二氯乙酸盐对大鼠肺动脉高压作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、颈动-静脉分流肺动脉高压模型的建立及二氯乙酸盐对该模型的作用
     【目的】探讨二氯乙酸盐(DCA)对颈动-静脉分流诱导大鼠的肺动脉高压中肺血管平滑肌细胞增殖和凋亡的影响。
     【方法】将雄性SD大鼠随机分为四组:正常对照组、动物模型组、单纯结扎组、DCA+结扎联合治疗组,每组各10只。后面三组分离颈部左颈总动脉和左颈外静脉,将两者端端吻合以诱导肺动脉高压产生。从第8周开始,正常组和模型组予以等量的生理盐水喂养2周;单纯结扎组将动-静分流的血管进行结扎,再以等量的生理盐水喂养2周;DCA+结扎联合治疗组将动-静分流的血管进行结扎,再以DCA(0.75g/L,pH7.0)喂养2周,剂量为80mg/kg/d。各组分别于第10周进行开胸平均肺动脉压力(mPAP)的测量。测量后处死,取肺组织进行H-E染色、中膜厚度百分比和右心室肥厚指数测量计算、细胞增殖指标(增殖细胞核抗原PCNA)和凋亡指标(Caspase-3)的免疫组织化学染色。
     【结果】10周后,平均肺动脉:与模型组相比,单纯结扎组、DCA+结扎联合治疗组压明显降低(P<0.05),但联合组与单纯结扎组相比差别无统计学意义(P>0.05)。中膜厚度百分比和右心室肥厚指数:单纯结扎组、联合组均比模型组显著降低(P<0.05),但联合组与单纯结扎组相比差别无统计学意义(P>0.05)。PCNA增殖度:单纯结扎组与模型组差异无统计学意义(P>0.05),联合组比模型组和单纯结扎组要低,差异有统计学意义(P<0.05);而Caspases-3阳性率:单纯结扎组与模型组差异无统计学意义(P>0.05),联合组比模型组和单纯结扎组要高,差异有统计学意义(P<0.05)。
     【结论】DCA对早期肺血容量增加所致的动力性肺动脉高压无明显效果,但可以抑制肺动脉平滑肌细胞增殖并促进其凋亡。
     二、野百合碱所致肺动脉高压模型的建立及二氯乙酸盐对该模型的作用
     【目的】探讨二氯乙酸盐(DCA)对野百合碱(MCT)诱导大鼠的肺动脉高压中肺血管平滑肌增殖和凋亡的影响。
     【方法】将雄性SD大鼠随机分为三组:正常组,模型组和治疗组,每组各10只。模型组及治疗组一次性皮下注射野百合碱(MCT)60mg/kg,正常组注射等量生理盐水。于注射野百合碱的第7天,治疗组予以DCA(0.75g/L,pH7.0)喂养,剂量为80mg/kg/d。正常组和模型组予以等量的生理盐水喂养。各组分别于第7、14、21、28天进行平均肺动脉压力(mPAP)的测量。28天后处死,取肺组织进行细胞增殖指标(增殖细胞核抗原PCNA)和凋亡指标(Caspase-3)的免疫组化染色和H-E染色。
     【结果】平均肺动脉压测量:同时间点模型组和治疗组均高于正常组,差异均有统计学意义(P<0.05)。第7天,治疗组与模型组相比,差异无统计学意义(P>0.05)。自第14天后开始,治疗组的mPAP均低于模型组,且差异均有统计学意义(P<0.05)。中膜厚度百分比:模型组高于正常组(P<0.05),治疗组高于正常组,低于模型组(P<0.05),差异均有统计学意义。右心室肥厚指数(right ventricular hypertrophy index RVHI):模型组高于正常组(P<0.05),治疗组RVHI高于正常组,低于模型组(P<0.05),差异也均有统计学意义。PCNA增殖度:模型组高于正常组(P<0.05),治疗组高于正常组,低于模型组(P<0.05),差异均有统计学意义。Caspase-3染色阳性率:模型组低于正常组,(P<0.05),治疗组低于正常组,高于模型组(P<0.05),差异均有统计学意义。
     【结论】DCA可以抑制肺动脉平滑肌细胞增殖并促进其凋亡,从而逆转肺血管重构。
PartⅠEstablishment of Pulmonary Hypertension Model by Carotid Artery to Jugular Vein Shunt, and Effect of Dichloroacetate on the Model
     【Objective】To discuss the effect of Dichloroacetate (DCA) on proliferation and apoptosis of pulmonary arterial smooth muscle cells (PASMCs) in pulmonary arterial hypertension (PAH),which is induced by carotid artery to jugular vein shunt.
     【Methods】It was divided into four groups randomly: Control group, model group, deligation group, and DCA+deligation group, each of which had ten rats. In latter three groups, we separated the left common carotid artery and left external jugular vein, and then induced pulmonary hypertension by end-to-end anastomosis of two vessels. 8 weeks later, the equivalent volume of isotonic Na chloride was given to the control and model groups for 2 weeks. In deligation group, we had ligated the vessel of artery to vein shunt after 8 weeks, the equivalent volume of isotonic Na chloride was given them for 2 weeks. In DCA+deligation group, we had ligated the vessel of artery to vein shunt after 8 weeks, then give DCA(0.75g/L,pH7.0) to them for 2 weeks, the dose was 80mg/kg/d. On week 10, the mean pulmonary arterial pressure (mPAP) of each group had been measured; the media tunica thickness percentage and the right ventricular hypertrophy index were measured; the lung tissue was detected with Hematoxylin-Eosin stain and immunohistochemistry stain. The latter stain was used to show the proliferation (PCNA) and apoptosis (Caspase-3) of PASMCs.
     【Results】Compared to model group, the mPAP of deligation group and DCA+deligation group had decreased significantly(P < 0.05), but there was no differences between deligation group and DCA+deligation group (P>0.05). Meanwhile, Compared to model group, the media tunica thickness percentage and the right ventricular hypertrophy index (RVHI) of deligation group and DCA+deligation group reduced significantly (P<0.05), but there was no differences between deligation group and DCA+deligation group (P>0.05). PCNA of DCA+deligation group was lower than model group and deligation group (P<0.05), while there was no differences between deligation group and model group(P>0.05). Caspases-3 of DCA+deligation group was higher than model group and deligation group (P<0.05), while there was no differences between deligation group and model group(P>0.05).
     【Conclusion】DCA has no significant effect on the pulmonary hypertension induced by high lung blood volume, while can restrain proliferation and promote apoptosis.
     PartⅡEffect of Dichloroacetate on Monocrotaline-Induced Pulmonary Hypertension in Rat
     【Objective】To discuss the effect of Dichloroacetate (DCA) on proliferation and apoptosis of pulmonary arterial smooth muscle cells (PASMCs) in Monocrotaline-induced pulmonary arterial hypertension (PAH).
     【Methods】It was divided into three groups randomly: Control group, model group and DCA group, each of which had ten rats. In the model group and DCA group, the rats were subjected to single subcutaneous injection of MCT (the dose is 60mg/kg) to induce the pulmonary arterial hypertension (PAH). DCA (0.75g/L,pH7.0) was given to DCA group form day 7, the dose of which is 80mg/kg/d. Form the same time on, the equivalent volume of isotonic Na chloride was given to the other two groups. The mean pulmonary arterial pressure (mPAP) of each group had been measured on day 7, 14, 21 and 28; on day 28, the media tunica thickness percentage and the right ventricular hypertrophy index (RVHI) were measured; on day 28, the lung tissue was detected with Hematoxylin-Eosin stain and immunohistochemistry stain. The latter stain was used to show the proliferation (proliferating cell nuclear antigen, PCNA) and apoptosis (Caspase-3) of PASMCs.
     【Results】The mPAP of DCA group is higher than control group and lower than model group (P<0.05). Meanwhile, The mPAP of model group is higher than control group(P<0.05). Compared with the model group, the mPAP of DCA group had decreased from day 14, which was almost half of the model group on day 28 (P<0.05). Meanwhile, Compared with the model group, the media tunica thickness percentage and the right ventricular hypertrophy index(RVHI) of DCA group reduced significantly (P<0.05). PCNA of DCA group was lower than model group (P<0.05), while Caspase-3 of DCA group was much higher than model group (P<0.05).
     【Conclusion】Dichloroacetate can reverse pulmonary vascular remodeling through anti-proliferation and pro-apoptosis.
引文
1 Thompson BT, Hales CA. Hypoxic pulmonary hypertension: acute and chronic. Heart Lung, 1986, 15(5):457-65.
    2 Wright JL, Levy RD, Churg A. Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax, 2005, 60(7):605-9.
    3 Remolina C, Khan AU, Santiago TV et al. Positional hypoxemia in unilateral lung disease. N Engl J Med, 1981, 304(9):523-5.
    4 Gaine SP, Rubin LJ. Medical and surgical treatment options for pulmonary hypertension. Am J Med Sci, 1998, 315(3):179-84.
    5 Reich DL, Bodian CA, Krol M et al. Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery. Anesth Analg, 1999, 89(4):814-22.
    6 Magee MJ, Jablonski KA, Stamou SC et al. Elimination of cardiopulmonary bypass improves early survival for multivessel coronary artery bypass patients. Ann Thorac Surg, 2002, 73(4):1196-202; discussion 1202-3.
    7 Kahn ML. Eisenmenger's syndrome in pregnancy. N Engl J Med, 1993, 329(12):887.
    8 Krowka MJ, Plevak DJ, Findlay JY et al. Pulmonary hemodynamics and perioperative cardiopulmonary-related mortality in patients with portopulmonary hypertension undergoing liver transplantation. Liver Transpl, 2000, 6(4):443-50.
    9 Liu LL, Leung JM. Predicting adverse postoperative outcomes in patients aged 80 years or older. J Am Geriatr Soc, 2000, 48(4):405-12.
    1 Chou TF, Wu MS, Chien CT et al. Enhanced expression of nitric oxide synthase in the early stage after increased pulmonary blood flow in rats. Eur J Cardiothorac Surg, 2002, 21(2):331-6.
    2 Meyrick B, Gamble W, Reid L. Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol, 1980, 239(5):H692-702.
    3 Monge C, Leon-Velarde F. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev, 1991, 71(4):1135-72.
    4 Steinhorn RH, Russell JA, Lakshminrusimha S et al. Altered endothelium-dependent relaxations in lambs with high pulmonary blood flow and pulmonary hypertension. Am J Physiol Heart Circ Physiol. Heart and circulatory physiology, 2001, 280(1):H311-7.
    5 Corno AF, Tozzi P, Genton CY et al. Surgically induced unilateral pulmonary hypertension: time-related analysis of a new experimental model. Eur J Cardiothorac Surg, 2003, 23(4):513-7.
    6 Zhi-Ping W, Ya-Hui Z, Pei-Wu S et al. A rabbit model of highkinetic one-sided pulmonary hypertension induced by Pott's operation. Cardiovasc Surg, 2002, 10(2):134-7.
    7 Bing W, Junbao D, Jianguang Q et al. L-arginine impacts pulmonary vascular structure in rats with an aortocaval shunt. J Surg Res, 2002, 108(1):20-31.
    1 Sun P, Liu WL. [Method for measuring the pulmonary artery pressure with a right cardiac catheter in rats]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 1984, 6(6):465-7.
    2 Meyrick B, Gamble W, Reid L. Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol, 1980, 239(5):H692-702.
    3 Monge C, Leon-Velarde F. Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev, 1991, 71(4):1135-72.
    4 Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation, 2004, 109(2):159-65.
    5 Stenmark KR, McMurtry IF. Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension: a time for reappraisal? Circ Res, 2005, 97(2):95-8.
    6 Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis, 2002,45(3):173-202.
    7 Lee SH, Rubin LJ. Current treatment strategies for pulmonary arterial hypertension. J Intern Med, 2005, 258(3):199-215.
    8 Bachinskaia EN, Nonikov VE. [Diagnosis and treatment of pulmonary hypertension: current concepts]. Kardiologiia, 2005,45(6):81-6.
    9 Post JM, Hume JR, Archer SL et al. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol, 1992, 262(4 Pt 1):C882-90.
    10 Pozeg ZI, Michelakis ED, McMurtry MS et al. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension andrestores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation, 2003, 107(15):2037-44.
    11 Archer SL, London B, Hampl V et al. Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J, 2001,15(10):1801-3.
    12 Remillard CV, Yuan JX. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol, 2004, 286(1):L49-67.
    13 LORINI M, CIMAN M. Hypoglycaemic action of diisopropyl-ammonium salts in experimental diabetes. Biochem Pharmacol, 1962, 11:823-7.
    14 Agbenyega T, Planche T, Bedu-Addo G et al. Population kinetics, efficacy, and safety of dichloroacetate for lactic acidosis due to severe malaria in children. J Clin Pharmacol, 2003,43(4):386-96.
    15 Wang P, Lloyd SG, Chatham JC. Impact of high glucose/high insulin and dichloroacetate treatment on carbohydrate oxidation and functional recovery after low-flow ischemia and reperfusion in the isolated perfused rat heart. Circulation, 2005,111(16):2066-72.
    16 McMurtry MS, Bonnet S, Wu X et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res, 2004, 95(8):830-40.
    17 Michelakis ED, McMurtry MS, Wu XC et al. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation, 2002, 105(2):244-50.
    1 Remolina C, Khan AU, Santiago TV et al. Positional hypoxemia in unilateral lung disease. N Engl J Med, 1981, 304(9):523-5.
    2 Simonneau G, Galie N, Rubin LJ et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol, 2004, 43(12 Suppl S):5S-12S.
    3 Christman BW, McPherson CD, Newman JH et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med, 1992, 327(2):70-5.
    4 Hoshikawa Y, Voelkel NF, Gesell TL et al. Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling. Am J Respir Crit Care Med, 2001, 164(2):314-8.
    5 Steinhorn RH, Russell JA, Lakshminrusimha S et al. Altered endothelium-dependent relaxations in lambs with high pulmonary blood flow and pulmonary hypertension. Am J Physiol Heart Circ Physiol, 2001, 280(1):H311-7.
    6 Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med, 1995, 333(4):214-21.
    7 Le Cras TD, McMurtry IF. Nitric oxide production in the hypoxic lung. Am J Physiol Lung Cell Mol Physiol, 2001, 280(4):L575-82.
    8 Steinhorn RH, Fineman JR. The pathophysiology of pulmonary hypertension in congenital heart disease. Artif Organs, 1999, 23(11):970-4.
    9 Stewart DJ, Levy RD, Cernacek P et al. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med, 1991, 114(6):464-9.
    10 Carteaux JP, Roux S, Siaghy M et al. Acute pulmonary hypertension after cardiopulmonary bypass in pig: the role of endogenous endothelin. Eur J Cardiothorac Surg, 1999, 15(3):346-52.
    11 Blumberg FC, Wolf K, Arzt M et al. Effects of ET-A receptor blockade on eNOS gene expression in chronic hypoxic rat lungs. J Appl Physiol, 2003,94(2):446-52.
    12 Simon M, Battistini B, Joo Kim Y et al. Plasma levels of endothelin-1, big endothelin-1 and thromboxane following acute pulmonary air embolism. Respir Physiol Neurobiol, 2003, 138(1):97-106.
    13 Ovadia B, Reinhartz O, Fitzgerald R et al. Alterations in ET-1, not nitricoxide, in 1-week-old lambs with increased pulmonary blood flow. Am J Physiol Heart Circ Physiol, 2003, 284(2):H480-90.
    14 Balyakina EV, Chen D, Lawrence ML et al. ET-1 receptor gene expression and distribution in L1 and L2 cells from hypertensive sheep pulmonary artery. Am J Physiol Lung Cell Mol Physiol, 2002, 283(1):L42-51.
    15 Dai ZK, Tan MS, Chai CY et al. Effects of increased pulmonary flow on the expression of endothelial nitric oxide synthase and endothelin-1 in the rat. Clin Sci (Lond), 2002,103 Suppl 48:289S-293S.
    16 Qi JG, Du JB, Tang XY et al. [Endogenous nitric oxide pathway in high pulmonary blood flow-induced pulmonary vascular structural remodeling]. Zhonghua Er Ke Za Zhi, 2003, 41(3):215-8.
    17 Black SM, Fineman JR, Steinhorn RH et al. Increased endothelial NOS in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol, 1998, 275(5 Pt 2):H1643-51.
    18 MacLean MR, Clayton RA, Templeton AG et al. Evidence for 5-HT1-like receptor-mediated vasoconstriction in human pulmonary artery. Br J Pharmacol, 1996, 119(2):277-82.
    19 MacLean MR, Sweeney G, Baird M et al. 5-Hydroxytryptamine receptors mediating vasoconstriction in pulmonary arteries from control and pulmonary hypertensive rats. Br J Pharmacol, 1996, 119(5):917-30.
    20 Marcos E, Adnot S, Pham MH et al. Serotonin transporter inhibitors protect against hypoxic pulmonary hypertension. Am J Respir Crit Care Med, 2003,168(4):487-93.
    21 Weir EK, Hong Z, Varghese A. The serotonin transporter: a vehicle to elucidate pulmonary hypertension? Circ Res, 2004, 94(9):1152-4.
    22 Lee SL, Wang WW, Fanburg BL. Association of Tyr phosphorylation of GTPase-activating protein with mitogenic action of serotonin. Am J Physiol, 1997, 272(1 Pt 1):C223-30.
    23 Pitt BR, Weng W, Steve AR et al. Serotonin increases DNA synthesis in rat proximal and distal pulmonary vascular smooth muscle cells in culture. Am J Physiol, 1994, 266(2 Pt 1):L178-86.
    24 Lee SL, Wang WW, Lanzillo JJ et al. Serotonin produces both hyperplasia and hypertrophy of bovine pulmonary artery smooth muscle cells in culture. Am J Physiol, 1994, 266(1 Pt 1):L46-52.
    25 Eddahibi S, Hanoun N, Lanfumey L et al. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene.J Clin Invest, 2000, 105(11):1555-62.
    26 Bergofsky EH, Holtzman S. A study of the mechanisms involved in the pulmonary arterial pressor response to hypoxia. Circ Res, 1967,20(5):506-19.
    27 Hoshikawa Y, Ono S, Suzuki S et al. Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J Appl Physiol, 2001, 90(4):1299-306.
    28 Wang J, Juhaszova M, Rubin LJ et al. Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary artery smooth muscle cells. J Clin Invest, 1997, 100(9):2347-53.
    29 Platoshyn O, Yu Y, Golovina VA et al. Chronic hypoxia decreases K(V) channel expression and function in pulmonary artery myocytes. Am J Physiol Lung Cell Mol Physiol, 2001, 280(4):L801-12.
    30 Yuan XJ, Wang J, Juhaszova M et al. Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet, 1998, 351(9104):726-7.
    31 Mauban JR, Remillard CV, Yuan JX. Hypoxic pulmonary vasoconstriction: role of ion channels. J Appl Physiol, 2005, 98(1):415-20.
    32 Post JM, Hume JR, Archer SL et al. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol, 1992,262(4 Pt 1):C882-90.
    33 Pozeg ZI, Michelakis ED, McMurtry MS et al. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation, 2003, 107(15):2037-44.
    34 Archer SL, London B, Hampl V et al. Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J, 2001,15(10):1801-3.
    35 Reeve HL, Michelakis E, Nelson DP et al. Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol, 2001, 90(6):2249-56.
    36 Shimoda LA, Manalo DJ, Sham JS et al. Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol, 2001, 281(1):L202-8.
    37 Remillard CV, Yuan JX. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol, 2004, 286(1):L49-67.
    38 Markewitz BA, Kohan DE, Michael JR. Endothelin-1 synthesis, receptors, and signal transduction in alveolar epithelium: evidence for an autocrine role. Am J Physiol, 1995, 268(2 Pt 1):L192-200.
    39 Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med, 1992, 327(2):76-81.
    40 Barst RJ, Rubin LJ, Long WA et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med, 1996, 334(5):296-302.
    41 McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation, 2002,106(12):1477-82.
    42 McMullan DM, Bekker JM, Johengen MJ et al. Inhaled nitric oxide-induced rebound pulmonary hypertension: role for endothelin-1. Am J Physiol Heart Circ Physiol, 2001, 280(2):H777-85.
    43 Sablotzki A, Czeslick E, Gruenig E et al. First experiences with the stable prostacyclin analog iloprost in the evaluation of heart transplant candidates with increased pulmonary vascular resistance. J Thorac Cardiovasc Surg, 2003, 125(4):960-2.
    44 Dhanakoti SN, Gao Y, Nguyen MQ et al. Involvement of cGMP-dependent protein kinase in the relaxation of ovine pulmonary arteries to cGMP and cAMP. J Appl Physiol, 2000, 88(5):1637-42.
    45 Schermuly RT, Kreisselmeier KP, Ghofrani HA et al. Antiremodeling effects of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in chronic experimental pulmonary hypertension. Circ Res, 2004,94(8):1101-8.
    46 Rubin LJ, Badesch DB, Barst RJ et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med, 2002, 346(12):896-903.
    47 Rondelet B, Kerbaul F, Motte S et al. Bosentan for the prevention of overcirculation-induced experimental pulmonary arterial hypertension. Circulation, 2003, 107(9):1329-35.
    48 Barst RJ, Langleben D, Frost A et al. Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med, 2004,169(4):441-7.
    49 Galie N, Badesch D, Oudiz R et al. Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol, 2005, 46(3):529-35.
    50 Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet, 1991, 338(8776):1173-4.
    51 Miller OI, Tang SF, Keech A, et al. Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: a randomised double-blind study. Lancet, 2000, 356(9240):1464-9.
    52 Krick S, Platoshyn O, Sweeney M et al. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 2002, 282(1):H184-93.
    53 Guignabert C, Raffestin B, Benferhat R et al. Serotonin transporter inhibition prevents and reverses monocrotaline-induced pulmonary hypertension in rats. Circulation, 2005, 111(21):2812-9.
    54 Irwin RS, Curley FJ, French CL. Chronic cough. The spectrum and frequency of causes, key components of the diagnostic evaluation, and outcome of specific therapy. Am Rev Respir Dis, 1990, 141(3):640-7.
    55 Pinheiro JM, Malik AB. K+ATP-channel activation causes marked vasodilation in the hypertensive neonatal pig lung. Am J Physiol, 1992, 263(5 Pt 2):H1532-6.
    56 Wiener CM, Dunn A, Sylvester JT. ATP-dependent K+ channels modulate vasoconstrictor responses to severe hypoxia in isolated ferret lungs. J Clin Invest, 1991, 88(2):500-4.
    57 Robertson BE, Kozlowski RZ, Nye PC. Opposing actions of tolbutamide and glibenclamide on hypoxic pulmonary vasoconstriction. Comp Biochem Physiol C, 1992, 102(3):459-62.
    58 Matsumoto H, Nakano H, Akiba Y et al. [Effect of potassium channel openers on hypoxic pulmonary vasoconstriction]. Nihon Kyobu Shikkan Gakkai Zasshi, 1992, 30(8):1488-95.
    59 Michelakis ED, McMurtry MS, Wu XC et al. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation, 2002, 105(2):244-50.
    60 McMurtry MS, Bonnet S, Wu X et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res, 2004, 95(8):830-40.