环口板加强型T型圆钢管节点滞回性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆钢管由于空心薄壁的特点,其径向刚度远远小于其轴向刚度。焊接相贯圆钢管节点中,支管主要承受轴向荷载,从而导致主管主要承受径向力作用。此外,节点部位由于曲率不连续而带来很大的应力集中现象。这些原因造成管节点最常见的破坏方式是主管表面靠近焊接部位的局部屈曲或屈服破坏。
     为了提高主管的径向刚度,改善节点的受力性能,采用环口板对普通圆钢管进行了加强。环口板加强是一种比较新颖的加强方法,该方法施工方便快捷而且加强效果显著。为了研究环口板加强后管节点的滞回性能,分别对4个足尺度未加强T型圆钢管节点和4个对应的采用环口板加强的足尺度T节点试件进行了轴向反复荷载作用下的拟静力滞回性能研究。基于试验测试结果,发现加强后的管节点在提高静力承载力的同时,其延性指标也有所提高,从而耗能性能更好,利于抗震。根据试验现象发现:采用环口板加强的T节点,可以将破坏发生的部位由原来未加强节点的焊趾处转移到环口板与主管表面焊缝连接处,改变了管节点的破坏模式。
     随后提出了环口板加强T节点的有限元模型,采用提出的有限元模型对试验的8个试件进行了模拟分析,结果表明有限元结果和试验测试结果吻合较好,从而验证了有限元模型的准确性。在此基础上,运用所提出的有限模型研究了环口板的几何参数lc(环口板长度)和tc(环口板厚度)对管节点滞回性能的影响,给出了几何参数的取值建议。本文还还分别对lc与tc的加强效果进行了比较,发现后者的加强效果总体上优于前者的加强效果。这些研究对实际工程中管节点的环口板加强设计有重要参考价值。
For a circular tube member, its radial stiffness is generally much smaller than its axial stiffness due to its hollow section and thin wall. In a welded tubular joint, the brace is mainly subjected to axial load, which causes the chord to be subjected to radial load. Furthermore, high stress concentration exists at the joint because the curvature is uncontinuous. Because of the above reasons, the common failure mode for a tubular joint is local buckling or yielding on the chord surface near the weld toe.
     In order to increase the stiffness of the chord and to improve the bearing capacity of the tubular joint, collar plate reinforcement is adopted to strengthen the tubular joint. Collar plate reinforcement is a new reinforcing method for tubular joints, and it is of fast fabrication and of markable efficiency. To carry out study on the behaviour of tubular joints after reinforced with collar plate, the hysteretic behaviour of 4 full-scale un-reinforced tubular T-joints and 4 corresponding specimens reinforced with collar plate under quasi-static axial cyclic loading is carried out experimentally. Based on the experimental results, it is found that both the static strength and the ductility are increased for the reinforced specimens, and thus the reinforced T-joints can dissipate more energy caused by seismic action. It is also found from the experimental phenomenon that the failure position is located at the corner of the collar plate, which is much different from the un-reinforced specimen for which the failure position is located at the weld toe along the brace/chord intersection.
     Thereafter, the finite element (FE) analysis on the above 8 specimens are conducted. The numerical results agree with the experimental results well, and the presented FE model is proved to be accurate enough for analyzing the hysteretic performance of T-joints with collar plate reinforcement. The effect of the reinforced parameters, namely tc and lc, on the hysteretic performance of the T-joints with collar plate reinforcement are studied based on a parametric study and suggestions for choosing the reinforced parameter values are given. Comparing the enhanced effects of lc and tc, it is found that the second model is more effective than the first model. The results are significant for the design of collar plate reinforcement for tubular joints in practical engineering.
引文
[1]吴耀华,吴文奇.钢管在结构工程中的应用与发展[J].钢结构, 2005, 20(2): 45-49.
    [2]刘锡良,林颜.铸钢节点的工程应用与研究[J].建筑钢结构进展, 2004, 6(1): 12-19.
    [3]陈以一,陈扬骥.钢管结构相贯节点的研究现状[J].建筑结构, 2002, 32(7): 52~55.
    [4] Stacy A, Sharp J V. Fatigue damage in offshore structures–cause, detection and repair[A]. Proceeding of the 8thinternational conference on the behaviour of offshore structure[C]. Delft university of technology , Delft, The Netherlands, 1997.
    [5]刘建平,郭彦林,陈国栋.方圆管相贯节点极限承载力研究[J].建筑结构,2001, 31(8): 8-10.
    [6] Hellier A K, Connolly M P. Stress concentration factors for tubular Y- and T-joints[J]. Int J Fatigure, 1990, 12(1): 13-23.
    [7] Zhao X L. T-joints in rectangular hollow sections subject to combined actions[J]. Structure Engineering, ASCE, 1991, 117(8): 2258-2277.
    [8] Bowness D, Lee M M K. The development of an accurate model for the fatigue assessment of doubly curved cracks in tubular joints[J]. International Journal of Fracture, 1995, 73: 129-147.
    [9] Chang E, Dover W D. Parametric equations to predict stress distributions along the intersection of tubular X and DT-joints[J]. International Journal of Fracture, 1999, 21: 619-635.
    [10]武振宇,张耀春.直接焊接T型钢管节点性能的试验研究[J].钢结构, 1999, 14(2): 36-39.
    [11]詹琛,陈以一,沈祖炎.圆钢管节点的强度计算公式[J].钢结构, 1999, 14(43):53-55.
    [12] Zhao X L. Deformation limit and ultimate strength of welded T-joints on cold-formed RHS sections[J]. Journal of Constructional Steel Research, 2000, 127(10):1173-1182.
    [13]刘建平,郭彦林,陈国栋.圆管相贯节点极限承载力有限元分析[J].建筑结构, 2002, 32(7): 56~59.
    [14]武振宇,张耀春.轴向力作用下T型方管节点的塑性铰线分析[J].土木工程学报, 2002, 35(4):20-24.
    [15]陈以一,陈扬骥,展琛,等.圆钢管空间相贯节点的试验研究[J].土木工程学报, 2003, 36(8): 24-30.
    [16]罗尧治,张楠. K型搭接节点承载力性能分析及建议公式[J].钢结构, 2004, 19(72): 23-25.
    [17]武振宇,武胜.弦管轴力作用下等宽K型间隙方管节点性能研究[J].建筑科学, 2004, 20(1):14-19.
    [18]武振宇,武胜.弦管轴力作用下不等宽K型间隙方管节点性能研究[J].建筑结构,2004,34(5):14-17
    [19]舒兴平,朱邵宁,朱正荣. K型圆钢管搭接节点极限承载力研究[J].建筑结构学报, 2004, 25(5):71-76.
    [20]丁玉坤,武振宇,张华山,等. K型?KK型搭接方管节点的试验研究[J].土木工程学报, 2005, 38(4): 25-31.
    [21] Qian X. Mode mixity for tubular k-joints with weld toe cracks[J]. Engineering Fracture Mechanics, 2006, 73: 1321-1342.
    [22]赵鹏飞,钱基宏,赵基达,等.单向受力状态下矩形钢管相贯节点的承载力研究[J].建筑结构学报, 2005, 26(6): 54-61.
    [23]赵鹏飞,钱基宏,赵基达,等.复合受力状态下矩形钢管相贯节点的承载力研究[J].建筑结构学报, 2005, 26(6): 64-69.
    [24]陈誉,赵宪忠,陈以一.平面K型圆钢管搭接节点有限元参数分析与极限承载力计算公式[J].建筑结构学报, 2006, 27(4): 30-35.
    [25] Qian X D, Choo Y S, et al. Static strength of thick-walled CHS X-joints subjected to brace moment loadings[J]. Journal of structural engineering, ASCE, 2007, 133(9): 1278-1287.
    [26]王伟,陈以一,杜纯领,等.上海光源工程屋盖钢管节点平面外受弯性能试验研究[J].建筑结构学报, 2009, 30(1):75-81.
    [27]邵永波,杜之富,胡维东. KK节点中表面裂纹应力强度因子的数值分析[J].工程力学, 2007, 24(8): 9-14.
    [28]武振宇,陈鹏,王渊阳. T型方管节点滞回性能的试验研究[J].土木工程学报, 2008, 41(12): 8-13.
    [29]何远斌,郝际平,曾珂. T型?N型圆管相贯节点滞回性能实验[J].重庆大学学报, 2008, 31(7): 730-739.
    [30]邵永波,杜之富,胡维东.海洋平台中KK型管节点表面裂纹应力强度因子的有限元计算方法[J].船舶力学, 2008, 12(1): 80-88.
    [31]吴捷,蒋剑峰,戴雅萍,等. K型圆钢管搭接节点受力特点及极限承载力分析研究[J].工业建筑, 2009, 39(1): 122-126.
    [32]邵永波.轴力作用下X型焊接管节点热点应力的分布规律[J].船舶力学, 2010, 14(1-2): 106-113
    [33]邵永波.轴力作用下K型焊接管节点的应力集中系数分析[J].船舶力学, 2010, 14(4): (399-408)
    [34] Ramachandra Murthy D S, Madhava Rao A G, Gandhi G., et al. Structural efficiency of internally ring-stiffened steel tubular joints[J]. Journal of Structural Engineering, ASCE, 1992, 118(11): 3016-3035.
    [35] Gandhi P, Raghava G, Ramachandra Murthy D S. Fatigue behaviour of internally ring-stiffened welded steel tubular joints[J]. Journal of Structural Engineering, ASCE, 2000, 126(7): 809-815.
    [36] Thandavamoorthy TS, Madhava Rao A G, Santhakumar A R. Behavior of internally ring-stiffened joints of offshore platforms[J]. Journal of Structural Engineering, ASCE, 1999, 125(1):1348-1352.
    [37] Lee M M K, Llewelyn-Parry A. Strength of ring-stiffened tubular T-joints in offshore structures - a numerical parametric study[J]. Journal of Constructional Steel Research, 1999, 51:239-264.
    [38] Lee M M K, Llewelyn-Parry A. Offshore tubular T-joints reinforced with internal plain annular ring stiffeners[J]. Journal of Structural Engineering, ASCE, 2004, 130(6): 942-951.
    [39] Lee M M K, Llewelyn-Parry A. Strength prediction for ring-stiffened DT-joints in offshore jacket structures[J]. Engineering Structures, 2005, 27:421-430.
    [40]王秀丽,李强,殷战忠.薄壁圆管相贯加强环节点承载力性能比较[J].建筑科学, 2006, 22(2):1-7.
    [41]张峰,陈扬骥,陈以一,等.内加劲环的设置对钢管节点性能的影响[J].空间结构, 2004, 10(1):51-56.
    [42]王秀丽,李强,殷战忠.圆管相贯加强环节点承载力与变形性能分析[J].兰州理工大学学报, 2006, 32(5): 128-132.
    [43]童乐为,周丽瑛,陈以一,等.上海旗忠网球中心屋盖支座圆管节点强度研究[J].建筑结构学报, 2007, 28(1): 35-42.
    [44] Shao Y B, Zhang J C, Qiu Z H, et al. Strength analysis of large-scale multiplanar tubular joints with inner-plate reinforcement[J]. International Journal of Space Structures, 2009, 24(3): 161-177.
    [45]李涛,邵永波,张季超.内置横向插板加强型管节点静力强度研究[J].钢结构, 2009, 24(123): 25-29.
    [46]景明勇,王元清,边振义,等.空间钢管结构TT型及其加强节点的承载力分析[J].四川建筑科学研究,2007, 33(6): 51-54
    [47]冯琦,谭家华.套管加强T型管节点在平面外弯矩作用下极限强度分析[J].海洋工程,2006,24(2):77-81
    [48]冯琦,谭家华.套管加强T型管节点在轴向压力作用下的极限强度分析[J].哈尔滨工程大学学报,2006, 27(5): 653-656.
    [49]邵永波.主管管壁加厚的T型方钢管节点的滞回性能研究[A].崔京浩.第18届全国结构工程学术会议论文集[C].广州:工程力学杂志社, 2009.634-637.
    [50] Shao Y B, Li T, Jin Y F, et al. Experimental test on hysteretic behaviour of tubular joints with chord reinforcement under cyclic loading[A].Lin-Hai Han. 4th International conference on protection of structures against hazards[C]. Beijing: National natural science foundation of China, 2009. 319-324.
    [51] Shao Y B, Li T, Jin Y F, et al. Hysteretic analysis of a full-scale square tubular-joints under axial cyclic loading[A].Lin-Hai Han. 4thInternational conference on protection of structures against hazards[C]. Beijing: National natural science foundation of China, 2009. 325-330.
    [52]靳燕飞,邵永波,徐艳华,等.主管管壁加厚型圆钢管T节点的滞回性能分析[J], 2010, 27(2): 78-81
    [53]张巧珍,周洪彬,张明莉.插板加强K型间隙圆钢管相贯节点的极限承载能力非线性有限元分析[J].钢结构, 2006, 21(1): 54-57
    [54]王阁,张继超.内置加强板空间相贯圆钢管节点在广东科学中心工程中的应用研究[J].工业建筑, 2007, 37(10): 93-97
    [55] Choo Y S, Liang J X, vander Vegte G. J, et al. Static strength of doubler plate reinforced CHS X-joints loaded by in-plane bending[J]. Journal of Constructional Steel Research, 2004, 60: 1725-1744.
    [56] Nazari A, Guan Z, Daniel W J T, et al. Parametric study of hot spot stresses around tubular joints with doubler plates[J]. Practice Periodical on Structural Design and Construction, ASCE, 2007, 12(1): 38-47.
    [57] Fung T C, Chan T K, Soh C K. Ultimate capacity of doubler plate-reinforced tubular joints[J]. Journal of Structural Engineering, ASCE, 1999, 125(8): 891-899.
    [58] Fung T C, Soh C. K., Chan T K, et al. Stress concentration factors of doubler plate reinforced tubular joints[J]. Journal of Structural Engineering, ASCE, 2002, 128(11): 1399-1412.
    [59] Hoon K H, Wong L K, Soh A K. Experimental investigation of a doubler-plate reinforced tubular T-joint subjected to combined loadings[J]. Jounral of Constructional Steel Research, 2001, 57: 1015-1039.
    [60]刘卫云,肖亚明.垫板加强T型圆管节点受压性能的有限元分析[J].安徽建筑工业学院学报(自然科学版), 2006, 14(5): 1-4.
    [61] Choo Y S, van der vegte G J, Zettlemoyer N, et al. Static strength of T-joints reinforced with doubler or collar plates. I: experimental investigation[J]. Journal of Structural Engineering, ASCE, 2005, 131(1): 119-128.
    [62] van der Vegte G J, Choo Y S, Liang J X, et al. Static strength of T-joints reinforced with doubler or collar plates. II: numerical simulations[J]. Journal of Structural Engineering, ASCE, 2005, 131(1): 129-138.
    [63] Choo Y S, Liang J X, van der Vegte G J, et al. Static strength of collar plate reinforced CHS X-joints loaded by in-plane bending[J]. Journal of Constructional Steel Research, 2004, 60: 1745-1760.
    [64] Choo Y S. Recent development and innovation in tubular structures[J]. Advances in Structural Engineering, 2005, 8(3): 217-230.
    [65]庄茁,由小川,廖剑晖,等.基于abaqus的有限元分析和应用[M].北京:清华大学出版社, 2009.8-9
    [66]石亦平,周玉蓉.. ABAQUS非线性有限元分析与实例[M].北京:机械工业出版社,2006.2-3
    [67]曹金风,石亦平. ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,20009.1-2