灵芝孢子粉对戊四氮致痫大鼠大脑皮质及海马区PCNA、CyclinD1变化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨灵芝孢子粉对戊四氮(PTZ)致痫大鼠大脑皮质及海马区增殖细胞核抗原(PCNA)、细胞周期蛋白D1(CyclinD1)变化的影响,进一步研究癫痫的发病机制及灵芝孢子粉的作用机制。方法:健康雄性Wistar大鼠30只,(体重200±20g购自佳木斯大学实验动物中心),随机分为对照组、癫痫模型组和灵芝孢子粉干预组,每组各10只。癫痫模型组和灵芝孢子粉干预组用亚惊厥剂量的PTZ(35mg/kg体重)腹腔注射,注射时浓度为10g/L,每日1次,持续28天,同时对照组以等容生理盐水腹腔注射;灵芝孢子粉干预组经灌胃给予灵芝孢子粉(150mg/kg体重),灌胃时浓度为30g/L;同时癫痫模型组和对照组以等容生理盐水灌胃。每天对每只大鼠在PTZ注射后进行观察并记录癫痫发作的潜伏期,发作级别及持续时间,用药28天后停药一周,再用相同剂量的PTZ测试,凡出现连续5次Ⅱ级以上痫性发作为达到点燃标准。实验动物麻醉后断头处死,在低温条件下迅速取脑,一侧甲醛固定用于免疫组化法检测皮质和海马区PCNA及CyclinD1的免疫反应性;另一侧冰上迅速分离海马用western-blot检测PCNA、CyclinD1蛋白含量的变化。结果:对照组无痫样发作,癫痫模型组有重度的痫样发作(Ⅳ-Ⅴ级),灵芝孢子粉干预组有轻度的痫样发作(Ⅰ-Ⅱ级),与癫痫模型组动物相比,灵芝孢子粉干预组大鼠潜伏期明显延长,发作级别降低,鲜有大发作。癫痫模型组PCNA、CyclinD1阳性细胞数目明显增多与对照组比较差异有显著性(P<0.01),灵芝孢子粉干预组与癫痫模型组比较阳性细胞数明显减少差异有显著性(P<0.01); PCNA、CyclinD1在癫痫模型组的大脑海马区的蛋白含量与对照组比较明显增多差异有显著性(P<0.01),灵芝孢子粉干预组与癫痫模型组比较明显减少差异有显著性(P<0.01)。结论:灵芝孢子粉可以通过调节PCNA、CyclinD1蛋白含量抑制星形胶质细胞(AS)增生,从而影响戊四氮致痫大鼠癫痫发作的发生与发展。
Purpose:To investigate the effect of ganoderma lucidum spores on the change of PCNA and CyclinD1 in cerebral cortex and hippocampus of rats with epilepsy induced by PTZ. And further the study of epilepsy mechanism and the anti-epilepsy mechanism of ganoderma lucidum spores. Methods:30 male Wistar rats(weighing 200±20g, purchased from the center of animal experiment in Jiamusi university) were randomly divided into three groups: (1) the control group(n = 10), in which rats received intraperitoneal injections and oral administration of the normal saline and, (2)PTZ group (n = 10), in which rats were injected with a subconvulsant dose PTZ (35mg/kg in 0.9% saline, 10g/L) intraperitoneally and received saline orally; (3) ganoderma lucidum spores intervening group (n = 10),in which rats were injected intraperitoneally with PTZ (35 mg/kg in 0.9% saline, 10g/L) and received oral administration of ganoderma lucidum spores (150mg/kg suspended in normal saline, 30g/L). 28days later withdrawal drugs for a week,then these rats received a final challenge dose of PTZ (35 mg/kg) to check the persistence of enhanced susceptibility to the convulsant. Control rats received injections of saline instead of the PTZ challenge dose. At the end of the experiment, all rats in each group were anesthetized with diethyl ether and decapitated, take brain rapidly at low temperature, every brain were devided two parts allow the sagittal suture. one part were fixed with neutral formalin for detection of the immunoreactivity of PCNA and CyclinD1 with immunohistochemistry; the cerebral cortex and hippocampus were segregated rapidly from the other part of the brain on the ice for detection of the contents of PCNA and CyclinD1 with western-blot. Result:The control group showed no seizure activity. Severe seizure activity was observed in PTZ group (Ⅲ-Ⅴclass).slight seizure activity (Ⅰ-Ⅱclass) appeared in ganoderma lucidum spores intervening group. the control group showed no seizure activity. Compared with epilepsy model group, the latent period of ganoderma lucidum spores intervening group had obvious difference, but they had no obvious difference at duration. The expressions of PCNA and CyclinD1 were stronger in PTZ group than those of control group (P<0.01). The significant differences were observed in PCNA and CyclinD1 expressions between ganoderma lucidum spores intervening group and PTZ group (P<0.01). The contents of PCNA and CyclinD1 in PTZ group was significantly higher in hippocampus as compared with control group (P<0.01), while the significant difference were observed between the ganoderma lucidum spores intervening group and PTZ group (P<0.01). Conclusion:Ganoderma lucidum spores can inhibit the function and proliferation of astrocyte in cerebral cortext and hippocampus by regulate the contents of PCNA and CyclinD1, can alleviate the seizure activity, which suggests that ganoderma lucidum spores may be an ideal anticonvulsant in preventing and treating epilepsy.
引文
[1]肖波.神经病学[M].第4版.北京:人民卫生出版社,2001,224-225.
    [2]张能荣,张秀云.灵芝孢子粉孢子粉中维生素和多糖的分析[J].中国生化药物杂志,1997,18(1):37-38.
    [3]陈若云,于德泉.赤芝孢子粉三萜化学成分研究[J].药学报,1991,26(4):267-27.3
    [4]李虹奇,于德泉,柳雪枚.赤芝孢子粉化学研究[J].中草药,1993,24(10):516.
    [5]江瑞华,李鲁伟,韩世温.灵芝孢子对肿瘤细胞端粒酶的作用[J].齐鲁医学杂志,1999,14(3):168-169.
    [6]章灵华,王会贤,于立为.灵芝孢子粉提取物体内外的免疫效应[J].中国免疫学杂志,1994,10(3):169.
    [7] L Rodriguez-Rivera.Considerations on the concept of epilepsy.[J].Rev Neurol,1999,28(12):1159-1161.
    [8] Parra J, Augustijn PB, Geerts Y, et aI. Classification of epileptic seizures: A comparison of two systems. [J].Epilepsia, 2001,42(4):478-482.
    [9] Jerome Engel Jr.[J]. A proposed diagnostic scheme for people with epileptic seizure and with epilepsy: Report of the ILAE Task Force on classification and terminology.[J]. Epilepsia, 2001,42(6):796-803.
    [10] Jerome Engel, Jr.Report of the ILAE Classification Core Group.[J]. Epilepsia, 2006,47(9):1558–1568.
    [11]张树华,朱长庚.氯喹对戊四氮致痫大鼠GFAP.PCNA及CyclinD1变化的影响[J].中华神经医学杂志,2006,5(2):133.
    [12] Bergles DE, Roberts JD, Somogyi P, Jahr CE.Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus.[J].Nature.2000, 11;405:187-91.
    [13] Alvarez-Maubecin, V, Garcia-Hernandez, F, Wi(liams, JT,Van Bockstae(e, EJ, 2000.Functional coupling between neurons and glia.[J].Neurosci. 20, 4091-4098.
    [14]张辉,段丽,贾轶等.大鼠腰脊髓背角星形胶质细胞对外伤性疼痛刺激的反应及其与神经元关系的免疫电镜研究[J].神经解剖学杂志.2003,19(2):182-186.
    [15]袁华,段丽,饶志仁,等.痛刺激后三叉神经尾侧亚核星形胶质细胞和神经元相互关系的电镜观察[J].中国神经科学杂志.2003,19(1): 5-8.
    [16] Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes.[ J]. Neurosci. 1999 ,19(16):6897-6906.
    [17] Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner.[J].Trends Neurosci. 1999,22 (5):208-15.
    [18] Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H. Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glia cells.[J]. Nat Neurosci. 1999, (2):139-43.
    [19]王珍,刘莹,朱长庚,等.戊四氮致痫大鼠脑和脑脊液IL-1β,TNF-α含量的变化及大脑皮质和海马内GFAP和CyclinD1表达.[J].华中科技大学学报,2005.,34(2):132-133.
    [20] Imai H, Harland J, McCulloch J, et al. Specific expression of the cell cycle regulation proteins, GADD34 and PCNA in the peri-infarct zone after focal cerebrial ischemia in the rat[J]. Eur J Neurosci, 2002,15(6): 19-29.
    [21]张树华,朱长庚.氯喹对戊四氮致痫大鼠GFAP.PCNA及CyclinD1变化的影响[J].中华神经医学杂志,2006,5(2):136
    [22] Semyanor A, Godukhin O. Epilepsy activity and ERSP-spike potentiation induced in rat hippocampal CA1 slices by repeated high-k(+):involvement of ionotropic glutamate receptors and Ca2+/calmodulin-dependent protein kinase II [J] . Neuropharmaoology, 2001,40(2):201-203.
    [23] Mody I,MscDonald JF.NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2 + release [J].Trends Pharmacol Sci,1995,16(10):356-359.
    [24] Lamberts SW,Van der Lely AJ,de Herder WW,et al.Octreotide[J].N Engl J Med,1996,334(4):246-254.
    [25] Collingride CL, The role of NMDA receptorsinl earning and memory [J].Natrue, 1987,330:604-605
    [26] Collingride CL, Singer W. Excitatory aminoacid receptors and plasticty[J].Trends pharmacol Sci,1990,11:290-296.
    [27] Monaghan D T, Cotman C W. Distribution of Nmethyl D aspartate sensitivel glutamate binding sites in rat brain[J].Neurosci,1985,5:2909-2919.
    [28] Chaudry, F. A., Lehre, K. P., Campagne, M. V. L., et al. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. [J] Neuron 1995 ,15(3):711-720.
    [29] Derouiche, A. Coupling of glutamate uptake and degradation in transmitter clearence: anatomical evidence. In Neurotransmitter release and uptake (ed. S. Pogun), Berlin, Heidelberg: Springer 1997. 263-282.
    [30] Dehnes, Y., Chaudry, F., Ullensvang, K., et al. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia.[J]. Neurosci. 1998, 18(10):3606-3619.
    [31] Mennerick, S. & Zorumski, C. F. Glial contributions to excitory neurotransmission in culture hippocampal cells.[J].Nature 1994, 368, 59-62.
    [32] Mennerick, S., Benz, A. & Zorumski, C. F. Components of glial responses to exogenous and synaptic glutamate in rat hippocampal microcultures. Neurosci. 1996 ,16(1): 55-64.
    [33] Mitoma J, Ito M, Furuya S, Hirabayashi Y. Bipotential roles of ceramide in the growth of hippocampal neurons: promotion of cell survival and dendritic outgrowth in dose- and developmental stage-dependent manners. [J].Neurosci Res. 1998 ,15;51(6):712–722.
    [34]唐吉友,张卫清,迟兆富,等.胶质细胞谷氨酸转运体在大鼠点燃效应中的作用研究[J].临床神经病学杂志,2001,14(3):159-161.
    [35] Gegelashvivi G,Schousboe A.Cellular distribution and kinetic properties of high-affinity glutamate transporter.[J].Brain Res Bull 1998,45(1):233-238.
    [36] Bezzi P,Carmignoto G,Pasti L,Vesce S,Rossi D,Rizzini BL,Pozzan T,Volterra A.Prostaglandins stimulate calcium- dependent glutamate release in astrocytes. .[J].Nature 1998,391(6664):281-285.
    [37] Thompson K, Anantharam V, Behrstock S, Bongarzone E, Campagnoni A, Tobin AJ.Conditionally immortalized cell lines,engineered to produce and release GABA, modulate the development of behavioral seizures.[J].Exp Neurol, 2000,161(2):481-489.
    [38] Gaspary HL, Wang W, Richerson GB. Carrier-mediated GABA release activates GABA receptors on hippocampat neurons.[ J]. Neurophysiol. 1998,80(1):270-281.
    [39] Matthew E, Andreason P, Pettigrew K, Carson RE, Herscovitch P, Cohen R, King C,Johanson CE, Greenblatt DJ, Paul SM. Benzodiazepine receptors mediate regional blood flow changes in the living human brain. Proc Natl Acad Sci U S A. 1995,28;92(7):2775-9.
    [40] Parri H.R., Gould T.M., Crunelli V. Spontaneous astrcoytic Caz+ oscillations in situ drive NMDAR-mediated neuronal excitation.[J]. Nat Neurosci, 2001, 4:803-812.
    [41] Hawrylak N,Chang FL,Greenough WT.Astrocytic and synaptic response to kindling in hippocampal subfield CAⅠ.Ⅱ.Synaptogenesis and astrocytic process increases to in vivo kindling.Brain Res,1993,603(2):309-316.
    [42] Niquet J,Jorquera I,Ben-Ari Y.Proliferative astrocytes may express fibronection-like protein in hippocampus of epileptic rats.[J].Neurosci ,1994,180(1):13-16.
    [43] 89.高旭光,崔莹,胡刚,等.马桑内酯点燃癫痫动物模型海马区星形胶质细胞的形态学观察[J].辽宁医学杂志,1998,12(2):86-87.
    [44] Planas AM,Soriano MA,FerrerI,et al.Regional expression of inducible heat shock protein-70mRNA in the rat following administration of convulsant drugs.[J].Mol Brain Res,1994,27(1):127.
    [45] Lee SH,Magge S,Spencer DD.Human epileptic astrocytes exhibit increase gapjunction coupling.[J].Glia,1995,15(2):195-202.
    [46] Griffin WS,Yeralan O,Sheng JG.Overexpression of the neurotrophic cytokine S100 beta in human temporal lobe epilepsy.[J].Neurochem,1995,65(1):228-333.
    [47]秦琴保,潘小平,刘灵慧,等.顽固性癫痫的电镜病理与临床研究[J].广州医学院学报,2004,29(3):61-64.
    [48] Walz W, Hertz L. Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. [J].Neurochem,1982 ,39(1):70-7.
    [49] Heinemann U, Gabriel S, Jauch R, et al. Alterations of glial cell function in temporal lobe epilepsy. [J]. Epilepsia, 2000,41(6), 185-189.
    [50] D'Ambrosio R, Gordon DS, Winn HR. Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracetiular K(+) in rat hippocampus.[J] Neurophysiology,2002,87(1):87-102.
    [51],Kofuji, P., Ceelen, P., Zahs, K. R., et al .Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice; phenotypic impact in retina. [J] Neurosci,2000,20(15): 5733- 5740.
    [52] Floyd C L, Golden KM, Black RT, Hamm RJ, Lyeth BG. Craniectomy position affects Morris water maze performance and hippocampal cell loss after parasagittal fluid percussion.[J].Neurotrauma,2002,19(3):303-316.
    [53] Grady MS, Charleston JS, Maris D, Witgen BM, Lifshitz J. Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: analysis by stereological estimation.[J] .Neurotrauma ,2003,20(10):929-941.
    [54] Wang HS, Pan Z, Shi W, et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. [J].Science,1998, 282(5395): 890-1893.
    [55] Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK. A potassium channel mutation in neonatal human epilepsy. [J].Science, 1998, 279: 403-406.
    [56] Kivi A., Lehmann T. N., Kovacs, R., et al. Effects of barium on stimulus-induced rises of [K+]0 in human epileptic non-sclerotic and sclerotic hippocampal area CA 1.[J]. Eur J Neurosci ,2000,12(6): 2039-2048.
    [57] Jauch, R., Windmu" ller, O., Lehmann, T. N., Heinemann, U.,&Gabriel, S. Effects of barium, furosemide, ouabaine and 4,4V-diisothiocyanatostilbene- 2,2V-disulfonic acid (DIDS) on ionophoretically-induced changes in extracellular potassiumconcentration in hippocampal slices from rats and from patients with epiiepsy.[J]. Brain Res, 2002,925(1):18-27.
    [58] Lux, H.D., Heinemann, U., Dietzel, I. Ionic changes and alterations in the size of the extracellular space during epileptic activity. [J].Adv.Neurol.,1986;,44:619- 639.
    [59]张能荣,张秀云,等.灵芝孢子粉孢子粉中维生素和多糖的分析[J].中国生化药物杂志,1997,18(1):37-38.
    [60]陈若云,于德泉.赤芝孢子粉三萜化学成分研究[J].药学报,1991,26(4):267-273.
    [61]李虹奇,于德泉,柳雪枚,等.赤芝孢子粉化学研究[J].中草药,1993,24(10):516
    [62]江瑞华,李鲁伟,韩世温,等.灵芝孢子对肿瘤细胞端粒酶的作用[J].齐鲁医学杂志,1999,14(3):168-169.
    [63]晏爱立,季生发.云芝多糖对乳腺癌术后化疗病人免疫功能影响的研究[J].苏州医学院学报,1998,18(1):14.
    [64] Popov SV,Popova GY,Ovodova RG,et al.Effects of polysaccharides from Silene vulgaris on phagocytes[J].Int J Immunopharmacol,1999,21:617-624.
    [65]娄宁,陈缓,周玫,等.云芝多糖对实验性动脉粥样硬化家兔的治疗作用[J].第一军医大学学报,1995,15(3):185-187.
    [66]余艺.灵芝孢子粉对癌症患者外周血细胞的影响[J].辽宁中医学院学报,2001, 9(3):12.
    [67]赵春,张雪辉.灵芝孢子粉孢子粉的耐缺氧作用观察[J].云南中医中药杂志,2002, 23(6):27-28.
    [68]张卫明,孙晓明,吴素玲,等.灵芝孢子粉免疫调节作用研究[J].中国野生植物资源, 2001,20(1):19-21.
    [69]黄邵新,余素清,刘京生,等.灵芝孢子粉对小鼠免疫功能的影响[J].河北医药,1997, 19(1):25.
    [70]张士勇,刘敏,万士荣.灵芝孢子粉对小鼠脾脏、胸腺质量的影响[J].基层中药杂志,1999,13(4):9.
    [71]陈雷华,朱正纲,马安伦,等.灵芝孢子粉对荷HAC肝癌小鼠抗肿瘤的实验性研究[J].上海免疫学杂志,2000,20(2):101.
    [72]胡映辉,林志彬,何云庆,等.灵芝菌丝体多糖通过增强小鼠巨噬细胞功能诱导HL-60细胞凋亡[J].中国药理学报,1999,15(1):27.
    [73]章灵华,王会贤,于立为.灵芝孢子粉提取物体内外的免疫效应[J].中国免疫学杂志,1994,10(3):169.
    [74]肖波,王蓉,谢光洁,等.难治性癫痫动物模型研究进展[J].中华神经科杂志,2000,33(2):115—117.
    [75] Leseher W. Animal models of epilepsy for the development of antiepileptogenie and disease-modifying drugs comparison of the pharmacology of kindling and post-stattm epilepticus mode line of temporal lobe epilepsy. [J]. Epilepsy Res , 2002,50(1-2):105-123.
    [76]常红升,沈鼎烈,杨峰,等.大鼠杏仁核快速点燃癫痛模型[J].中华神经科杂志,1997,30:283-285.
    [77] Nehlig A, Boehrer A. Effects of remaeemide in two models of genetically determined generalized epilepsy, the GAERS and the audiogenic Wistar AS.[J].EpilepsyRes, 200,52(3) :253 -261.
    [78] De Amorim Carvalho R, Arida RM. Amygdala kindling in proechimys guyannensis rat: an animal model of resistanee to epilepsy. [J]. Epilepsia, 2003, 44(2):165-170.