SWATH船稳定鳍方案的优化及纵向运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SWATH船是一种具有优良耐波性的新型高性能船舶。与常规的单体船相比,它具有自然运动周期长,运动幅度小,波浪中失速少,砰击、上浪及乘员的晕船概率低等优点。由于其水线面积较小,船的纵倾恢复力矩相应减少,随着速度的增加,作用在下潜体上的MUNK力矩会以速度平方的速度迅速增加,容易发生纵向失稳。目前,解决这一问题的主要方式是在下潜体内侧安装稳定鳍。因此,稳定鳍尺寸和安装位置的确定就成为SWATH船建造过程中的一个重要环节。
     稳定鳍不但是平衡水动力纵倾力矩保证SWATH船纵向运动稳定的一个重要工具,而且它对SWATH船的机动性、波浪中的运动性能以及阻力特性等方面都有较大的影响。为了获得一组较好的稳定鳍方案,就必须在稳定鳍方案的设计过程中充分考虑上述各因素的影响。为此本文在详细分析了波浪中SWATH船的纵向运动性能和稳定鳍尺寸、安装位置等参数对SWATH船纵向运动稳定性和机动性影响的基础上建立了SWATH船稳定鳍方案的多目标优化数学模型,并利用多目标遗传算法对其进行了优化求解。然后,进一步建立了稳定鳍方案的多指标评价体系,并利用多级模糊综合评价法对其进行了评价,以从优化得到的Pareto最优解中确定出最满意的稳定鳍方案。
     虽然安装设计合理稳定鳍的SWATH船本身在波浪中具有较好的运动性能,但是对稳定鳍采取一定的控制措施以进一步改善SWATH船的运动性能也是必要的。考虑到实际SWATH船纵向运动控制系统所具有的不确定性,本文采用鲁棒控制理论对其进行了控制研究。并结合线性矩阵不等式理论和概率鲁棒性能分析思想,提出了一种针对参数不确定系统的新控制器设计方法。此方法不但能充分考虑系统的鲁棒性能要求而且能将闭环系统的极点配置到指定区域以改善系统的动态性能,而且此方法还具有设计过程简单、保守性小以及受不确定参数进入系统的方式影响较小等优点。最后,本文针对SWATH船的参数不确定模型和混合不确定模型,采用概率鲁棒控制方法和μ综合控制方法分别对其进行控制研究,并取得了较好的控制效果。
SWATH is a kind of new high performance ship with the excel seaworthiness.Compared with the general single hull,it's natural period is longer,motionamplitude is smaller,speed lose in waves is little,probability of slams,deckwetness and nausea is lower.Because of the small waterplane area the restoringmoment of the longitudinal motion of SWATH is also small.However,the MUNKmoment added on the lower hulls is increased quickly with the square of the speedand the longitudinal motion of SWATH will be unstable when the speed exceedsthe critical value.Now the main way that solves this problem is to install thestabilizing fin inside the lower hulls.Therefore,the design of the stabilizing finbecomes the important part of the SWATH building.
     The stabilizing fin not only is the important tool that balances the MUNKmoment for ensuring the stability of the longitudinal motion of SWATH,but alsocan bring the biggish influence to the longitudinal motion maneuverability,thelongitudinal motion performance in waves and resistance performance.So it isnecessary for getting excel stabilizing fin to involve all of the influence factorswhich are mentioned before.Therefore,this paper establishes the multi-objectiveoptimization mathematical model of the stabilizing fin scheme of SWATH afteranalyzing the longitudinal motion performance of SWATH in waves and theinfluence of the longitudinal motion stability and maneuverability from theparameters change of the stabilizing fin and solves this problem by themulti-objective genetic algorithm.Then,this paper establishes the evaluatingindex system of the stabilizing fin scheme and uses the fuzzy multilevelcomprehensive evaluation method to get the satisfying stabilizing fin scheme fromPareto set.
     Though the SWATH that is installed the stabilizing fin designed in reason can work with the excel motion performance in waves,it is necessary to control thestabilizing fin for improving the motion performance further.In view of theuncertainty of the actual longitudinal motion control system of SWATH,this paperuses the robust control theory to control the stabilizing fin for improving thelongitudinal motion performance of SWATH.And this paper presents a newcontroller design method based on the linear matrix inequality theory and theprobabilistic robustness analysis method for the parameter uncertainty system.This method can not only satisfy the robust performance requirement of thesystem but also assign the pole of the closed system to the given region.And thesynthesis process of this method is simple,the conservation is little and it is notlimited by the way that the parameters enter into the system.Finally,this paperuses the new control method andμ-synthesis method respectively to control thelongitudinal motion system of SWATH with the parameter uncertainty and themixed uncertainty,the effect is excel.
引文
[1]Lee,C.M.and Martin,M.Determination of Size of Stabilizing Fins for Small Waterplane Area,Twin-Hull Ships.DTNSRDC/SPD NO.4495,Nov.1974
    [2]Ralph Stahl and K.K.McCreight.A Technique for Selecting Stabilizing Fins for SWATH Ships.DTNSRDC/SPD-1076-02,February 1984
    [3]郑明,刘淮,倪冶,王绍明.世界小水线面双体船图集.北京:中国船舶工业综合技术经济研究院,2002
    [4]朱炳泉,眭爱国,魏纳新等.小水线面双体船纵向运动控制系统的试验研究.中国造船,2005,46(4):1-10页
    [5]郭值学.高性能船的发展与前景之管见(三).中国造船,2004,45(1):96-102页
    [6]杨国光.军用小水线面双体船初探.船舶工业技术经济信息.2000(2):18-31页
    [7]李妍妍.小水线面双体船姿态控制研究.哈尔滨:哈尔滨工程大学硕士学位论文,2005
    [8]郑明.我国突破了小水线面双体船技术——自力更生建成了海关“201号小水线面双体海关监管艇.http://www.csscinfo.com.cn/xsmczj/xsmc16.htm
    [9]黄鼎良.小水线面双体船性能原理.北京:国防工业出版社.1993
    [10]Lee,C.M.Theoretical Prediction of Motion of Small Waterplane Area Twin Hull(SWATH)Ships in Waves.DTNSRDC Report 76-0046,December 1976
    [11]Lee,C.M.and Curphey,R.M.Prediction of Motion,Stability,and Wave Load of Small-Waterplane-Area,Twin-Hull Ships.SNAME Transactions,Vol.85,1977,pp.94-130
    [12]Lee C.M.and Lawrence O.Murray.Experimental Investigation of Hydrodynamic Coefficients of a Small-Waterplane-Area,Twin-Hull Model.AD-AO35908,January 1977
    [13]Hong Y.S.Heave and Pitch Motions of SWATH ships.Journal of Ship Research,1986,Vol.30(1),pp.125-25
    [14]Hong Y.S.The effect of strut shape on SWATH ship motion.DTNSRDC-85/048,Bethesda,1985
    [15]Kallio J.A.and Ricci J.J.Seaworthiness characteristics of a small waterplane area twin-hull(SWATH Ⅳ)Part Ⅱ.DTNSRDC Report,SPD 620-02,1976
    [16]Wu J.Y.A study of the effect of fin size on the pitch and heaving motion of a SWATH ship.NAOE-84-55 Report,Department of Naval Architecture & Ocean Engineering,University of Glasgow,1984
    [17]Wu J.Y.A prediction method for SWATH heave,pitch and surge motion.NAOE-83-67 Report,Department of Naval Architecture & Ocean Engineering,University of Glasgow,1984
    [18]McCreight Kathry K.Assessing the seaworthiness of SWATH ships.SNAME Trans.,Vol.95,1987,pp.189-214
    [19]McCreight K.K.and Ralph Stahl,Vertical plane motions of SWATH ships in regular waves.DTNSRDC/SPD-1076-01,Bethesda,Maryland 20084,June 1983
    [20]Fang M.C.and Her S.S.The nonlinear SWATH ship motion in large longitudinal waves.International Shipbuilding Progress,1995,Vol.42(431),pp.197-220
    [21]Fang M.C.,Lee M.L.and Lee C.K.Time history simulation of water shipping on ship in large longitudinal waves.Journal of Ship Research,1993,Vol.27(2),pp.126-137
    [22]Fang M.C.and Shyu W.J.The improved prediction for hydrodynamic characters of SWATH ships in waves. Proceedings of National Science Council, ROC, 1994, Vol.18(5), pp.495-507
    [23] Fang M.C. and Her S.S. The simulation of SWATH ship motion with controllable fin in longitudinal waves. International Shipbuilding Progress, 1998, Vol.45(443), pp.283-307
    [24] Fang, M-C; Chiou,, S-C. SWATH ship motion simulation based on a self-tuning fuzzy control. Journal of Ship Research (S0022-4502), 2000, 44(2), pp. 108-119
    [25] Fang M.C. and Chiou S.C. A hydrodynamic model for simulating SWATH ship motions with fuzzy control. International Shipbuilding Progress, 2001, Vol.48(4), pp.277-303
    [26] Fang M.C. The motions of SWATH ships in waves. Journal of Ship Research, 1988, Vol.32(4), pp.23 8-245
    [27] Fang M.C., Lin B.N. and Shyu W.J. The analysis of the effect of stabilizing fin on SWATH ship motion. Journal of SNAME ROC, 1994, Vol13(1),pp.41-56
    [28] Fang M.C. The lateral drift force and moment on a SWATH ship in waves. International Shipbuilding Progress, 1988, Vol.35(402), pp.101-121
    [29] Richard J. Stenson, Full-scale powering trials of the stable semisubmerged platform, SSP Kaimalino. AD-A027193, April 1976
    [30] James A. Kallio Seakeeping trials of the stable semisubmerged platform(SSP Kaimlino). AD-A033226, April, 1976
    [31] Alan D. Sobolewski An investigation of the drag of tandem strut configurations applicable to small waterplane area ships. AD-A031418,May 1976
    [32] R.B. Chapman Hydrodynamic drag measurements on SWATH ship components. AD-784981, July 1974
    [33]L.L.Goldberg and R.G.Tucker,Stability and buoyancy criteria for low waterplane catamarans.Presentation at the 31 st Annual Conference of the Society of Aeronautical Weight Engineers,Inc.Atlanta,Georgia,May 1972,pp.22-25
    [34]S.L.Chuang,J.T.Birmingham and J.F.Anthony Experimental investigation of catamaran cross-structure slamming.AD-A013641,September 1975
    [35]Gilbert Finley Monell Jr.,Automatic control systems for longitudinal motion of semisubmerged ships.AD-752007,September 1972
    [36]Ernest E.Zarnick,Vertical Plane and Roll Motion Stabilization of SWATH Ships.DTNSRDC/SPD 1199-01,September 1986
    [37]毛筱菲.小水线面双体船在波浪中的运动响应预报.船海工程,2005(4):13-15页
    [38]许辉,邹早建.小水线面双体船粘性流数值模拟.船舶工程,2004,26(2):17-19页
    [39]邹早建,罗青山,史一鸣.小水线面双体船阻力预报研究.中国造船,2005,46(1):14-21页
    [40]韩端锋,王庆,黄德波.直斜支柱SWATH的兴波阻力预报.船舶工程,2004,26(4):19-21页
    [41]吴梵,陈志坚,刘巨斌等.小水线面双体船在波浪中的水动力计算.船舶工程,2004,26(1):17-21页
    [42]任鸿.小水线面双体船的波浪动载荷响应.船舶,2003(1):24-51页
    [43]陈志坚,袁建红,叶明.小水线面船搁浅模式及单点搁浅强度计算.中国舰船研究,2006,1(3):20-24页
    [44]史一鸣,蒋志鹏,王文富.小水线面船约束模水动力试验.上海交通大学学报,2003,37(8):1226-1237页
    [45]邹早建,罗青山,徐海祥,史一鸣.SWATH船型及其阻力性能计算.武汉理工大学学报(交通科学与工程版),2002,26(3):300-302页
    [46]韩端锋,王庆,黄德波.直/斜支柱SWATH的兴波阻力预报.船舶工程,2004,26(4):19-21页
    [47]董祖舜,董文才.小水线面双体船(SWATH)耐波性特点及影响因素分析.海军工程学院学报,1995(1):7-15页
    [48]董祖舜,董文才.小水线面双体船纵向运动稳定性的简化判据及分析.中国造船,1994(4):36-48页
    [49]葛纬桢,郭值学.小水线面船的运动稳定性.中国造船,2000,41(3):28-34页
    [50]朱炳泉.小水线面双体船纵向运动稳定性的灵敏度分析.中国造船,2004,45(3):14-23页
    [51]刘志华,董文才,熊鹰.小型高速SWATH船下体型线研究.船舶工程,2004,26(6):4-8页
    [52]程操红,林焰,纪卓尚等.小水线面双体船型线设计方法研究.中国造船,2005,46(2):6-16页
    [53]尹群,姚震球,阳雷军.小水线面双体船全船应力分布的有限元分析.船舶工程,2001(2):9-12页
    [54]尹群,朱安庆,朱克强.小水线面双体船机构优化.船舶工程,2003,25(4):31-33页
    [55]郑莎莎,郑梓荫.小水线面双体船船体结构问题探讨.船舶工程,2005,27(1):12-18页
    [56]陈志坚.小水线面船载荷分析及整船结构强度直接计算.船舶工程,2001(5):8-10页
    [57]陈志坚,杨传武,袁建红.SWATH初步设计阶段振动分析模型研究.海军工程大学学报,2005,17(2):49-52页
    [58]史一鸣.小水线面船姿态控制鳍面积分析研究.船舶工程,2004,26(5):29-32页
    [59]陈正超,李铁骊.小水线面双体船纵向运动控制系统研究.船舶,2006 (2):19-22页
    [60]刘应中,缪国平.船舶在波浪上的运动理论.上海:上海交通大学出版社.1986
    [61]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001
    [62]Thwaites.Incompressible Aerodynamics.Oxford University Press.1960
    [63]Allen,H.J.and E.E.Perkins,A study of effects of viscousity on flow over slender inclined bodies of revolution.NACA Report 1048,1951
    [64]王晓鹏.多目标优化设计中的Pareto遗传算法.系统工程与电子技术,2003,25(12):1558-1561页
    [65]方卫国,师瑞峰.飞机方案多目标优化的Pareto遗传算法.北京航空航天大学学报,2003,29(8):668-672页
    [66]朱浩鹏,李为吉.结构多目标优化非劣解集的遗传算法.西北工业大学学报,2001,19(1):152-155页
    [67]赖红松,董品杰,祝国瑞.求解多目标规划问题的Pareto多目标遗传算法.系统工程,2003,21(5):24-28页
    [68]王跃宣,刘连臣,牟盛静等.处理带约束的多目标优化进化算法.清华大学学报(自然科学版),2005,45(1):103-106页
    [69]孙丕忠,夏智勋,赵建民.约束处理策略对遗传算法优化性能的影响.固体火箭技术,2005,28(4):235-237页
    [70]黄翼卓,王湛,马人乐.一种新的求解约束多目标优化问题的遗传算法.计算机工程与应用,2006(23):47-51页
    [71]苏勇彦,王攀,范衠.一种基于新约束处理方法的遗传算法.计算机工程与应用,2007,43(14):71-86页
    [72]黄冀卓,王湛.基于遗传算法的抗震钢框架多目标优化设计.力学学报,2007,39(3):389-397页
    [73]徐玖平,吴巍.多属性决策的理论与方法.北京:清华大学出版社,2006
    [74]张震,于天彪,梁宝珠等.基于层次分析法与模糊综合评价的供应商评 价研究.东北大学学报(自然科学版),2006,27(10):1142-1145页
    [75]李树丞,胡芳.基于模糊多层次综合评价的绿色供应商选择.湖南大学学报(自然科学版),2006,33(3):137-140页
    [76]于爱兵,王敏,钟利军等.用模糊层次分析法评价陶瓷的磨削加工性.天津大学学报,2006,39(7):842-846页
    [77]苏欣,赵宏涛,袁宗明.基于模糊综合评判法的地下储气库方案优选.石油学报,2006,27(2):125-128页
    [78]滕居特,顾幸生.研究生教育评估的多级变权模糊综合评判.华东理工大学学报(自然科学版),2006,32(9):1121-1125页
    [79]谢俊元,须文波.基于模糊综合评判理论的载人深潜器操纵技巧评价方法.船舶力学,2007,11(5):708-715页
    [80]熊敬一,刘祖源.潜艇操纵性的多级模糊综合评判.中国舰船研究,2007,2(3):30-33页
    [81]N.L.CHINN,G.N.ROBERTS,R.G.SCRACE etal.Mathematical Modeling of a Small Waterplane Area Twin Hulled(SWATH)Vessel.Control,1994.Control'94,Volume 2,International Conference on,vol.2,Mar 1994,pp.1560-1565
    [82]宋春雷,王龙,黄琳.学习理论与鲁棒控制.控制理论与应用,2000,17(5):633-636页
    [83]Nemirovskii A.Several NP-hard problems arising in robust stability analysis.Math.Control Signals Systems,1993,6(1),pp.99-105
    [84]马清亮,胡昌华.基于参数相关Lyapunov函数的鲁棒H_2/H_∞控制.系统仿真学报,2007,19(10):2244-2247页
    [85]滕青芳,范多旺.不确定系统的鲁棒状态反馈区域极点配置.计算技术与自动化,2006,25(1):8-10页
    [86]胡刚,孙继涛.参数不确定广义系统的鲁棒H_∞控制.同济大学学报,2003,31(3):334-338页
    [87]赵新刚,姜哲,韩建达等.模型直升机航向自适应保性能控制.系统仿真学报,2007,19(13):3047-3051页
    [88]俞立.鲁棒控制—线性矩阵不等式处理方法.北京:清华大学出版社,2002
    [89]郭书祥.参数不确定系统鲁棒镇定控制器设计的鲁棒可靠性方法.系统工程与电子技术,2007,29(10):1699-1703页
    [90]徐亚兰,陈建军,王小兵等.具有极点约束的不确定压电柔性结构鲁棒H_∞振动控制.应用基础与工程科学学报,2007,15(3):332-341页
    [91]周武能,苏宏业,褚健.具有方差和极点约束的不确定系统鲁棒H_∞输出反馈控制.控制理论与应用,2007,24(1):103-108页
    [92]Stengel R F,Ray L R,Marrison C I.Probabilistic evaluation of control system robustness.International Journal of Systems Science,1995,26(7),pp.1363-1382
    [93]Tempo R,Bai E W,Dabbene F.Probabilistic robustness analysis:explicit bounds for the minimum number of samples.Proceedings of the 35th IEEE on Decision and control,Kobe,Japan,December,1996,pp.3424-3428
    [94]Qian Wang,Stengel Robert F.Robust control of nonlinear systems with parametric uncertainty.Automatica,2002,38(9),pp.1591-1599
    [95]Bei Lu,Fen Wu.Probabilistic Robust Linear Parameter-Varying Control of an F-16 Aircraft.Journal of Guidance,Control and Dynamics,2006,29(6),pp.1454-1460
    [96]李一,李东海,曾河华.机炉协调控制系统的鲁棒性能分析.清华大学学报(自然科学版),2007,47(5):674-677页
    [97]闪文晓,李东海,陈金莉等.机炉协调系统的鲁棒非线性控制.中国电机工程学报,2007,27(23):80-85页
    [98]冯纯伯,田玉平,忻欣.鲁棒控制系统设计.南京:东南大学出版社.1995
    [99]M.Hirata,K.Z.Liu and T.Mita.Active vibration control of a 2-mass system using μ-synthesis with a descriptor form representation.Control Eng.Practice,Vol.4,No.4,pp.545-552.
    [100]梅生伟,申铁龙,刘志康等.现代鲁棒控制理论与应用.北京:清华大学出版社.2003
    [101]Gary J.Balas,John C.Doyle,Kelth Glover etc.μ-analysis and synthesis toolbox for use with Matlab.User's Guide
    [102]魏巍.Matlab控制工程工具箱技术手册.北京:国防工业出版社.2004