1497-1515, 1993.
    57. Gonzalez C, Alvarez L, Obeso A, Rigual R. Carotid body chemoreceptors:From natural stimuli to sensory discharges. Physiological Revolution 74:829-98, 1994.
    58. Gonzalez C, Lopez-Lopez JR, Obeso A, Perez-Garcia MT, Rocher A. Cellularmechanisms of oxygen chemoreception in the carotid body. Respir Physiol102:137-47, 1995.
    59. Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL. Normalbreathing requires pre-B?tzinger complex neurokinin-1 receptor-expressingneurons. Nat Neurosci 4:927-30, 2001.
    60. Gray PA, Rekling JC, Bocchiaro CM, Feldman JL. Modulation of respiratoryfrequency by peptidergic input to rhythmogenic neurons in the preB?tzingercomplex. Science 286:1566-68, 1999.
    61. Guyenet PG, Mulkey DK, Stornetta RL, Bayliss DA () Regulation of ventralsurface chemoreceptors by the central respiratory pattern generator. JNeurosci 25:8938-47, 2005.
    62. Guyenet PG, Sevigny CP, Weston MC, Stornetta RL. Neurokinin-1 receptorexpressingcells of the ventral respiratory group are functionallyheterogeneous and predominantly glutamatergic. J Neurosci 22:3806-16,2002.
    63. Hermitte G, Pedreira ME, Tomsic D, Maldonado H. Context shift and proteinsynthesis inhibition disrupt long-term habituation after spaced, but not massed,training in the crab Chasmagnathus. Neurobiol Learn Mem 71:34-49, 1999.
    64. Hilaire G, Bou C, Monteau R. Serotonergic modulation of central respiratoryactivity in the neonatal mouse: an in vitro study. Eur J Pharmacol 329:115-20, 1997.
    65. Hilaire G, Monteau R, Gauthier P, Rega P, Morin D. Funtional significance ofthe dorsal respiratory group in adult and newborn rats:in vivo and in virtostudies. Neurosci Lett 111:133-88, 1990.
    66. Howland JG, Wang YT. Synaptic plasticity in learning and memory: stresseffects in the hippocampus. Prog Brain Res 169:145-58, 2008.
    67. Hu JY, Glickman L, Wu F, Schacher S. Serotonin regulates the secretion andautocrine action of a neuropeptide to activate MAPK required for long-termfacilitation in Aplysia. Neuron 43:373-85, 2004.
    68. Ikeda M, Yoshida S, Kadoi J, Nakano Y, Mastumoto S. The effect of PKCactivity on the TTX-R sodium currents from rat nodose ganglion neurons. LifeSci 78:47-53, 2005.
    69. Jacquin TD, Borday V, Schneider-Maunoury S, Topilko P, Ghilini G, Kato F,Charnay P, Champagnat J. Reorganization of pontine rhythmogenicneuronal networks in Krox-20 knockout mice. Neuron 17:747-58, 1996.
    70. Janczewski WA, Feldman JL. Distinct rhythm generators for inspiration andexpiration in the juvenile rat. J Physiol 570:407-20. 2006.
    71. Janczewski WA, Onimaru H, Homma I, Feldman JL. Opioidresistantrespiratory pathway from the preinspiratory neurones to abdominal muscles:in vivo and in vitro study in the newborn rat. J Physiol 545:1017-26, 2002.
    72. Jansen AH, Chernick V. Development of respiratory control. Physiol Rev 63:437-83, 1983.
    73. Johnson SM, Smith JC, Feldman JL. Modulation of respiratory rhythm invitro: Role of Gi -protein regulated conductances. J Appl Physiol 80:2120-33,1996.
    74. Johnson SM, Smith JC, Funk GD, Feldman JL. Pacemaker behavior ofrespiratory neurons in medullary slices from neonatal rat. J Neurophysiol 722598-08, 1994.
    75. Jordan AS, Catcheside PG., O’Donoghue FJ, McEvoy RD. Long-termfacilitation of ventilation is not present duringwakefulness in healthymenorwomen. J Appl Physiol 93:2129-36, 2002.
    76. Katayama M, Sato A, Morotome Y, Shima N, Ishida K, Mori S, Miyamura M.Ventilatory chemosensitive adaptations to intermittent hypoxic exposure withendurance training and detraining. J Appl Physiol 86:1805-11, 1999.
    77. Kemp PJ. Detecting acute changes in oxygen: will the real sensor please standup? Exp Physiol 91:829-34, 2006.
    78. Kinkead R, Bach KB, Johnson SM, Hodgeman BA, Mitchell GS. Plasticityin respiratory motor control: intermittent hypoxia and hypercapnia activateopposing serotonergic and noradrenergic modulatory systems. CompBiochem Physiol A Mol Integr Physiol 130:207-18, 2001.
    79. Kinney HC. Abnormalities of the brainstem serotonergic system in thesudden infant death syndrome: a review. Pediatr Devel Pathol 8:507-24,2005.
    80. Kopczyńska B, Szereda-Przestaszewska M. 5HT2 and 5HT3 receptors’contribution tomodeling of post-serotonin respiratory pattern in cats. Life Sci75: 2281-90, 2004.
    81. Kopczyńska B, Szereda-Przestaszewska M. Supranodose vagotomy precludesreflex respiratory responses to serotonin in cats. J Biomed Sci 10:718-24,2003.
    82. Koshiya N, Smith JC. Neuronal pacemaker for breathing visualized in vitro.Nature 400:360-63, 1999.
    83. Kullmann DM, Lamsa KP. Long-term synaptic plasticity in hippocampalinterneurons. Nat Rev Neurosci 8:687-99, 2007.
    84. Kumar GK, Overholt JL, Prabhakar NR. Multiple roles of neurotransmittersin the carotid body: involvement in sensory transmission and adaptation tohypoxia. Oxygen Sensing: Responses and Adaptations to Hypoxia(ed. LahiriS, Semenza GL & Prabhakar NR, Lung Biology in Health disease, MarcelDekker, NY) 175:421-38, 2003.
    85. Lahiri S, Forster RE 2nd. CO2/H+ sensing: peripheral and centralchemoreception. Int J Biochem Cell Biol 35:1413-35, 2003.
    86. Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR. Oxygensensing in the body. Prog Biophys Mol Biol 3:249-86, 2006.
    87. Lane MA, Fuller DD, White TE, Reier PJ. Respiratory neuroplasticity andcervical spinal cord injury: translational perspectives. Trends Neurosci31:538-47, 2008.
    88. Lieske SP, Thoby-Brisson M, Telgkamp P, Ramirez JM. Reconfiguration ofthe neural network controlling multiple breathing patterns: eupnea,sighsand gasps. Nat Neurosci 3:600-7, 2000.
    89. Lindsay AD, Feldman JL. Modulation of respiratory activity of neonatal ratphrenic motoneurons by serotonin. J Physiol 461:213-33, 1993.
    90. Ling L, Fuller DD, Bach KB, Kinkead R, Olson Jr EB, Mitchell GS. Chronicintermittent hypoxia elicits serotonin-dependent plasticity in the central neuralcontrol of breathing. J Neurosci 21:5381-88, 2001.
    91. Liu YY, Ju G, Wong-Riley MTT. Distribution and colocalization ofneurotransmitters and receptors in the preB?tzinger complex of rats. J ApplPhysiol 91:1387-95, 2001.
    92. Liu YY, Wong-Riley MTT, Liu JP, Jia Y, Liu HL, Fujiyama F, Ju G.Relationship between two types of vesicular glutamate transporters andneurokinin-1 receptor-immunoreactive neurons in the preB?tzinger complexof rats: light and electron microscopic studies. Eur J Neurosci 17:41-8, 2003.
    93. Liu YY, Wong-Riley MTT, Liu JP, Jia Y, Liu HL, Fujiyama F, Ju G.Substance P and enkephalinergic synapses onto neurokinin-1 receptorimmunoreactiveneurons in the preB?tzinger complex of rats. Eur J Neurosci19:65-75, 2004.
    94. Liu YY, Wong-Riley MTT, Liu JP, Jia Y, Liu HL, Jiao XY, Ju G.GABAergic and glycinergic synapses onto neurokinin-1receptorimmunoreactive neurons in the preB?tzinger complex of rats: lightand electron microscopic studies. Eur J Neurosci 16:1058-66, 2002.
    95. Lonergan T, Goodchild AK, Christie MJ, Pilowsky PM. Mu opioid receptorsin rat ventral medulla: effects of endomorphin-1 on phrenic nerve activity.Respir Physiol Neurobiol 138:165-78, 2003.
    96. Lopez-Barneo J, Pardal R, Ortega-Saenz R. Cellular mechanisms of O2sensing. Annu Rev Physiol 63:259-87, 2001.
    97. MacFarlane PM, Mitchell GS. Respiratory long term facilitation evoked byacute intermittent hypoxia is impaired following intravenous injection of asuperoxide dismutase mimetic. FASEB J 20:A372, 2006.
    98. MacFarlane PM, Mitchell GS. Respiratory long-term facilitation followingintermittent hypoxia requires reactive oxygen species formation.Neuroscience 152:189-97, 2008.
    99. Macfarlane PM, Satriotomo I, Windelborn JA, Mitchell GS. NADPH oxidaseactivity is necessary for acute intermittent hypoxia-induce phrenic long-termfacilitation. J Physiol 23, 2009.
    100.Machacek DW, Garraway SM, Shay BL, Hochman S. Serotonin 5-HT2receptor activation induces a long-lasting amplification of spinal reflexactions in the rat. J Physiol 537:201-7, 2001.
    101.Mahamed S, Mitchell GS. Is there a link between intermittent hypoxiainducedrespiratory plasticity and obstructive sleep apnoea? Exp Physiol92:27-37, 2007.
    102.Mahamed S, Mitchell GS. Simulated apneas induce serotonin dependentrespiratory long term facilitation in rats. J Physiol 586:2171-81, 2008.
    103.Masaoka N, Nakajima Y, Hayakawa Y, Ohgame S, Hamano S, Nagaishi M,Yamamoto T. Transplacental effects of allopurinol on suppression of oxygenfree radical production in chronically instrumented fetal lamb brains duringintermittent umbilical cord occlusion. J Matern Fetal NeonatalMed 18:1-7,2005.
    104.Mateika JH, Fregosi RF. Long-term facilitation of upper airway muscleactivities in vagotomized and vagally intact cats. J Appl Physiol 82:419-25,1997.
    105.Mateika JH, Narwani G. Intermittent hypoxia and respiratory plasticity inhumans and other animals: does exposure to intermittent hypoxia promote ormitigate sleep apnoea? Exp Physiol 94:279-96, 2009.
    106.Mauelshagen J, Sherff CM, Carew TJ. Differential induction of long-termsynaptic facilitation by spaced and massed applications of serotonin atsensory neuron synapses of Aplysia californica. Learn Mem 5:246-56, 1998.
    107.Mayer ML. Glutamate receptor ion channels. Curr Opin Neurobiol 15:282-8,2005.
    108.McCrimmon DR, Alheid GF, Jiang M, Calandriello T, Topgi A. Convergingfunctional and anatomical evidence for novel brainstem respiratorycompartments in the rat. Adv Exp Med Biol 551:101-5, 2004.
    109.McCrimmon DR, Ramirez JM, Alford S, Zuperku EJ. Unraveling themechanism for respiratory rhythm generation. Bioessays 22:6-9, 2000.
    110.McCrimmon DR, Smith JC, Feldman JL. Involvement of excitatory aminoacids in neurotransmission of inspiratory drive to spinal respiratorymotoneurons. J Neurosci 9:1910-21, 1989.
    111.McGuire M, Ling L. Intermittent but not sustained hypercapnic hypoxiainduces ventilatory long-term facilitation in awake rats. FASEB J 20:A371,2006.
    112.McGuire M, Ling L. Ventilatory long-term facilitation is greater in 1- vs. 2-mo-old awake rats. J Appl Physiol 98:1195-1201, 2005a.
    113.McGuire M, Liu C, Cao Y, Ling L. Formation and maintenance of ventilatorylong-term facilitation requireNMDA but not non-NMDA receptors in awakerats. J Appl Physiol 105:942-50, 2008.
    114.McGuire M, Zhang Y, White DP, Ling L. Effect of hypoxic episodenumberand severity on ventilatory long-term facilitation in awake rats. J ApplPhysiol 93:2155-61, 2002a.
    115.McGuire M, Zhang Y, White DP, Ling L. Phrenic long-term facilitationrequires NMDA receptors in the phrenic motonucleus in rats. J Physiol567:599-611. 2005b.
    116.McGuire M, Zhang Y, White DP, Ling L. Serotonin receptor subtypesrequired for ventilatory long-term facilitation and its enhancement afterchronic intermittent hypoxia in awake rats. Am J Physiol Regul Integr CompPhysiol 286:R334-41, 2004.
    117.McGuire M, Zhang Y, White DP, Ling L. Effect of hypoxic episode numberand severity on ventilatory long-term facilitation in awake rats. J Appl Physiol93:2155-61, 2002b.
    118.McKay LC, Janczewski WA, Feldman JL. Episodic hypoxia evokes long-termfacilitation of genioglossus muscle activity in neonatal rats. J Physiol 557:13-18, 2004.
    119.Mellen NM, Janczewski WA, Bocchiaro CM, Feldman JL. Opioid-inducedquantal slowing reveals dual networks for respiratory rhythm generation.Neuron 37:821-26, 2003.
    120.Michael D, Martin KC, Seger R, NingMM, Baston R, Kandel ER. Repeatedpulses of serotonin required for longterm facilitation activate mitogenactivatedprotein kinase in sensory neurons of Aplysia. Proc Natl Acad Sci95:1864-69, 1998.
    121.Milledge JS. Altitude acclimatization. High Altitude Medicine andPhysiology( 3rd ed. M.P. Ward, J.S. Milledge, and J.B. West, eds. Arnold,London), 2000.
    122.Millhorn DE, Eldridge FL, Waldrop TG. 1Prolonged stimulation ofrespiration by a new central neural mechanism. Respir Physiol 41:87-103,1980.
    123.Mitchell GS, Baker TL, Nanda SA, Fuller DD, Zabka AG, Hodgeman BA,Bavis RW, Mack KJ, Olson EB Jr. Invited review: Intermittent hypoxia andrespiratory plasticity. J Appl Physiol 90:2466-75, 2001a.
    124.Mitchell GS, Johnson SM. Neuroplasticity in respiratory motor control. JAppl Physiol 94:358-74, 2003.
    125.Mitchell GS, Powell FL, Hopkins SR, Milsom WK. Time domains of thehypoxic ventilatory response in awake ducks: episodic and continuoushypoxia. Respir Physiol 124:117-28, 2001b.
    126.Morgado-Valle C, Feldman JL. NMDA receptors in preBotzinger complexneurons can drive respiratory rhythm independent ofAMPA receptors. JPhysiol 582:359-68, 2007.
    127.Morin D, Hennequin S, Monteau R, Hilaire G. Serotoninergic influences oncentral respiratory activity: an in vitro study in the newborn rat. Brain Res535:281-87, 1990.
    128.Morin D, Monteau R, Hilaire G. Compared effects of serotonin on cervicaland hypoglossal inspiratory activities: an in vitro study. J Physiol 451:605-29,1992.
    129.Morris KF, Baekey DM, Nuding SC, Dick TE, Shannon R, Lindsey BG.Invited review: Neural network plasticity in respiratory control. J ApplPhysiol 94:1242-52, 2003.
    130.Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA,Guyenet PG . Respiratory control by ventral surface chemoreceptor neuronsin rats. Nat Neurosci 7:1360 -69, 2004.
    131.Mulligan E, Lahiri S. Separation of carotid body chemoreceptor responses toO2 and CO2 by oligomycin and by antimycin A. Am J Physiol 242:C200-6,1982.
    132.Nagasaka T, Satake T. Changes of pulmonary and cardiovascular functions insubjects confined intermittently in a low-pressure chamber for 3 consecutivedays. Fed Proc 28:1312-15, 1969.
    133.Nagata N, Saji M, Ito T, Ikeno S, Takahashi H, Terakawa N. Repetitiveintermittent hypoxia-ischemia and brain damage in neonatal rats. Brain Dev22:315-20, 2000.
    134.Nattie E, Li A. Central chemoreception is a complex system function thatinvolves multiple brain stem sites. J Appl Physiol 106:1464-6, 2009.
    135.Nattie E, Li A. Muscimol dialysis in the retrotrapezoid nucleus regioninhibits breathing in the awake rat. J Appl Physiol 89:153-62, 2000.
    136.Neverova NV, Saywell SA, Nashold LJ, Mitchell GS, Feldman JL.Episodicstimulation of alpha1-adrenoreceptors induces protein kinase Cdependentpersistent changes in motoneuronal excitability. J Neurosci27:4435-42, 2007.
    137.Olson Jr EB, Bohne CJ, Dwinell MR, Podolsky A, Vidruk EH, Fuller DD,Powell FL, Mitchell GS. Ventilatory long-term facilitation in unanesthetizedrats. J Appl Physiol 91:709-16, 2001.
    138.Onimaru H, Arata A, Homma I. Localization of respiratory rhythmgeneratingeurons in the medulla of brainstem-spinal cord preparations rom newbornrats. Neurosci Lett 78:151–55, 1987.
    139.Onimaru H, Arata A, Homma I. Primary respiratory rhythm generator in themedulla of brainstem-spinal cord preparation from newborn rat. Brain Res445:314-24, 1988.
    140.Onimaru H, Homma I, Feldman JL, Janczewski WA. Point:Counterpoint: theparafacial respiratory group (pFRG)/pre-B?tzinger complex (preB?tC) is theprimary site of respiratory rhythm generation in the mammal. J Appl Physiol100:2094-98, 2006b.
    141.Onimaru H, Homma I. A novel functional neuron group for respiratory rhythmgeneration in the ventral medulla. J Neurosci 23:1478-86, 2003.
    142.Onimaru H, Kumagawa Y, Homma I. Respiration-related rhythmic activityin the rostral medulla of newborn rats. J Neurophysiol 96:55-61, 2006a.
    143.Onimaru H, Shamoto A, Homma I. Modulation of respiratory rhythm by 5-HT in the brainstem-spinal cord preparation from newborn rat. Pflügers Arch435:485-94, 1998.
    144.Pang L, Eyzaguirre C. Different effects of hypoxia on the membrane potentialand input resistance of isolated and clustered carotid body glomus cells.Brain Res 575:167-73, 1992.
    145.Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH,Darnall R, Chadwick AE, Krous HF, Kinney HC. Multiple serotonergicbrainstem abnormalities in sudden infant death syndrome. JAMA 296:2124-32,2006.
    146.Paton JF, Ramirez JM, Richter DW. Mechanisms of respiratory rhythmgeneration change profoundly during early life in mice and rats. Neurosci Lett170:167-70, 1994.
    147.Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR. Induction ofsensory long-term facilitation in the carotid body by intermittent hypoxia:implications for recurrent apneas. Proc Natl Acad Sci 100:10073-78, 2003a.
    148.Peng YJ, Prabhakar NR. Reactive oxygen species in the plasticity ofrespiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol94:2342-49, 2003b.
    149.Peng YJ, Yuan G, Jacono FJ, Kumar GK, Prabhakar NR. 5-HT evokes sensorylong-term facilitation of rodent carotid body via activation of NADPHoxidase. J Physiol 576:289-95, 2006.
    150.Peng YJ, Yuan G, Kumar GK, Deneris E, Prabhakar NR. Activation ofNADPH-oxidase by 5-HT mediates sensory LTF of the carotid body bychronic intermittent hypoxia. FASEB J 22:960-8, 2008.
    151.Perez-Garcia MT, Colinas O, Miguel-Velado E, Moreno-Dominguez A,Lopez-Lopez JR. Characterization of the Kv channels of mouse carotid bodychemoreceptor cells and their role in oxygen sensing. J Physiol 557:457-71,2004.
    152.Pierrefiche O, Schwarzacher SW, Bishoff AM, Richter DW. Blockade ofsynaptic inhibition within the preB?tzinger complex in the cat suppressesrespiratory rhythm generation in vivo. J Physiol 509:245-54, 1998.
    153.Porzionato A, Macchi V, Parenti A, Matturri L, De Caro R. Peripheralchemoreceptors: postnatal development and cytochemical findings in suddeninfant death syndrome. Histol Histopathol 23:351-65, 2008.
    154.Powell FL, Garcia N. Physiological effects of intermittent hypoxia. High AltMed Biol 1:125-36, 2000.
    155.Prabhakar NR, Dinerman JL, Agani FH, Snyder SH. Carbon monoxide: a rolein carotid body chemoreception. Proc Natl Acad Sci 92:1994-97. 1995.
    156.Prabhakar NR, Kumar GK, Nanduri J, Semenza GL. ROS signaling insystemic and cellular responses to chronic intermittent hypoxia. AntioxidRedox Signal 9:1397-403, 2007.
    157.Prabhakar NR. NO and CO as second messengers in oxygen sensing in thecarotid body. Respir Physiol 115:161-68, 1999.
    158.Prabhakar NR. Oxygen sensing during intermittent hypoxia: cellular andmolecular mechanisms. J Appl Physiol 90:1986-94, 2001.
    159.Ramirez JM, Richte DW. The neuronal mechanisms of respiratory rhythmgeneration. Curr Opin Neurobiol 6:817-25, 1996.
    160.Ramirez JM, Schwarzacher SW, Pierrefiche O, Olivera BM, Richter DW.Selective of the cat pre-B?tzinger complex in vivo eliminates breathing butnot gasping. J Physiol 507:895-907, 1998.
    161.Reeves SR, Gozal D. Developmental plasticity of respiratory controlfollowing intermittent hypoxia. Respir Physiol Neurobiol 149:301-11, 2005.
    162.Reeves SR, Mitchell G.S, Gozal D. Early postnatal chronic intermittenthypoxia modifies hypoxic respiratory responses and long-term phrenicfacilitation in adult rats. Am J Physiol Regul Integr Comp Physiol 290:1664-71, 2006.
    163.Reid SG. Chemoreceptor and pulmonary stretch receptor interactions withinamphibian respiratory control systems. Respir Physiol Neurobiol 154:153-64,2006.
    164.Rekling JC, Champagnat J, Denavit-Saubie M. Thyrotropin-releasinghormone (TRH) depolarizes a subset of inspiratory neurons in the newbornmouse brain stem in vitro. J Neurophysiol 75:811-9, 1996.
    165.Rekling JC, Feldman JL. PreB?tzinger complex and pacemaker neurons:hypothesized site and kernel for respiratory rhythm generation. Annu RevPhysiol 60:385-405, 1998.
    166.Richerson GB, Getting PA. Medullary respiratory neurons in the guinea pig:localization and firing patterns. Brain Res 591:79-87, 1992.
    167.Richter DW, Ballantyne D, Remmers JE. Respiratory rhythm generation: amodel. News Physiol Sci 1:109-12, 1986.
    168.Richter DW, Ballanyi K, Ramirez JM, Miller AD, Bianchi AL, Bishop BP.Respiratory rhythm generation in neural control of the respiratory muscles.Boca Raton New York London Tokyo : CRC Press 119-30, 1997.
    169.Richter DW, Ballanyi K, Schwarzacher S. Mechanisms of respiratory rhythmgeneration. Curr Opin Neurobiol 2:788-93, 1992.
    170.Richter DW, Manzke T, Wilken B, Ponimaskin E. Serotonin receptors:guardians ofstable breathing. Trends Mol Med 9:542-48, 2003.
    171.Richter DW. Neural regulation of respiration: rhythmogenesis and afferentcontrol. Human Physiology 2:2079-95, 1996.
    172.Schwarzacher SW, Pestean A, Günther S, Ballanyi K. Serotonergicmodulation of respiratory motoneurons and interneurons in brainstem slicesof perinatal rats. Neuroscience 115:1247-59, 2002.
    173.Schwarzacher SW, Smith JC, Richter DW. Pre-B?tzinger complex in the cat.J Neurophysiol 73:1452-61, 1995.
    174.Shen LL, Duffin J. Caudal expiratory neurons in the rat. Pfluger Arch444:405-10, 2002.
    175.Sherff CM, Carew TJ. Parallel somatic and synaptic processing in theinduction of intermediate-term and long-term synaptic facilitation in Aplysia.Proc Natl Acad Sci 101:7463-68, 2004.
    176.Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-B?tzinger complex: a brainstem region that may generate respiratory rhythmin mammals. Science 254:726-29, 1991.
    177.Smith JC, Morrison DE, Ellenberger HH, Otto MR, Feldman JL. Brainstemprojections to the major respiratory neuron populations in the medulla of thecat. J Comp Neurol 281:69–96, 1989.
    178.Steenland HW, Liu H, Sood S, Liu X, Horner RL. Respiratory activation ofthe genioglossus muscle involves both non-NMDA and NMDA glutamatereceptors at the hypoglossal motor nucleus in vivo. Neuroscience 138:1407-24, 2006.
    179.Stornetta RL, Sevigny CP, Guyenet PG. Inspiratory augmenting bulbospinalneurons express both glutamatergic and enkephalinergic phenotypes. J CompNeurol 455:13-24, 2003.
    180.Sun QJ, Goodchild AK, Chalmer JP, Pilowsky PM. The pre-B?tzingercomplex and phase-spanning neurons in the adult rat. Brain Res 809:204-13,1998.
    181.Suzue T. Respiratory rhythm generation in the in vitro brain stemspinal cordpreparation of the neonatal rat. J Physiol 354:173-83, 1984.
    182.Svanborg E. Impact of obstructive apnea syndrome on upper airwayrespiratory muscles. Respir Physiol Neurobiol 147:263-72, 2005.
    183.Takeda S, Eriksson LI, Yamamoto Y, Joensen H, Onimaru H, Lindahl SG.Opioid action on respiratory neuron activity of the isolated respiratorynetwork in newborn rats. Anesthesiology 95:740-49, 2001.
    184.Terada J, Nakamura A, Zhang W, Yanagisawa M, Kuriyama T, Fukuda Y,Kuwaki T. Ventilatory long-term facilitation in mice can be observed bothduring sleep and wake periods and depends on orexin. J Appl Physiol104:499-507, 2008.
    185.Thach BT. The role of respiratory control disorders in SIDS. Respir PhysiolNeurobiol 149:343-53, 2005.
    186.Tully T, Preat T, Boynton SC, Del Vecchio M. Genetic dissection ofconsolidated memory in Drosophila. Cell 79:35-47, 1994.
    187.Turner DL, Mitchell GS. Long-term facilitation of ventilation followingrepeated hypoxic episodes in awake goats. J Physiol 499:543-50, 1997.
    188.Veasey SC, Zhan G, Fenik P, Pratico D. Long-term intermittenthypoxia:reduced excitatory hypoglossal nerve output. Am J Respir Crit CareMed 170:665-72, 2004.
    189.Villal?n CM, Centuri?n D. Cardiovascular responses produced by 5-hydroxytriptamine: a pharmacological update on the receptors/mechanismsinvolved and therapeutic mplications. Naunyn-Schmiedeberg’s ArchPharmacol 376:45-63, 2007.
    190.Wadhwa H, Gradinaru C, Gates GJ, Badr MS, Mateika JH. Impact ofintermittent hypoxia on long-term facilitation of minute ventilation and heartrate variability in men and women: do sex differences exist? J Appl Physiol104:1625-33, 2008.
    191.Waters KA, Machaalani R. Role of NMDA receptors in development ofrespiratory control. Respir Physiol Neurobiol 149:123-30, 2005.
    192.Wenninger JM, Olson EB Jr, Cotter C, Thomas CF, Behan M. Hypoxic andHypercapnic Ventilatory Responses in Aging Male vs. Aging Female Rats. JAppl Physiol Mar 5 2009.
    193.Wilkerson JE, Macfarlane PM, Hoffman MS, Mitchell GS. Respiratoryplasticity following intermittent hypoxia: roles of protein phosphatases andreactive oxygen species. Biochem Soc Trans 35:1269-72, 2007.
    194.Wilkerson JE, Satriotomo I, Baker-Herman TL,Watters JJ, Mitchell GS.Okadaic acid-sensitive protein phosphatases constrain phrenic long-termfacilitation after sustained hypoxia. J Neurosci 28:2949-58, 2008.
    195.Wojciechowskia P, Szereda-Przestaszewska M, Lipkowskib AW. Supranodosevagotomy eliminates respiratory depression evoked by dermorphin inanaesthetized rats. Eur J Pharmacol 563:209-12, 2007.
    196.Yoshioka M, Goda Y, Abe M, Togashi H, Matsumoto M, Saito H.Pharmacological characterization of 5-hydroxytryptamine-induced apnea inthe rats. J Pharmacol Exp Ther 260:917-24, 1992.
    197.Zabka AG, Behan M, Mitchell GS. Long term facilitation of respiratory motoroutput decreases with age in male rats. J Physiol 531:509-14, 2001b.
    198.Zabka AG, Behan M, Mitchell GS. Selected contribution: time-dependenthypoxic respiratory responses in female rats are influenced by age and by theestrus cycle. J Appl Physiol 91:2831-38, 2001a.
    199.Zabka AG, Mitchell GS, Behan M. Ageing andgonadectomy have similareffects on hypoglossal long-term facilitation in male Fischer rats. J Physiol563:557-68, 2005.
    200.Zabka AG, Mitchell GS, Behan M. Conversion from testosterone to oestradiolis required to modulate respiratory long-term facilitation in male rats. JPhysiol 576:903-12, 2006.
    201.Zabka AG., Mitchell G.S, Olson Jr EB, Behan M. Selected contribution:chronic intermittent hypoxia enhances respiratory long-term facilitation ingeriatric emale rats. J Appl Physiol 95:2614-23, 2003.
    202.Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC.NADPH oxidase mediates hypersomnolence and brain oxidative injury in amurine model of sleep apnea. Am J Respir Crit Care Med 172:921-29, 2005.
    203.Zhang Y, McGuire M, White DP, Ling L. Episodic phrenic-inhibitory vagusnerve stimulation paradoxically induces phrenic long-term facilitation in rats.J Physiol 551:981-91, 2003.
    204.Zhang Y, McGuire M, White DP, Ling L. Serotonin receptor subtypesinvolved in vagus nerve stimulation-induced phrenic long-term facilitation inrats. Neurosci Lett 363:108-11, 2004.
    205.Zheng Y, Riche D, Rekling JC. Brainstem neurons projecting to the rostralventral respiratory group (rVRG) in the medulla oblongata of the rat revealedby CO2 application of NMDA and biocytin. Brain Res 782:113-25, 1998.
    206.Zhuo H, Ichikawa H, Helke CJ. Neurochemistry of the nodose ganglion. ProgNeurobiol 52:79-107, 1997.
    207.王晶华,刘攀,黄民,李明娴. 5-羟色胺与阻塞性睡眠呼吸暂停低通气综合征的关系.中华结核和呼吸杂志29:795, 2006.