超薄栅氧化层的热稳定性和隧道电流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从金属-氧化物-半导体(MOS)器件出现以来,集成电路的集成度按照摩尔定律增加,相应地,器件的物理尺寸按照等比缩小的原则不断缩小,SiO_2作为栅介质的厚度不断缩小,特征尺寸在0.1μm以下的集成电路要求SiO_2栅介质的厚度小于1.7nm。当SiO_2的物理厚度减小到1.5nm时,栅电流将会急剧增加,高达1×10A/cm~2。如此大的栅电流,将会产生很多严重的问题,如热稳定性、散热、寿命等问题,严重地影响着器件性能,使器件不能正常工作,以致限制了集成电路的进一步发展。目前,正在利用介电常数较大的材料来代替传统的SiO_2作为栅介材料,来减少隧穿电流。La_2O_3是一种新型的高介电常数的栅介材料,它的优良性能引起了微电子界的注意,但它的很多特性还有待于研究,其中最重要的是它的热稳定性和隧道电流。
     针对这种情况,笔者开展了以下几方面的工作,获得了一些有意义的结果。
     1.在分析变角X射线光电子能谱(XPS)原理和理论的基础上,针对栅介薄膜厚度测量的需要,引进了新的计算超薄单层厚度和多层厚度的计算方法,编写了变角XPS计算多层结构的处理软件。其计算结果与英国国家物理实验室的ARCtick软件的计算结果相比,有相同的准确性。本软件不仅仅能计算多层薄膜的厚度,而且能验证假定模型的正确性。这种算法和软件的实现对于MOS栅介质层的结构分析有很高的实用价值,对于微电子器件的结构研究有一定的推动作用。
     2.利用射频溅射镀膜技术在Si片上制备了La_2O_3膜,通过变角XPS分析和多层结构的定量计算,测得La_2O_3与Si衬底之间的SiO_2层厚度为0.6nm。在O_2中、700℃、10分钟退火,薄膜样品的SiO_2层厚度增加得比较大,达2.1nm。在N_2中、700℃、10~30分钟退火,薄膜样品的SiO_2层厚度为1.2nm。在N_2中退火处理的样品再次在O_2中、700℃、10分钟退火,发现La_2O_3与SiO_2层厚度没有发生变化,说明N_2退火后SiO_2界面层趋于稳定,比在O_2中退火其厚度要小。在N_2中退火处理有利于提高Si上La_2O_3薄膜的热稳定性,是稳定界面层的重要途径。
     3.比较了WKB和精确解法计算栅介质隧穿电流的方法,精确解法在解决单SiO_2层和WKB准经典近似有相同的结果,但是WKB不适合计算La_2O_3/SiO_2双层栅介层的隧穿电流,而精确解法能精确地计算双层栅介质隧穿电流。首次用精确解法计算了La_2O_3/SiO_2双层栅介质结构的隧穿电流。对比栅极注入和衬底注入隧穿电流,显示衬底注入隧穿电流要比栅极注入隧穿电流大1-2个数量级。在等效氧化层厚度相同的情况下,比较了几种不同的SiO_2层厚度和La_2O_3层厚度结构的隧穿电流的大小,给出了SiO_2层厚度和La_2O_3层厚度对隧穿电流的影响。
Since metal-oxide-semiconductor (MOS) device appeared, integration of integrated circuit (IC) expands as Moore law. Meanwhile the dimension of device scales down, the thickness of SiO2 gate dielectric shrinks as the same law. But as the thickness of SiO2 gate dielectric reaches at ISA, the gate current rises very quickly and reaches at 1×10A/cm2. The large gate current brings out a lot of questions such as thermal stability, thermal dissipation, lifetime etc, so, it affects the device's function and the device can't work normally. In order to resolve the questions, a new high K material is developed instead of the traditional SiO2 gate dielectric material to reduce the tunneling current. The La2O3 material was paid attention because of its good gate dielectric properties, but there are a lot of properties are under research, the most important property is thermal stability.
    To improve the situation the author has made the following research and achieved beneficial results.
    1. In order to measure the thickness of gate dielectric, a new algorithm is introduced to calculate the mono-layer and multi-layer thickness on the basic of theory of the angle-dependent X-ray Photoelectron Spectroscopy (XPS), and a software is developed on the basic of the algorithm. The calculational result agrees with the result which is calculated by ARCtick software which was developed by National Physical Laboratory (NPL) of UK. The multi-layer model algorithm not only calculates the thickness of gate dielectric but also validates whether the model is proper. It has high practical merit to analyze the structure of gate dielectric. The realization of the algorithm drives the research of micro-electron structure.
    2. The La2O3 thin film is prepared by RF technology, the film is analyzed by ARXPS, the thickness is calculated by Quantitative Analysis software, the thickness of SiO2 thin film between La2O3 and Si is 0.6nm. After annealing at temperature 700癈 for 10 minutes in O2 the thickness of SiO2 becomes thick very much and reaches at 2.1nm. After annealing at temperature 700℃ for 10-30 minutes in N2, the thickness of Si02 is 1.2nm. After annealing in N2, annealing process at temperature 700 ℃ for 10 minutes in O2 secondly, the thickness of SiO2 does not change, it shows that the SiO2 layer is stable after annealing in N2, the thickness of SiO2 is less than that annealing in O2. So a conclusion can be got that the annealing in N2 raises the La2O2, stability.
    3. The exact solution and WKB approximation are compared, The exact solution agrees with the WKB approximation in calculating the mono-layer SiO2 tunneling current,
    
    
    
    but the WKB approximation is inappropriate for the dual layer oxide-lanthanum structure, while the exact algorithm can give a exact result. The calculational result by exact solution shows that the substrate inject current is larger than gate inject current in the same condition. The influence of the thickness of SiO2 and La2O3 on the tunneling current is given to compare much different thickness of SiO2 and La2O3 tunneling current on the same equivalent oxide thickness (EOT) condition.
引文
[1] C. J. Frosch and L. Derick Surface Protection and Selective Masking During Diffusion in Silicon Proceedings of the Electrochemical Society, 1957, 547.
    [2] M. M. Atalla, E. Tannenbaum, and E. J. Scheibner Stabilization of Silicon Surfacesby Thermally Grown Oxides Bell Syst. Tech. J. 1959, Vol.38:749
    [3] J. R. Ligenza and W. G. Spitzer The Mechanisms for Silicon Oxidation in Steam and Oxygen J. Phys. Chem. Solids 1960, Vol.14:131
    [4] J. R. Ligenza and W. G. Spitzer Effects of Crystal Orientation on Oxidation Rates of Silicon in High Pressure Steam J. Phys. Chem. 1961, Vol.65:2011
    [5] SanJose《The National Technology Roadmap for Semiconductors》1997, 3rd edition, Semiconductor Industry Association: CA
    [6] A. Ourmazd, K. Ahlborn, K. Ibeh, and T. Honda Lattice and Atomic Structure Imaging of Semiconductors by High Resolution Transmission Electron Microscopy Appl. Phys. Lett. 1985 Vol.47:685-688
    [7] A. Stesmans and V. V. Afanas'ev Thermally Induced Interface Degradation in (111)Si/SiO2 Traced by Electron Spin Resonance Phys. Rev. 1996, Vol.B54: R11129
    [8] A. Stesmans The Si-Si3 Defect at Various (111)Si/SiO2 and (111)Si/Si3N4 Interfaces Semicond. Sci. Technol. 1989, Vol.4:1000
    [9] A. Stesmans and G. van Gorp Maximum Density of Pb Centers at the (111)Si/SiO2 Interface After Vacuum Anneal Appl. Phys. Lett. 1990, Vol.57:2663
    [10] A. H. Al-Bayati, K. G. Orrman-Rossiter, J. A. v. d. Berg, and D. G. Armour Composition and Structure of the Native Si Oxide by High Depth Resolution MEIS Surf. Sci. 1991, Vol.241:91
    [11] M. M. Banaszak-Holl and F. R. McFeely Si/SiO2 Interface: New Structures and Well-Defined Model Systems Phys. Rev. Lett. 1993, Vol.71:2441
    [12] M. M. Banaszak-Holl, S. Lee, and F. R. McFeely Core- Level Photoemission and the Structure of the Si/SiO2 Interface Appl. Phys. Lett 1994, Vol.65:1097
    [13] F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Maserjian, and A. Madhukar High Resolution X-Ray Photoemission Spectroscopy as a Probe of Local Atomic Structure: Application to Amorphous SiO2 and the Si-SiO2 Interface Phys. Rev. Lett. 1979, Vol.43:1683
    [14] F. J. Grunthaner and P. J. Grunthaner Chemical and Electronic Structure of the
    
    SiO2/Si Interface Mater. Sci.Rep. 1986, Vol.1: 65
    [15] P. O. Hahn and M. Henzler The Si-SiO2 Interface: Correlation of Atomic Structure and Electrical Properties J. Vac. Sci. Technol. 1984, Vol.2:574
    [16] G. R. Harp, D. K. Saldin, and B. P. Tonner Finite-Size Effects and Short-Range Crystalline Order in Si and SiO2 Studied by X-Ray Absorption Fine Structure Spectroscopy J. Phys. Condens. Matter 1993, Vol.5:5377
    [17] A. M. Stoneham, C. R. M. Grovenor, and A. Cerezo Oxidation and the Structure of the Silicon/Oxide Interface Phil. Mag. 1987, Vol.B55: 201.
    [18] H. S. Momose, T. Morimoto, Y. Ozawa, K. Yamabe, and H. Iwai Electrical Characteristics of Rapid Thermal Nitrided-Oxide Gate n- and p-MOSFET's with Less than 1 Atom% Nitrogen Concentration IEEE Trans. Electron Devices 1995, Vol.41:546
    [19] H. S. Momose, E. Morifuji, T. Yoshitomi, T. Ohguro, M. Saito, T. Morimoto, Y. Katsumata, and H. Iwai High Frequency AC Characteristics of 1.5 nm Gate Oxide MOSFETs 1996, presented at the IEEE International Electron Devices Meeting(IEDM '96): San Francisco
    [20] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and H. Iwai 1.5 nm Direct- Tunneling Gate Oxide Si-MOSFETs IEEE Trans. Electron Devices 1996, Vol.43:1233
    [21] G. Timp, A. Agarwal, F. H. Baumann, T. Boone, M. Buoanna, R. Cirelli Low Leakage, Ultra-Thin Gate Oxides for Extremely High Performance Sub-100 nm MOSFETs 1997, presented at the IEEE International Electron Devices Meeting(IEDM '97): Washington, DC.
    [22] H. S. Momose, S.-I. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai A Study of Hot-Carrier Degradation in nand p-MOSFETs with Ultra-Thin Gate Oxides in the Direct Tunneling Regime 1997, presented at the IEEE International Electron Devices Meeting (IEDM '97): Washington, DC.
    [23] D. A. Buchanan and S. H. Lo Characterization and the Limits of Ultrathin SiO2-Based Dielectrics for Future CMOS Applications 1996, presented at the Symposium on the Physics and Chemistry of SiO2 and the Si-SiO2 Interface: Los Angeles.
    [24] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang Quantum-Mechanical Modeling of Electron Tunneling Current from the Inversion Layer of Ultra-Thin Oxide
    
    nMOSFETs IEEE Electron Device Lett. 1997, Vol.18:209
    [25] S.-H. Lo, D. A. Buchanan, Y. Yaur, L.-K. Han, and E. Wu, "Modeling and Characterization of nl and p l-Polysilicon-Gated Ultra Thin Oxides," presented at the Symposium on VLSI Technology, 1997.
    [26] M. L. Green, D. Brasen, K. W. Evans-Lutterodt, L. C. Feldman, K. Krisch, W. Lennard, H. T. Tang, L. Manchanda, and M. T. Tang RTO of Silicon in N_2O Between 800 and 1200℃: Incorporated Nitrogen and Roughness Appl. Phys. Lett. 1994, Vol.65: 848
    [27] M. L. Green, D. Brasen, L. C. Feldman, W. Lennard, and H. Y. Tang Effect of Incorporated Nitrogen on the Kinetics of Thin Rapid Thermal N_2O Oxides Appl. Phys. Lett. 1995, Vol.67: 1600
    [28] M. L. Green, T. Sorsch, L. Feldman, W. N. Lennard, E. P. Gusev, E. Garfunkel, H. C. Lu, and T. Gustafsson Ultrathin SiO_xNy by Rapid Thermal Heating of Silicon in N_2 at T 760-1050℃ Appl. Phys. Lett. 1997, Vol.71: 2978
    [29] E. P. Gusev, M. L. Green, H. C. Lu, E. Garfunkel, T. Gustafsson, D. Brasen, and W. N. Lennard Nitrogen Engineering of Ultrathin Oxynitrides by a Thermal NO/O2/NO Process J. Appl. Phys. 1998, Vol. 84: 2980
    [30] K. A. Ellis and R. A. Buhrman Nitrous Oxide (N_2O) Processing for Silicon Oxynitride Gate Dielectrics IBM J. Res. Develop. 1999, Vol.43:287
    [31] K. A. Ellis and R. A. Buhrman Furnace Gas-Phase Chemistry of Silicon Oxynitridation in N_2O Appl. Phys. Lett. 1996, Vol.68: 1696
    [32] D. A. Buchanan and S.-H. Lo Reliability and Integration of Ultra-Thin Gate Dielectrics for Advanced CMOS Microelectron. Eng. 1997, Vol.36:13
    [33] J.R. Hauser IEDM Short Course December, 1999: Washington DC.
    [34] K. Sundaram, W. K. Choi, and C. H. Lingc Quasi- Static and High-Frequency C-V Measurements on Al/Ta_2O_5/SiO_2/Si Thin Solid Films 1993, Vol.230: 145
    [35] J. G. Hwu and S. T. Lin Electrical Characterisation of the Insulating Property of Ta2O5 in Al-Ta_2O_5-SiO_2-Si Capacitors by a Low-Frequency C/V Technique IEEE Proc. G, Circuits, Devices & Syst. 1990, Vol.137: 390
    [36] S. Zaima, T. Furuta, and Y. Koide Conduction Mechanism of Leakage Current in Ta_2O_5 Films on Si Prepared by LPCVD J. Electrochem. Soc. 1990, Vo1.137; 2876
    [37] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland Fabrication and Characterization of Si-MOSFETs with PECVD Amorphous Ta_2O_5 Gate Insulator IEEE Electron Device Lett. 1997, Vol.18: 447
    
    
    [38] K. A. Son, A. Y. Mao, Y. M. Sun, B. Y. Kim, F. Liu, A. Kamath, J. M. White, D. L. Kwong, D. A. Roberts, and R. N. Vritis Chemical Vapor Deposition of Ultrathin Ta_2O_5 Films Using Ta[N(CH_3)_2]_5 Appl. Phys. Lett. 1998, Vol.72:1187
    [39] S. D. Khanin and A. L. Ivanovskii The Influence of Structural Defects on the Electronic Properties of Amorphous Ta_2O_5 Phys. Status Solid 1992, Vol.174: 449
    [40] I. Kim, J.-S. Kim, O.-S. Kwon, S.-T. Ahn, J. S. Chun, and W.-J. Lee Effects of Annealing in O_2 and N_2 on the Electrical Properties of Tantalum Oxide Thin Films Prepared by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition J. Electron. Mater. 1995, Vol.24:1435
    [41] G. Q. Lo, D. L. Kwong, and S. Lee Metal-Oxide-Semiconductor Characteristics of Chemical Vapor Deposited Ta_2O_5 Films Appl. Phys. Lett. 1992, Vol.60 3287
    [42] G. Q. Lo, D. L. Kwong, and S. Lee Reliability Characteristics of MOS Capacitors with Chemical Vapor Deposited Ta_2O_5 Gate Dielectrics Appl. Phys. Lett. 1993, Vol.62:973
    [43] G. B. Alers, R. M. Fleming, Y. H. Wong, B. Dennis, A. Pinczuk, G. Redinbo, R. Urdahl, E. Ong, and Z. Hasan Nitrogen Plasma Annealing for Low Temperature Ta_2O_5 Films Appl. Phys. Lett. 1998, Vol.72:1308
    [44] G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. Urdahl Intermixing at the Tantalum Oxide/Silicon Interface in Gate Dielectric Structures Appl. Phys. Lett. 1998, Vol.73:1517
    [45] E. L. Lakomaa, S. Haukka, and T. Suntola Atomic Layer Growth of TiO_2 on Silica Appl. Surf. Sci. 1992, Vol.60/61:742
    [46] M. B. Lee, M. Kawasaki, and H. Koinuma Formation and Characterization of Epitaxial TiO_2 and BaTiO_3/TiO_2 Films on Si Substrate Jpn. J. Appl. Phys. 1995, Vol.34:808
    [47] H. S. Kim, D. C. Gilmer, and D. L. Polla Leakage Current and Electrical Breakdown in Metal-Organic Chemical Vapor Deposited TiO_2 Dielectrics on Silicon Substrates Appl. Phys. Lett. 1996,Vol.69:3860
    [48] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. Gladfelter, and J. Yan MOSFET Transistors Fabricated with High Permittivity TiO_2 Dielectrics IEEE Trans. Electron Devices 1997, Vol.44:104
    [49] S. Chen, M. G. Mason, H. J. Gysling, G. R. Paz-Pujalt, T. N. Blanton, T. Castro, K. M. Chen, C. P. Fictorie, W. L. Gladfelter, A. Franciosi, P. I. Cohen, and J. F. Evans
    
    Ultrahigh Vacuum Metalorganic Chemical Vapor Deposition Growth and In Situ Characterization of Epitaxial TiO_2 Films J. Vac. Sci. Technol. 1993, Vol.11: 2419
    [50] S. C. Choi, M. H. Cho, S. W. Whangbo, C. N. Whang, S. B. Kang, S. I. Lee, and M. Y. Lee Epitaxial Growth of Y_2O_3 Films on Si(100) Without an Interfacial Oxide Layer Appl. Phys. Lett. 1997, Vol.71:903
    [51] C. H. Ling Interfacial Polarisation in Al-Y_2O_3-SiO_2-Si Capacitor Electron Lett. 1993, Vol.29:1676
    [52] K. Onisawa, M. Fuyama, and K. Tamura Dielectric Properties of rf-Sputtered Y_2O_3 Thin Films J. Appl. Phys. 1990, Vol.68:719
    [53] R. N. Sharma and A. C. Rastogi Compositional and Electronic Properties of Chemical-Vapor-Deposited Y_2O_3 Thin Film-Si(100) Interfaces J. Appl. Phys. 1993, Vol.74; 6691
    [54] R. N. Sharma and A. C. Rastogi Structure and Composition of Interfacial Silicon Oxide Layer in Chemical Vapor Deposited Y_2O_3-SiO_2 Bilayer Dielectrics for Metal-Insulator-Semiconductor Devices J. Appl. Phys. 1994, Vol.76: 4215
    [55] Y. Chikyow, S. M. Bedair, and N. A. El-Masry Reaction and Regrowth Control of CeO_2 on Si(111) Surface for the Silicon-on-Insulator Structure Appl. Phys. Lett. 1994, Vol.65: 1030
    [56] Y. Inoue, Y. Yamamoto, and S. Koyama Epitaxial Growth of CeO2 Layers on Silicon Appl. Phys. Lett. 1990, Vol.56:1332
    [57] L. Tye, N. A. El-Masry, and S. M. Bedair Electrical Characteristics of Epitaxial CeO_2 on Si(111) Appl. Phys. Lett. 1994,Vo1.65: 3081
    [58] M. Yoshimoto, K. Shimozono, and H. Koinuma Room-Temperature Epitaxial Growth of CeO_2 Thin Films on Si(111) Substrates for Fabrication of Sharp Oxide/Silicon Interface Japan. J. Appl. Phys. 1995,Vol.34, L688
    [59] C. S. Hwang and H. J. Kim Deposition and Characterization of ZrO_2 Thin Films on Silicon Substrate by MOCVD J. Mater. Res. 1993, Vol.8: 1361
    [60] T. S. Kalkur and Y. C. Lu Electrical Characteristics of ZrO_2-Based Metal-Insulator-Semiconductor Structures on p-Si Thin Solid Films 1992, Vol.207:193
    [61] C. T. Hsu, Y. K. Su, and M. Yokoyama High Dielectric Constant of RF-Sputtered HfO_2 Thin Films Japan. J. Appl. Phys. 1992, Vol.31:2501
    [62] C. T. Kuo, R. Kwor, and K. M. Jones Study of Sputtered HfO_2 Thin Films on Silicon Thin Solid Films 1992, Vol.213:257
    
    
    [63] S. M. George, O. Sneh, and J. D. Way Atomic Layer Controlled Deposition of SiO_2 and Al_2O_3 Using ABAB... Binary Reaction Sequence Chemistry Appl. Surf. Sci. 1994, Vol.82/83:460
    [64] H. D. Chen, K. R. Udayakumar, and L. C. Niles Dielectric, Ferroelectric, and Piezoelectric Properties of Lead Zirconate Titanate Thick Films on Silicon Substrates J. Appl. Phys. 1995, Vol.77:3349
    [65] D. E. Kotecki High-K Dielectric Materials for DRAM Capacitors Semicond. Int. 1996, Vol.11: 109
    [66] J. V. Grahn, P.-E. Hellberg, and E. Olsson Effect of Growth Temperature on the Properties of Evaporated Tantalum Pentoxide Thin Films on Silicon Deposited Using Oxygen Radicals J. Appl. Phys. 1997,Vol.84:1632
    [67] J.-Y. Gan, Y. C. Chang, and T. B. Wu Dielectric Property of (TiO_2)_x-(Ta_2O_5)12x Thin Films Appl. Phys. Lett. 1998, Vol.72:332
    [68] J. C. Lee, C. S. Chung, H. J. Kang, P. Kin, H. K. Kim, and D. W. Moon Nondestructive and Quantitative Depth Profiling Analysis of Ion Bombarded Ta_2O_5 Surfaces by Medium Energy Ion Scattering Spectroscopy J. Vac. Sci. Technol. 1994, Vol.13:1325
    [69] H.-J. Lee, R. Sinclair, M.-B. Lee, and H.-D. Lee Interracial Reaction in the Poly-Si/Ta_2O_2/TiN Capacitor System J. Appl. Phys. 1998, Vol.83:139
    [70] Y. H. Wu, M. Y. Yang, Albert Chin Electrical Characteristics of High Quality La_2O_3 Gate Dielectric with Equivalent Oxide Thickness of 5 IEEE ELECTRON DEVICE LETTERS 2000, Vol 21.7:341-343
    [71] Wen-Jie Qi,Renee Nieh.Byoung Hun Lee et al., Electrical and reliability characterization of ZrO_2 deposited directly on Si for gate dielectric application Applied physics letters,2000,Vol 77,No. 20:3269-3271
    [72] Leagu Kang, B.young,Hun Lee, Wen-Jie Qi, YongJoo Jeon et al. Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Letters, 2000,21(4): 181-183.
    [73] Tatsuo Shiozawa,Toshiyuki Yoshida,Tamotsu Hashizume and Hideki Hasegawa, Correlation between interface state properties and electron transport at ultrathin insulator/Si interfaces Applied Surface Science 2000,Vol 159-160:98-103.
    [74] S.Lombardo, A.La Magna,C.Spinella et al., Degradation and hard breakdown transient of thin gate oxides in metal-SiO_2-Si capacitors: Dependence on oxide thickness Journal of Applied Physics 1999,Vol.36,No.11:6382-6391
    
    
    [75] Lingfeng Mao, Changhua Tan and Mingzhen Xu Thickness measurement for ultrathin-film insulator metal-oxide-semiconductor structure using Fowler-Nordheim tunneling current oscillations Journal of Applied Physics 2000, Vol 88, No. 11:6560-6563
    [76] 鲍云,蒋明,李伟 等 等离子体氧化制备超薄SiO_2层的性质 半导体学报,2002,o.22.No.8:1011-1013
    [77] 王建祺,吴文辉,冯大明.《电子能谱学(XPS/XAES/UPS)引论》,1992,国防工业出版社
    [78] 汪贵华,杨伟毅,常本康.变角XPS定量分析的研究,真空与低温,1999,Vol.5,No.4:242~245
    [79] L.Kovér. Report on the 22nd IUVSTA workshop 'X-ray photoelectron spectroscopy::from physics to dat. ' Surface and interface analysis, 2000, Vol.29:671-716.
    [80] 华中一,罗维昂.《表面分析》,1989,复旦大学出版社
    [81] 陆家和,陈长彦.《表面分析技术》,1988,电子工业出版社
    [82] 王建祺,吴文辉,冯大明.《电子能谱学(XPS/XAES/UPS)引论》,1992,国防工业出版社
    [83] C.S.Fadley, R.J.Baird,W.Siekhaus,et.al., Surface analysis and angular distribution in x-ray photoelectron spectroscopy, J.of Electron Spectroscopy and Related Phenomena, 1974,Vol.4:93-137
    [84] F.J.Himpsel,F.R.McFeely, A.Taleb-Ibrahimi and J.A.Yarmoff, Microscopic structure of the SiO_2/Si interface Physics Review B,1988,Vol.38,No. 9:6084-6096
    [85] R.Flitsch and S.I.Raider Electron mean escape depths from x-ray photoelectron spectra of tjermally oxidized silicon dioxide films on silicon J.Vac Sci Tech., 1975,Vol 12,No. 1:305-308
    [86] Hiroshi Iwai and Shun-iehiro Ohmi Future CMOS Technology below 0.1μm SB Micro 2000 (XV International Conference on Microelectronics andPaekaging), Manaus, Amazonas, Brazil 2000, September: 2-17
    [87] M. Depas, B. Uermeire, P. W. Merteus, R. L. Van Merrnaeghe, and M. M. Hegus Determination of tunneling parameters in ultra-thin oxide layer poly-Si/SiO_2/Si structures Solid-States Electron, 1994, Vol.38: 1465.
    [88] 曾谨言《量子力学》科学出版社,2000
    [89] T. Ando, A, Fowler, and F. Stern Electron properties of two-Dimensional systems Rev. Mod. Phys., 1982, Vol.54:437
    [90] J. Sune, P. Olivo, and B. Ricco Quantum-mechanical modeling of accumulation layers in MOS structure IEEE Trans. Electron Devices, 1972, ED-39:1732-1739
    
    
    [91] D. A. Buchanan and S. H. Lo The Physics and Chemistry of SiO_2 and Si-SiO_2 Interface The ElectroChemical Society 1996, 329-322
    [92] D. A. Buchanan SRC Topic Research Conference on Ultrathin Gate Dielectric-Technology, Reliability and Characterization 1996.