丙泊酚麻醉影响大鼠工作记忆神经编码机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:丙泊酚是临床手术常用的麻醉药物之一,该药物对手术后认知功能是否产生负面影响是临床关注的重要问题。本论文以大鼠为研究对象,以工作记忆认知功能为切入点,研究静脉注射临床关心的0.9mg/Kg.min丙泊酚在手术后不同时期大鼠工作记忆行为学特征;以及在工作记忆责任脑区(前额叶皮层)上两类不同模态的神经信号——局部场电位(local field potential, LFP)和神经元集群动作电位编码工作记忆事件的模式,研究0.9mg/Kg.min丙泊酚对工作记忆功能的影响。论文的研究为临床提供了支持。
     研究方法:
     1.实验动物雄性SD大鼠10只,体重300-350g,在Y迷宫中进行工作记忆任务训练。
     2.将实验大鼠随机分为两组,分别记为丙泊酚组(5只)和对照组(5只)。丙泊酚组大鼠按0.9mg/kg-min剂量鼠尾静脉注射丙泊酚2小时,
     3.在两组大鼠前额叶皮层在体植入16通道微电极阵列。
     4.在术后每天对两组大鼠进行工作记忆能力测试,并应用Cerebus128通道信号采集系统记录两组大鼠在工作记忆过程中前额叶皮层的16通道神经电信号。直到丙泊酚组大鼠工作记忆行为达到训练标准(正确率90%)。
     5.从16通道原始记录神经电信号中分离LFPs和动作电位(AP)
     对所记录的原始神经电信号进行低通滤波(0.5-500Hz),得到16通道局部场电位(Local Field Potentials, LFPs);原始数据经高通滤波(500-7.5KHz),再通过阈值检测获取spikes, spikes信号经过sorting获得动作电位时空序列。
     6.两组大鼠前额叶皮层16通道LFPs对工作记忆事件的编码
     (1) LFPs预处理去除16通道LFPs信号中夹杂的工频干扰与基线漂移,获取零均值16通道LFPs。
     (2)LFPs相关编码的时空分布
     取窗口长50ms,从初始时间开始,计算一个窗口中16通道LFPs的相位相关:应用Hilbert变换获取16通道LFPs的相位;选取平均放电频率最高的通道作为参考通道;计算其余15通道LFPs对参考通道LFP的相位相关。取窗口移动步长为12.5ms,移动窗口,分别在每个窗口中计算LFPs的相位相关,获得16通道LFPs相位相关编码的时空分布模式。
     (3)LFPs复杂度编码的时空分布选窗口长为200ms,应用Lem-ziv复杂度算法,计算一个窗口中LFPs复杂度平均值,窗口移动步长为50ms,获得LFPs复杂度编码的时空分布。
     7.两组大鼠前额叶皮层神经元集群频率对事件的编码。选取窗口200ms,移动步长为50ms,逐个计算每个窗口中神经元集群的发放频率,获得神经元集群频率编码的时空分布。
     8.从大鼠在工作记忆过程中的行为学特征、前额叶皮层LFPs相关编码和复杂度编码以及神经元集群频率编码,研究静脉注射0.9mg/kg-min丙泊酚以后不同阶段,丙泊酚对工作记忆功能的影响。
     研究结果:
     1静脉注射0.9mg/kg-min剂量丙泊酚对大鼠工作记忆行为学影响
     (1)丙泊酚组大鼠在第1、2、3天,工作记忆测试的正确率依次为55±5%、60±5%、70±4.6%,均低于对照组大鼠89±5%、92+4.7%、90±5%(P<0.01)。丙泊酚组大鼠在第4天,工作记忆的正确率为88±5%与对照组93±4%没有显著差别(P>0.05)。
     (2)第1、2天测试中、丙泊酚组大鼠工作记忆正确率没有差别(P>0.05),第2、3、4天,丙泊酚组大鼠工作记忆任务执行正确率依次提高(P<0.05)。
     2静脉注射0.9mg/kg-min丙泊酚对大鼠前额叶皮层LFPs相位相关编码的影响
     (1)第1、2、3天,丙泊酚组大鼠在工作记忆参考点前1秒的LFPs相位相关平均值分别为0.3149±0.0828,0.2894±0.0924,0.3470±0.0753,在工作记忆参考点后1秒的LFPs相位相关平均值依次为0.2993±0.0627,0.3203+0.1024,0.3383±0.0865,参考点前后无显著变化(P>0.05)。第4天,参考点前1秒的LFPs相位相关平均值为0.1892±0.0429,后1秒为0.4270±0.0692,参考点后相位相关平均值显著高于参考点前(p<0.01)。
     (2)第1、2、3、4天,对照组大鼠在参考点后1秒LFPs的相位相关平均值分别为0.4791±0.0964、0.4801±0.0831、0.4853±0.0719、0.4361±0.0768,参考点后1秒LFPs的相位相关平均值分别为0.1687±0.0546、0.1661±0.0379、0.1663±0.0382、0.1739±0.0296,参考点后均高于参考点前(p<0.01)。
     3静脉注射0.9mg/kg-min丙泊酚对大鼠前额叶皮层LFPs复杂度编码的影响
     (1)第1、2、3天,丙泊酚组大鼠在工作记忆参考点前2秒的LFPs的复杂度平均值分别为0.2419+0.0864,0.2316±0.0817,0.2348±0.0941,在参考点后1秒复杂度平均值分别为0.2261±0.0314,0.2625+0.0843,0.2759±0.0847,在参考点前后无显著变化(P>0.05)。第4天,参考点后2秒16通道LFPs复杂度平均值分0.3917±0.0785,参考点前为0.2284±0.0634,参考点后的复杂度平均值高于参考点前(p<0.05)。
     (2)第1、2、3、4天,对照组大鼠在参考点后LFPs的复杂度平均值为0.4437±0.0757、0.4562±0.0639、0.4692±0.0721、0.4823±0.0869,在参考点前LFPs的复杂度平均值为0.2019±0.0362、0.2548±0.0537、0.2219±0.0569、0.2465±0.0529,参考点后均高于参考点前(p<0.05)。
     4静脉注射0.9mg/kg-min丙泊酚对大鼠前额叶皮层神经元集群频率编码的影响神经元频率编码的时空分布图显示:在参考点附近,丙泊酚组在第1、2、3天无明显集群,第4天有明显集群。第1、2、3、4天,正常组在参考点附近有明显集群。
     研究结论:
     本论文研究0.9mg/kg-min剂量丙泊酚对大鼠工作记忆功能的影响,分别从大鼠的工作记忆行为学实验、前额叶皮层16通道LFPs编码模式以及神经元集群频率编码进行研究,结论如下:
     1对大鼠工作记忆行为学的影响
     第1-3天,静脉注射0.9mg/kg-min丙泊酚降低了大鼠的工作记忆功能;大鼠的工作记忆功能可以随时间的延续而得到恢复,到第4天完全恢复到正常水平。
     2大鼠前额叶皮层16通道LFPs编码工作记忆事件的影响
     (1)第1-3天,静脉注射0.9mg/kg-min丙泊酚影响大鼠LFPs在参考点前后相位相关编码模式;第4天,该剂量丙泊酚不再影响LFPs在参考点前后的相位相关编码模式。
     (2)第1-3天,静脉注射0.9mg/kg-min丙泊酚影响大鼠LFPs在参考点前后复杂度编码模式,第4天,该剂量丙泊酚不再影响LFPs在参考点前后的复杂度编码模式。
     3对大鼠前额叶皮层神经元集群频率编码的影响在麻醉后1-3天,大鼠前额叶皮层神经元集群编码工作记忆事件的功能下降,工作记忆功能下降。在麻醉后第4天,神经元集群编码功能恢复。
Objective
     Propofol is one of most common anethestic agent in clinical operations. Whether it brings negative effects in recognition ability or not after operations to patients is a widely forcused clinical problem. In the study, rats as research object, were infused with propofol according to0.9mg/Kg.min which was a interested dosage in clinic, and working memory behaviors of the rats in different post-operation periods were collected and analysed. we can get two different mode neural signals in the prefrontal cortex related to working momery:local field potential and action potentials of neurals group. We can get the effect on working momery through behavior characteristic、the coding mode of LFPs and the coding mode of action potentials of neurals group.
     Methods
     1. Laboratory animals
     Male SD rats, weights300-350g, are trained in the Y type maze in order to grasp working momery task.
     2. Separate10rats into two group. One is propofol group(5); the other is contrast group(5). The propofol groups are injected propofol as0.9mg/kg-min for two hours.
     3. Implant multichannel micro-arrays in the prefrontal cortex of two group rats.
     4. After the operations, the two group rats are tested working momery in the Y type maze. At the same time, records the16-channels neural signals in the prefrontal cortex of the rats, using the Cerebus-128, until the correct rate is much than90%.
     5. Separate the LFPs and action potentials from the original signals.
     16-channel LFPs were acquired through lowpass filtering the original data (0-500Hz).16-channel highpass signals were acquired through hrghpass filtering the original data (=500Hz). Spikes, or multi-unit, were recognized above-65μV thresholds and3.0SNR. Neuron action potential time-space series were got through sorting the16-channel valid spikes by Offline Sorter software (Plexon, USA).
     6. The differents of the two group rats'LFPs coding working momery
     (1) Local linear regression based on the weighted least square method was used to remove the baseline drift and power-line interference on LFPs.
     (2) The phase synchronization pattern of16-channel LFPs Instantaneous phase extraction of16-channel LFPs:The method of instantaneous phase extraction was the commonly used Hilbert transform; Selecting a reference channel:The reference channel is of the fastest average firing rate in all channels; Sliding window and step parameter:The length of sliding widow is50ms and step is12.5ms; The synchronous phase activity of16-channel LFPs were obtained by calculating cross-correlation measure between the reference channel and other channels.
     (3) The complex pattern of16-channel LFPs Select windows wide as200ms, using Lem-ziv complex method, calculates the average value of very window. Sliding step is50ms.
     7. The coding pattern of neural ensemble's action potentials The rate code method of neuronal ensemble were scored in a selected window (200ms) with a moving step (50ms). The neuronal ensemble was performed by counting spikes in the window from the initial point to the end of the spatiotemporal sequences of neuronal firing.
     8. Research the results from the behavior character、LFPs coding pattern and neural ensemble's rate code; summarize the effects on the rats'working momery affected by0.9mg/kg-min propofol.
     Results:
     1The effect on rats'behavior character
     (1)At the first three days, the propofol groups'correct rate is55±5%、60±5%、70±4.6%in respectively, saller than the contrast groups'89±5%、92±4.7%90±5%(P<0.01)。 At the fourth day the propofol group is88±5%, the same as the contrast group,93±4%(P>0.05)。
     (2) At the first two days, the propofol group is the same, from the second day,the correct rate is much than proxima luce (P<0.05)。
     2The effect on LFPs phase synchronization pattern
     (1) At the first three days, mean of LFPs phase synchronization of the propofol group befor reference point are0.3149±0.0828,0.2894±0.0924,0.3470±0.0753in respectively, the same as the mean of LFPs phase synchronization of the propofol group after reference point0.2993±0.0627,0.3203±0.1024,0.3383±0.086(P>0.05)。 At the fourth day, mean of LFPs phase synchronization of the propofol group befor reference point is0.1892±0.0429, saller than the mean of LFPs phase synchronization of the propofol group after reference point (0.4270±0.0692)(p<0.01)。
     (2) In the contrast group the mean of LFPs phase synchronization after reference point is much larger than the mean befer the reference point, after reference point0.4791±0.0964、0.4801±0.083、0.4853±0.0719、0.4361±0.0768, befer the reference point0.1687±0.0546、0.1661±0.0379、0.1663±0.0382、0.1739±0.0296,(p<0.01)。
     3The complex pattern of16-channel LFPs
     (1) At the first three days, mean of LFPs complex of the propofol group befor reference point are0.2419±0.0864,0.2316±0.0817,0.2348±0.0941, the same as the mean after reference point0.2261±0.0314,0.2625±0.0843,0.2759±0.0847,(P>0.05)。 At the fourth day, mean of LFPs complex of the propofol group after reference point is0.3917±0.0785, much larger than the mean of LFPs complex of the propofol group befor reference point0.2284±0.0634,(p<0.05)。
     (2) In the contrast mean of LFPs complex after reference point are0.4437±0.0757、0.4562±0.0639、0.4692±0.072、0.4823±0.0869, much larger than mean of LFPs complex befor reference point0.2019±0.0362、0.2548±0.0537、0.2219±0.0569、0.2465±0.0529,(p<0.05)。
     4The coding pattern of neural ensemble's action potentials At the first three days, the propofol group dose not form the neural ensemble, at the fourth day, it dose. The contrast group forms the neural ensemble every day.
     Conclusions
     This paper aimed at the propofol effect on working momey among behavior character,16-channel LFPs, neuron action potentials and the conclusions as follows:
     1The effect on the behavior character At the first three days,0.9mg/kg-min propofol decrease the rats'working momery. It can recovery at the fourth day.
     2The effect on LFPs coding pattern
     (1) At the first three days,0.9mg/kg-min propofol affect the rats'LFPs phase synchronization pattern. It can recovery at the fourth day.
     (2) At the first three days,0.9mg/kg-min propofol affect the rats'LFPs complex pattern. It can recovery at the fourth day.
     3The coding pattern of neural ensemble's action potentials
     At the first three days, the propofol group dose not form the neural ensemble, It can recovery at the fourth day.
引文
[1]Jones C, Griffit hs RD, Humphris G. Disturbed memory and amnesia related to intensive care. Memory,2000,8:79-94.
    [2]Barr G,Anderson RE,Owall A, et al. Being awake intermittently during propofol-induced hypnosis:a study of BIS,explicit and implicit memory. Acta Anaest hesiol Scand,2001,45:834-838.
    [3]Rich JB, Yaster M, Brandt J. Anterograde and retrograde memory in children anesthetized with propofol. J Clin Exp neuropsychol.1999;21(4):535-546.
    [4]N'Kaoua B, Veron AL, Lespinet VC,et al. Time course of cognitive recovery after propofol anaesthesia:a level of processing approach. J Clin Exp Neuropsychol,2002,24:713-719.
    [5]HaraM, KaiY, IkemotoY Propofol activates GABAA receptor-chloride Ionophore complex in dissoeiates hippocampal pyramidal neurons of the rat [J].Anesthesiology,1993,79(4):781-788.
    [6]PoisbeauP, CheneyMC, BrowningMD, etal. Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons[J].J Neurosc 1999,19(2):674-683.
    [7]LeidenheimerNJ, WhltingPJ, HarrisRA. Activation of calcium-phospholipid-dependent protein kinase enhances benzodiazepine and barbiturate potentiation of the GABA-receptor[J]. J Neuroehem,1993,60(5):1972-1975.
    [8]Bjomstrom K, Eintrei C. The difference between sleep and anaesthesia is in the Intracellular signal:propofol and GAB A use different subtypes of the GABA-receptor β subunit and vary in their interaction with actin[J].Acta Anaesthesiol Seand,2003,47(2):157-164.
    [9]PangR, QuartermainD, RosmanE, etal. Effect of propofol on memory in mice. Pharmacol Biochem BehaV,1993,44:145-151.
    [10]Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaestheties.Nat Rev Neurosci,2004,5:709-720.
    [11]Gonnan DA, Connell AW, Murphy KJ, etal. Nefiracetam prevent propofol-induced anterograde and retrogradean amnesia in the rodent without compromising quality of anesthesia. Anesthesiology,1998,89:699-706.
    [12]Paln L, Angst MJ, Legounier L, etal. Effcet of a nonsedative does of propofol on memory for aversively loaded information in rats. Anesthesiology,2002,97:447-453.
    [13]Kaisti KK, Langsjo JW, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans [J]。 Anesthesiology,2003, 99 (3):603-613.
    [14]Frenkel C,Duch AS,Urban BW. Effects of i.v.anaesthetics on human brain sodium channels.Br J Anaesth 1993,71:15-24.
    [15]Wei H, Xiong W, Yang S, Zhou Q, Liang C, Zeng BX, Xu L*:Propofol facilitates the development of long-term depression (LTD) and impairs the maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. Neurosci Lett 2002,324:181-184.
    [16]Kreuer S,Bruhn J,Larsen R. A-line,bispoctral index,and estimated effect-site concentrations:a prediction of clinical end-points of anesthesia.Anesthesia and Analgesia,2006(04)
    [17]吴俊芳 刘态 现代神经科学研究方法中国协和医科大学出版社2005年
    [18]Laroche S, Davis S, Jay TM. Plasticity at hippocampal to prefrontal cortex synapses:dual roles in working memory and consolidation. [J] Hippocampus, 2000,10(4):438-446.
    [19]Thierry AM, Gioanni Y, Degenetais E, Glowinski J. Hippocampo-prefrontal cortex pathway:anatomical and electrophysiological characteristics [J].2000, Hippocampus,10(4):411-419.
    [20]Swanson LW, Wyss JM & Cowan WM. An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 1978,181,681-715.
    [21]Jay TM, Glowinski J, Thierry AM. Selectivity of the hippocampal projection to the prelimbic area of the prefrontal cortex in the rat [J].Brain Res,1989,505(2): 337-340.
    [22]Verwer RW, Meijer RJ, Van Uum HF, Witter MP. Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex [J]. Hippocampus,1997,7(4):397-402.
    [23]Fuster JM, Network memory [J]. Trends Neurosci,1997,20(10):451-459.
    [24]Burette F, Jay TM, Laroche S. Reversal of LTP in the hippocampal afferent fiber system to the prefrontal cortex in vivo with low-frequency patterns of stimulation that do not produce LTD [J]. J Neurophysiol,1997,78(2): 1155-1160.
    [25]Jay TM, Burette F, Laroche S. NMDA receptor-dependent long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortex in the rat [J]. 1995, Eur J Neurosci,7(2):247-250.
    [26]Takita M, Izaki Y, Jay TM, Kaneko H, Suzuki SS. Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway [J]. Eur J Neurosci,1999,11(11):4145-4148.
    [27]Zhang M, Cai JX. Neonatal tactile stimulation enhances spatial working memory, prefrontal long-term potentiation, and D1 receptor activation in adult rats [J]. Neurobiol Learn Mem,2008,89(4):397-406.
    [28]Laroche S, Davis S, Jay TM. Plasticity at hippocampal to prefrontal cortex synapses:dual roles in working memory and consolidation [J].Hippocampus, 2000,10(4):438-446.
    [29]Degenetais E, Thierry AM, Glowinski J, Gioanni Y. Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex:an in vivo intracellular recording study [J]. Cereb Cortex,2003,13(7):782-792.
    [30]Izaki Y, Takita M, Akema T. Compatibility of bidirectional synaptic plasticity on hippocampo-prefrontal cortex pathway in rats [J].Neurosci Lett,2003,345(1): 69-71.
    [31]Baddeley A. Working memory:looking back and looking forward [J].Nat Rev Neurosci,2003,4(10):829-839.
    [32]Hebb D.O. The organization of behavior:A neuropsychological theory[M]. New York:John Wiley and Sons, Inc.,1949.
    [33]李葆明.大脑如何记忆[M].江苏:江苏教育出版社,2002.
    [34]Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space.Science,1993,261(5124):1055-8.
    [35]Ghazanfar AA, Nicolelis MA. Nonlinear processing of tactile information in the thalamocortical loop. J Neurophysiol,1997,78(1):506-10.
    [36]Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci,1999,2(7):664-70.
    [37]Carmena JM, Lebedev MA, Crist RE, O'Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MA.2003. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1(2):E42.
    [38]Kreiman G, Koch C, Fried I.2000. Imagery neurons in the human brain. Nature,2000,408(6810):357-61.
    [39]Nicolelis MA, Ribeiro S. Multielectrode recordings:the next steps. Curr Opin Neurobiol,2002,12(5):602-6.
    [40]Talwar SK, Xu S, Hawley ES, Weiss SA, Moxon KA, Chapin JK. Rat navigation guided by remote control. Nature,2002,417(6884):37-8.
    [41]Dobbins HD, Marvit P, Ji Y, Depireux DA. Chronically recording with a multi-electrode array device in the auditory cortex of an awake ferret. J Neurosci Methods,2007,161(1):101-11.
    [42]Zhang X, Zhang RL, Zhang ZG, Chopp M. Measurement of neuronal activity of individual neurons after stroke in the rat using a microwire electrode array. J Neurosci Methods,2007,162(1-2):91-100.
    [43]Quian Quiroga R, Kraskov A, Kreuz T, Grassberger P. Performance of different synchronization measures in real data:A case study on electroencephalographic signals. [J] Phys. Rev. E,2002,65:041903.
    [44]Bruns A. Fourier-, Hilbert-, and wavelet-based signal analysis:Are they really different approaches? [J] Neurosci. Methods,2004,137:321-332.
    [45]D.A. Smirnov, M.B. Bodrov, J.L. Perez Velazquez, et al. Estimation of coupling between oscillations from short time series via phase dynamics modeling: limitations and application to EEG data. [J] Chaos,2005,15(2):24102-24108.
    [46]Hurtado JM, Sigvardt KA. Statistical method for detection of phase-locking episodes in neural oscillations. [J] Neurophysiology,2004,91:1883-1898.
    [47]Raymond P.Kesner, Mary E.Hunt, Prefrontal Cortex and Working Memory for Spatial Response, Spatial Location and Visual Object Information in the Rat. [J] Cerebral Cortex 1996,6(3),311-318.
    [48]E.H. Baeg, Y.B. Kim, K. Huh. Dynamics of Population Code for Working Memory in the Prefrontal Cortex. [J] Neuron,2003, Vol.40,177-188.
    [49]Nirenberg, S and Latham, P.E. Decoding neuronal spike trains:how important are correlations? [J]. Proc. Natl. Acad. Sci.2003,100:7348-7353.
    [50]Mark E. Mazurek and Michael N. Shadlen. Limits to the temporal fidelity of cortical spike rate signals [J]. Nature Neuroscience,2002,5(5):463-477.
    [51]Series,Latham PE, Pouget. A Tuning curve sharpening for orientation selectivity:coding efficiency and the impact of correlations [J]. Nat Neurosci. 2004,7(10):1129-1135.
    [52]Kruger, J. Simultaneous individual recordings from many cerebral neurons: tech-niques and results. Rev. Physiol. Biochem. Pharmacol.1983,98,177-233.
    [53]Chapin,J.K. Woodward,D.J. Modulation of sensory responsiveness of single somatosensory cortical cells during movement and arousal behaviors. Exp.Neurol.1981,72,164-178.
    [54]Nicolelis MA, Ghazanfar AA, Stambaugh CR, et al. Simultaneous encoding of tactile information by three primate cortical areas. Nat Neurosci,1998,1: 621-630.
    [55]Nicolelis MA, Ghazanfar AA, Faggin BM, et al. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron,1997,18: 529-537.
    [56]Yu AC, Margoliash D. Temporal hierarchical control of singing in birds. Science,1996,273:1871-1875.
    [57]Chang J Y, Chen L, Luo F, et al. Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task ensemble recording in freely moving rats. Exp Brain Res,2002,142:67-80.
    [58]Buzsa'ki G. Large-scale recordings of neuronal ensembles. Nat Neurosci,2004,7,446-451,
    [59]Scherberger, H., M.R. Jarvis, and R.A. Andersen. Cortical local field potential encodes movement intentions in the posterior parietal cortex. [J] Neuron,2005, 46(2):247-54.
    [60]Nicolelis MA, Ghazanfar AA, Faggin BM. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. [J] Neuron,1997, 18(4):529-37.
    [61]Chapin JK. Using multi-neuron population recordings for neural prosthetics. [J] Nat Neurosci,2004,7(5):452-5.
    [62]Alexandre Pouget, Peter Dayan, and Richard S. Zemel. Inference and computation with population codes. [J] Annu. Rev. Neurosci,2003, 26:381-410.
    [63]Singer W. Neuronal synchrony:A versatile code for the definition of relations? [J] Neuron,1999,24:49-65.
    [64]Fries P, Reynolds J H, Rorie A E, et al. Modulation of oscillatory neuronal synchronization by selective visual attention. [J] Science,2001,291:1560-1563.
    [65]Kahana M J. The cognitive correlates of human brain oscillations. [J] Neurosci,2006,26:1669-1672.
    [66]Raghavachari S, Kahana M J, Rizzuto D S, et al. Gating of human theta oscillations by a working memory task. [J] Neurosci,2001,21:3175-3183.
    [67]Axmacher N, Mormann F, Fernandez G, et al. Sustained neural activity patterns during working memory in the human medial emporal lobe. [J] Neurosci,2007:7807-7816.
    [68]Sejnowski T, Paulsen O. Network oscillations:Emerging computational principles. [J] Neurosci,2006,26:1673-1676.
    [69]Michel Le Van Quyen, Jack Foucher, Jean-Philippe Lachaux. Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. [J] Neuroscience Methods,2001,111:83-98.
    [70]Schindler K, Elger CE, Lehnertz K. Changes of EEG synchronization during low-frequency electric stimulation of the seizure onset zone. [J] Epilepsy Res, 2007,77(2-3).
    [71]Chen Z, Hu K, Stanley HE, Novak V, Ivanov PCh. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations:applications to cerebral autoregulation. [J] Phys Rev E Stat Nonlin Soft Matter Phys, 2006,73:031915-21.
    [72]Quian Quiroga, R., Arnhold, J., Grassberger, P. Learning driver-response relationships from synchronization patterns. [J] Phys. Rev. E,2000, 61:5142-5148.
    [73]Ernesto Pereda, Rodrigo Quian Quiroga, Joydeep Bhattacharya. Nonlinear multivariate analysis of neurophysiological signals. [J] Progress in Neurobiology, 2005,77:1-37.
    [74]HANNES OSTERHAGE, KLAUS LEHNERTZ. Nonlinear time series analysis in epilepsy. [J] International Journal of Bifurcation and Chaos,2007, 17(10):3305-3323.
    [75]Kaspar Schindler, Christian E. Elger, Klaus Lehnertz. Increasing synchronization may promote serzure termination Evidence from status epilepticus. [J] Clinical Neurophysiology,2007,1955-1968.
    [76]Hirabayashi T, Miyashita Y. Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object. [J] Neurosci 2005,25(44):10299-307.
    [77]Jin-Yan Wang, Han-Ti Zhang, Jing-Yu Chang, et al. Anticipation of pain enhances the nociceptive transmission and functional connectivity within pain network in rats. [J] Molecular Pain,2008,4:34-44.
    [78]Zhang XS, Rob JR, Jesen EW. EEG Complexity as a measure of depth of anesthesia for Patients[J]. IEEE Trans on Biomed Eng,2001,48(12):1424-1433.
    [79]Voss L, Sleigh J. Monitoring consciousness:the current status of EEGbased depth of anaesthesia monitors m. Best mPmct Res Clin Anaesthesiol,2007, 21(3):313-25.
    [80]徐进,郑崇勋,和卫星.基于脑电复杂度分析的麻醉深度监测研究[J].中国康复医学杂志.2004.19(1):45—48
    [81]乐建威,莫国民,林敏.麻醉镇静深度的脑电双谱指数监护技术[J].中国医疗器械杂志,2005,29(5):321-324.
    [82]Lempel A, Ziv J. On the complexity of finite sequences[J]. IEEE Trans. Inform. Theory,1976,22(1):75-81.
    [83]Duque A BB, Detari L, and Zaborszky L. EEG correlation of the discharge properties of identified neurons in the basal forebrain. J Neurophysiol 2000, 84:1627-1635.
    [84]Frank LM, Brown EN, Wilson MA. A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. J Neurophysiol 2001,86(4):2029-40.
    [85]Lin L, Chen G, Xie K, Zaia KA, Zhang S, Tsien JZ. Large-scale neural ensemble recording in the brains of freely behaving mice. J Neurosci Methods 2006, 155(1):28-38.
    [86]Jean P R,Petrl,Patricia D V,et al. Spiking frequency versus odorant concentration in olfactory receptor neurons. Biosystems [J],2000,58:133-141.
    [87]Deneve S, Latham PE, Pouget A. Efficient computation and cue integration with noisy population codes[J]. Nat Neurosci.2001,4(8):826-31
    [88]Hoffman KL, McNaughton BL. Coordinated reactivation of distributed memory traces in primate neocortex. Science.2002,297(5589):2070-3.
    [89]Newman S, Stygall J, Hiram S, et al. Postoperative cognitive dysfunction after noncardiac surgery:a systematic review. Anestheslology,2007,106:572-590.
    [90]N'KAOUA B, VERON AL, L ESPINET VC, et al. Time course of cognitive recovery after propofol anaesthesia:a level of processing approach[J]. J Clin Exp Neuropsychol,2002,24:713-719.
    [91]Li Song, Wang Che, WangMW, et al. Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress [J]. PharmacolBiochem Beh,2006,832:186-193.
    [92]Ma MX, Chen YM, He J, Zeng T, Wang JH. Effects of morphine and its withdrawal on Y-maze spatial recognition memory in mice[J]. Neuroscience,2007,147(4):1059-1065.
    [93]Wang JH, Ma YY, van den Buuse M. Improved spatial recognition memory in mice lacking adenosine A2A receptors[J]. Exp Neurol,2006,199(2):438-445.
    [94]Hirabayashi T, Miyashita Y. Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole object. [J] Neurosci 2005,25(44):10299-307.
    [95]Lagerlund TD, Sharbrough FW, Busacker NE. Use of principal component analysis in the frequency domain for mapping electroencephalographic activities: comparison with phase-encoded Fourier spectral analysis.[J] Brain Topography, 2004,17(2):73-84.
    [96]沈恩华脑电的复杂度分析2004
    [97]Rapp PE, Schmah TI. Dynamical analysis in clinical practice
    [98]Quirk MC, Wilson MA. Interaction between spike waveform classification and temporal sequence detection [J]. J Neurosci Methods,1999, 94(1):41-52.
    [99]Hazan L, Zugaro M, Buzsaki G. Klusters, NeuroScope, NDManager:a free software suite for neurophysiological data processing and visualization. J Neurosci Methods,2006,155(2):207-216
    [100]Takahashi S, Anzai Y, Sakurai Y. Automatic sorting for multineuronal activity recorded with tetrodes in the presence of overlapping spikes. J Neurophysiol, 2003,89(4):2245-2258
    [101]Zhang P M, Wu J Y, Zhou Y, et al. Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. J Neuroscience Methods,2004,135 (1-2):55-65
    [102]Lewicki M S. A review of methods for spike sorting:the detection and classification of neural action potentials. Network,1998,9 (4):53-78
    [103]James C J, Hesse C W. Independent component analysis for biomedical signals. Physiol Meas,2005,26(1):R15-39
    [104]封洲燕,光磊,郑晓静,等.应用线性硅电极阵列检测海马场电位和单细胞动作电位.生物化学与生物物理进展,2007,34(4):401-407
    [105]Wang G L, Zhou Y, Chen A H, et al. A robust method for spike sorting with automatic overlap decomposition. IEEE Trans Biomed Eng,2006,53(6): 1195-1198
    [106]Hu J, Si J, Olson B P, et al. Feature detection in motor cortical spikes by principal component analysis. IEEE Trans Neural SystRehabil Eng,2005,13(3): 256-262.
    [1]Richmond B. Information coding. Science.2001,278(5345).
    [2]Faisal AA, Laughlin SB. Stochastic simulations on the reliability of action potential propagation in thin axons. Compute Biol.2007,3(5):783-795.
    [3]Bhumbra GS, Dyball REJ. Spike coding from the perspective of a neurone [J] Cognitive, Processing,2005,6(2):157-176.
    [4]孙作东.激活沉睡的脑.黑龙江人民出版社,2003.
    [5]罗跃嘉.认知神经科学中的事件相关电位.心理学报,2002,34(suppl):S46-S48.
    [6]董艳娟,王荫华,王玉平.事件相关电位的研究进展及临床应用.中国康复理论与实践,2004,10(5):287-288.
    [7]苏敏,尧德中.脑功能多种成像方式整合技术的研究及其进展.生物医学工程学杂志,2005,22(2):385-388.
    [8]王敏,曹茂永,吴维民.神经电生理学技术在自由活动动物中的研究进展.中国医学理论与实践,2005,15(11):1613-1615.
    [9]Nirenberg, S. and Latham, P.E. Decoding neuronal spike trains:how important are correlations? [J]. Proc. Natl. Acad. Sci.2003,100:7348-7353.
    [10]Mark E. Mazurek and Michael N. Shadlen. Limits to the temporal fidelity of cortical spike rate signals [J]. Nature Neuroscience,2002,5(5):463-477.
    [11]Series, Latham PE, Pouget. A. Tuning curve sharpening for orientation selectivity:coding efficiency and the impact of correlations [J]. Nat Neurosci. 2004,7(10):1129-1135.
    [12]Michale S.Fee, Partha P.Mitra, and David Kleinfeld. [J]. Neurophysiology, 1997,2(78):1141-1149.
    [13]Joseph T.Francis and John K. IEEE Transactions On Biomedical Engineering, 2004,51(6):963.
    [14]Emery N Brown, Robert E Kass & Partha P Mitra. Multiple neural spike train data analysis:state-of-the art and future challenges.[J]. Nature Neuroscience,2004, (7):456-461.
    [15]Lexandre Pouget, Peter Dayan and Richard Zemel. Information with population codes [J]. Neuroscience,2002,11(1):125-132.
    [16]Chen LC, Gu Y H. Coding theories and analyzing methods of information contained in neuronal spike trains [J].Progress Physiological Sciences,1999, 30(2):101-106.
    [17]Butts DA. How information is associated with a particular stimulus? Networkomputation and Neural Systems,2003,14:177-187.
    [18]Dyball REJ, nyushkin AN. Burst stimulation alters the excitability of hypothalamic axons. J Physiol,2004,555:565-565.
    [19]Wang X-Q, Gu(Ku) Y-H, Chen Y-Q,et al. Favored pattern of unit dischange: modified detection method and studies with simulated ang real spike trains. Chin J Physiol Sci,1992,8:224-233.
    [20]Averbeck, B.B. and Lee, D. Neural noise and movement-related codes in the macaque supplementary motor area [J]. Neuroscience.2003,23:7630-7641.
    [21]Jean P R, Petrl, Patricia D V, et al. Spike frequency versus odorant concentration in olfactory receptor neurons. iosystem[J],2000,58:133-141.
    [22]Fujii H, Aihara K, Aihara K. Dynamical cell assembly hypothesis-Theoretical possibility of spatiotemporal coding in the coter. Neural Network,1996.9.08,1033-1350.
    [23]Reeke G, Coop A. Estimating the temporal interval entropy of neuronal discharge[J]. Neural Computation,2004,16:941-970.
    [24]Barbieri R., Frank L.M., Nguyen D.P., et al. Dynamic Analyses of Information Encoding in Neural Ensembles. Neural Computation, 16:227-307.2004.
    [25]Schnitzer M.J., Meister M. Multineuronal firing patterns in the signal from eye to brain. Neuron,37:99-511.2003.
    [26]IV Pavlova. Spike activity of neurons in the amygdala and hypothalamus in bilateral leads in food motivation [J]. Neurosci Behav Physiol,2006; 36(2):193-201.
    [27]I Bar-Gad, Y Ritov, H Bergman. The neuronal refractory period causes a short-term peak in the autocorrelation function [J]. Neurosci Methods,2001; 104(2):155-63.
    [28]Robert E. Kass, Valerie Ventura.Spike count correlation increases with length of time interval in the presence of trial-to-trial variation [J].Neural Compute, 2006; 18:2583-2591.
    [29]Toshiyuki Hirabayashi, Yasushi Miyashita. Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole Object [J]. Neurosci.,2005; 25:10299-10307.
    [30]D Lee. Analysis of phase-locked oscillations in multi-channel single-unit spike activity with wavelet cross-spectrum [J]. Neurosci Methods,2002; 115(1):67-75.
    [31]梁培基,陈爱华.神经元活动的多电极同步记录及神经信息处理[M].北京工业大学出版社,2004:110-118.
    [32]Toshiyuki Hirabayashi, Yasushi Miyashita. Dynamically modulated spike correlation in monkey inferior temporal cortex depending on the feature configuration within a whole Object [J]. Neurosci.,2005; 25:10299-10307.
    [33]Nirenberg, S. and Latham, P.E. Decoding neuronal spike trains:how important are correlations? [J]. Proc.Natl.Acad. Sci.2003,100:7348-7353.
    [34]Wessberg, J. et al. Real-time prediction of hand trajectory by ensemble of cortical neurons in primates [J].Nature.2000,408:361-365.
    [35]Robert E. Kass, Valerie Ventura and Emery N. Brown. Statistical Issues in the Analysis of Neuronal Data. Neurophysiology,2005,94:8-25.
    [36]Barnes TD, Kubota Y, Hu D, et al. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature J.2005, 437(7062):1158-1161.
    [37]Anninis Pa, Adamopoulos AV, et al. Nonlinear analysis of brain activity in magnetic influenced Parkinson patients[J]. Brain Topography,2000, 13(2):135-144.