中密度纤维板热压智能控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中密度纤维板生产过程由备料、纤维分离、干燥、施胶施蜡、铺装、热压、裁边等工序组成,其中热压工序是中密度纤维板生产过程中关键工序之一。热压过程各工艺参数的控制对中密度纤维板的质量影响较大,准确地控制热压过程各工艺参数,根据当前热压周期中各主要参数智能地调节热压过程,是最终生产出合格的产品、提高产品质量、提高生产经济效益的一个重要措施。本文在深入探讨热压过程中板坯成型的内在机理的基础上,根据生产工艺要求,以智能控制算法为核心,利用可编程控制器构成了基于现场总线的分布式智能控制系统,对中密度纤维板的各个生产过程进行分别控制,集中监控,以提高生产效率和产品质量。
     主要研究了如下内容:
     1、着重研究了中密度纤维板热压成型过程中内部热量和水分传递的机理、被压过程中板坯的物理力学行为及其变迁过程的机理、剖面密度分布形成及其变迁的机理,在总结前人研究成果的基础上,通过理论分析,根据在实际生产线上取得的实验数据,建立了板坯内热量传递及其温度分布的数学模型、水分传递及其含水率分布的数学模型、受压板坯的物理力学行为变迁及其板坯本构关系(即受压板的应力应变规律)的数学模型、纤维板剖面密度分布(VDP)形成的数学模型。
     利用以上模型创造性地提出了准确计算热压时间的方法,并可以之预测产品的密度分布情况,为热压工艺的设计和进一步有效控制热压过程提供了理论依据。
     2、初次在中密度纤维板生产的热压过程中运用了模糊PID调节的智能控制手段,实现对热压压力的模糊PID调节,按照模糊规则给出其PID调节参数,并结合可编程控制器(PLC)实现对热压过程的优化控制。初步尝试了基于板材密度的闭环过程控制,突破了以往完全根据经验按照设定工艺曲线控制热压过程的工艺流程。
     3、尝试了使用先进的γ、β射线等检测技术实现对纤维板成板分层密度的实时在线检测;建立了基于PROFIBUS现场总线技术的分布式智能控制系统(DCS),采用现场总线技术通过一定的配置组态构成了控制网络,实现中密度纤维板生产线在生产控制上的离散化、网络化和智能化;采用PLC(可编程控制器)作为现场监控级,对生产过程涉及的各个工段及其控制参数进行基于智能控制算法的现场调节;根据输入输出点数的多少进行PLC的硬件组态并编写了PLC的热压控制程序;利用组态软件WINCC编写了上位机监控的人机界面,实时显示各工段的技术状况,实现工艺曲线的设定和显示。
Medium-density Fiberboard's production involves the processes of materials preparing, textile fiber separation, drying, gluing, waxing, forming, hot-pressing, side-cutting, there among, hot-pressing is one of the most crucial processes in the production and its parameters closely interrelate with the quality of medium-density fiberboard. Accurately controlling the course of the processes parameters and intelligent regulating, the hot-pressing procession according to the principal parameters in current cycle can be qualified to produce the final product, which is also an important economic measurement to improve product quality and increase productivity. Depended on the in-depth study of internal mechanism for semi-finished fiberboard forming in hot-pressing processes, and oriented by algorithm and intelligent cybernetics, this paper studies the Distributed Intellectual Controlled System based on fieldbus composed by Programmable Controller while the system improves the production efficiency and product quality through the processes respectively controlling and centralized monitoring. Main results and conclusions are as follows:
     1. The paper chiefly discusses the transfer mechanism of the interior heat and humidity, the physical behavior of the mat and mechanism of the transferring course during hot-pressing, and the density distribution and transformation of fiberboard along the thickness direction. Based on the researching achievements before and theoretical analysis, Guided by the theory and experimental data from producing line, the mathematic models are established for heat transfer and temperature distribution inside the board, for the humidity transfer and humidity content distribution of the board, for the physical behavior transformation and relationship between stress and of the stressed board, and for the formation of VDP of fiberboard.
     Through these models, the way to accurately calculate hot-pressing time was proposed, and the density distribution of the product can also be forecasted, which providing theoretical basis for the hot-pressing's design and further control.
     2. Distributed Intellectual Controlled System of fuzzy PID regulation was designed and adopted in the process of medium-density fiberboard hot-pressing for the first time, which realized the fuzzy PID regulation for hot-pressure, provided the PID adjusting parameters according to the vague rules, and achieved the optimized controlling for hot-pressing associated with PLC. Another preliminary attempt, closed-loop process control which based on the density of fiberboard, becomes the breakthrough for substituting the former technique's curves experienced-oriented processing circuit.
     3. Advanced ultrasonic test technology was preliminary tentatively used to accomplish the real-time testing for different layers of MDF. Based on PROFIBUS technology, a distributed intelligent control system was established to achieve a production process of Medium-density Fiberboard which provides discretization, network and intelligence of producing line for MDF in the term of producing line control. PLC was served as the control core in site-monitored level and used to real-timely adjust every process and controlling parameters of the production process, according to the intelligent control algorithm. The hardware was configurated for PLC and hot-pressing control program is developed according to the input and output counts. Human-machine interactive monitoring interface was programmed based on host computer utilized WINCC configuration software to show the real-time technical situation of each section and achieving the setup and display of the technology curve.
引文
1.王恺.木材实用大全(纤维板卷)[M].中国林业出版社,2002.10
    2.王国超.影响中密度纤维板热压质量的主要因素[J].林业科技开发,2001年第15卷第6期
    3.王国超主编.《纤维板生产技术》[M].北京:中国林业出版社,2001
    4.武海鹰等.分布式人工智能与多智能体系统研究[J].微机发展,2004年第3期
    5.王怀明,吴泉源,高洪奎.基于Agent的分布式计算环境[J].计算机学报,1996 10
    6.郭森民.刨花板、中密度纤维板生产技术的发展[J].林产工业,2001年第4期
    7.满文焕,兴丰.中密度纤维板生产技术发展趋势[J].北京林业大学学报,2002年第2期
    8.景林.可编程序控制器网络在纤维板生产中应用研究[J].福建林学院学报,2000.20.9(3)
    9.景林,郭建钢.纤维板热压机微机控制器的研究[J].林业科技开发,1994年第2期
    10.杨承.人造板热压机中电液控制系统的应用[J].木材工业,2000年11月
    11.郑全连.用可编程控制器实现压机热压曲线的设定及存储[J].木材工业,1995年9月
    12.徐咏兰.中密度纤维板制造[M].中国林业出版社
    13.陆仁书.纤维板制造学[M].中国林业出版社
    14.刘曙光.现场总线技术的进展与展望[J].自动化与仪表,2000 15(3)
    15.胡晓明.用PLC实现的一种集散型控制系统[J].矿业自动化,2000(4),22-23
    16.陈新建,林建.刨花板热压成型生产线分布式控制系统[J]微计算机和信息,2000年第5期
    17.李凯夫,高振忠.21世纪初期我国人造板工业技术创新5议[J].林业科技开发,2001,1
    18.王志新,白国振主编.现代可编程控制器高级开发与应用技术[M].上海理工大学
    19.于克勤.计算机与PLC对冻干机的控制[J].测控技术,1999年第2期
    20.宁华等.可编程序控制器网络通信技术及其应用研究[J].测控技术,1999年第2期
    21.刘金能.计算机与PLC的通讯格式利实现方法[J]机床与液压,1999年第4期
    22.汪晓光,孙晓瑛等.数据区共享技术用于PLC连网[J].测控技术,1999年第6期
    23.黄继昌等.传感器工作原理及应用实例[M].人民邮电出版社
    24.朱铭琳.简论人工智能的发展前景[J].运城学院学报,2003年6月第3期
    25.吴世欣,刘彦青.中密度纤维板干法生产线的技术改造[J].林业机械与木工设备,2000.
    26.张帝树,李启岭等.刨花板板坯含水率及其梯度对热传递速度的影响.林产下业,1993,20(4):9-11
    27.Hansgerg Soine.促进中密度纤维扳发展的新工艺[J].人造板通讯,2000.
    28.饶久平.降低中密度纤维析砂削量的措施[J].东北林业大学学报,2000.
    29.胡育辉.短周期速生桉树在中密度纤维板生产中的应用研究[J].建筑人造板,2000.
    30.杜官本,杨忠,黄伟.中密度纤维板板坯表面增湿处理[J].木材工业,2000.
    31.毕见勇.“入世”对中密度纤维板行业的影响[J].中国林业企业,2000.
    32.贾晋民,张荣怀.湿法纤维板改干法中密度纤维板专利技术的实施成果.林产工业,2000.
    33.李光沛,张忠明,于志明.我国干法中密度纤维板生产中亟待解决的几个技术问题[J].林产工业.2000年04期
    34.樊世民,现场总线和集散型控制系统[J].工业仪表与自动化装置,2000年02期
    35.王俊松,崔世钢.Multi-Agent技术及应用[J].计算机工程与应用,2003,18
    36.焦文品,史忠植.多主体间的协作过程研究[J].计算机研究与发展,2000,8
    37.黄敏,佟振声.分布式多Agent系统的研究[J].电力情报,2002,№1
    38.项后军,周昌乐.人工智能的前沿——智能体(Agent)理论及其哲理[J].自然辩证法研究,2001年第10期
    39.孙瑜,夏幼明,李志平.多Agent系统模型及其应用[J].计算机工程与应用,2003,12
    40.郭军,基于分布式人工智能的知识组织[J].情报杂志,2004年第10期
    41.李海刚,吴启迪.多Agent系统研究综述[J].同济大学学报,2003年6月第6期
    42.潘淑清,周玉申.中密度纤维板工艺设计[M].华南理工大学出版社,2004
    43.保昆雁,中密度纤维板热压工艺的研究[D].东北林业大学
    44.[日]自动化技术编辑部编.张旦华,肖盛怡译.传感器应用.中国计量出版社
    45.胡学林.可编程控制器教程(基础篇)[M].电子工业出版社,2003.11
    46.马西秦.自动检测技术[M].机械工业出版社,2000.5
    47.张万忠,刘明芹.电器与PLC控制技术[M].化学工业出版社,2003.9
    48.何泽龙.2005中国中密度纤维板工业调查报告[J].林产工业,2006,3-5.
    49.韩少杰.MDF中密度纤维板工艺纵横谈[N].中国人造板,2007-7.
    50.肖小兵.我国中密度纤维板发展趋势[J].人造板通讯,2004,第一期:6-10.
    51.陈水合.我国中高密度纤维板业发展迅速[N].中国绿色时报,2004-10-28.
    52.沈隽.木材加工技术[M].北京:化学工业出版社,2005:235-270.
    53.邵贝贝.嵌入式实时操作系统(第二版)[M].北京:中国电力出版社2001:351-353.
    54.杨辉.模糊控制技术应用[M].南昌:江西科学出版社,1997:13-25.
    55.刘曙光等.模糊控制技术[M].北京:中国纺织出版社 2001:63-80.
    56.宋大鹤.Fuzzy控制器数学模型鹤算法分析[M].数学模型.1983:35-41.
    57.王立新等.模糊系统与模糊控制教程[M].北京;清华大学出版社 2003:70-80.
    58.沈元隆.信号与系统[M].北京:人民邮电出版社 2006:67-162.
    59.章卫国等.模糊控制理论与应用[M].西安:西北工业大学出版社,2000:41-60.
    60.房汝州.最新国内外阀门标准大全[M].西安:中国知识出版社,2006:250-260.
    61.李国勇.智能控制及其Matlab实现[M].北京:电子工业出版社,2005:252-256.
    62.薛定宇.反馈控制系统分析与设计—MATLAB语言应用[M].北京:清华大学出版社,2000:250-255.
    63.张乃尧.神经网络与模糊控制[M].北京:清华大学出版社,1998:166-216.
    64.徐咏兰,周梅剑,华毓坤.喷蒸热压刨花板断面密度分布的研究[J].林产工业,1998,25(2):p9-11
    65.徐长研,华毓坤.喷蒸真空热压技术[J].林产工业,1999,26(2):p20-22
    66.唐星华主编.木材用胶粘剂[M].化学工业出版社,2002
    67.赵仁杰,喻云水.竹材人造板工艺学[M].中国林业出版社,2002.
    68.涂平涛.建筑人造板的市场前景及性能要求[J].林产工业,2002,29(2):7-11
    69.杜官本,杨忠,黄伟.中密度纤维极板坯表面增湿处理[J].木材工业.2000,14(2):3-5
    70.孙光瑞.刨花板板坯表面增湿处理一缩短热压周期的有效途径[J].木材工业,1995,9(5):8-12
    71.黎爱纯.中密度纤维板导热系数的测定[J].林产工业,1997,24(2):27-30
    72.约翰.F.肖著;肖亦华,滕通廉,郭焰明译.木材传热传质过程[M].中国林业出版社,1989:165-189
    73.大沼加茂也.木材内部温度的简易计算法(第1报).[日]木材工业,Vol.7,No,2,1952:28-31
    74.渡边治人著;张勤丽,张齐生,张彬渊译.木材应用基础[M].上海科学技术出版社,1986:p239-263
    75.成俊卿主编.木材学[M].中国林业出版社,1985:p489-506
    76.A.J.查普曼著;何用梅译.传热学[M].冶金工业出版社,1984,36-66
    77.王补宣著.工程传热传质学[M].科学出版社,1982:p1-31
    78.张正荣编,传热学[M],人民教育出版社,1982:p1-4
    79.钱壬章,俞吕铭,林文贵编.传热分析与计算[M].高等教育出版社,1987:p18-19
    80.F.FP.科尔曼,W.A科泰著:江良游,朱政贤,戴澄月等译.木材学与木材工艺学原理(木材学).中国林业出版社,1991:p 226-242
    81.刘应,蔡智勇.刨花板热压过程中热传导的几个问题[J].林业科技开发,192(4):43-45.
    82.刘正添,王洁瑛,于辉.影响刨花极热压传热过程因素的研究[J].北京林业大学学报,1995
    83.谢力生,喻云水,曹建文等.常规热压无胶干法纤维板热压传热的研究[J].林产工业,2003,30(1):26-28,42.
    84.谢力生,赵仁杰,张齐生.常规热压法千法纤维板热压传热的研究—理想条件下极坯中心层达到胶粘剂固化温度所需时间的模型[J].中南林学院学报,2002(2):92-95.
    85.王培元.白杨刨片横纹压缩流变性能[J].林业科学,1989,25(6):522-527
    86.王培元.刨花在压缩力下变形状态的研究[J]..林业科学,1989,28(5):415-421
    87.张宏健,赵立.PF-MDF剖面密度分布特征的研究[J].北京林业大学学报,1991,13(1):66-74
    88.于志明,吴娟,陈天全.人造板热压过程中板坯内部环境的研究进展[J].北京林业大学学报,2004(5):80-84
    89.张正伟.高频热压下刨花极的温度场[J].林业科学,1983,19(3):60-63
    90.Johnson S E,Geimer R L,Kamke F A 著;米益民译.刨花板喷蒸热压研究[J].湖南人造板,1996,6(2):45-47
    91.Harinath.Design and tuning of fuzzy PID controllers for multivariable process systems[D].Memorial University of Newfoundland(Canada).2007.
    92.R.M.Tong.Syntheiss of Fuzzy Models for Industrial Process[M].Int.Gen.Syst.1978:143-162.
    93.L.A.Zadeh.Fuzzy Sets.Information and Control[M].1965:338-353.
    94.Kevin M.Passino.Fuzzy Control[M].北京:清华大学出版社,2001:1-8.
    95.W.J.M.Kickert,et.Application of a Fuzzy Controller in a warm water Plant[M].Automat.1976:301-308.
    96.M.Sugeno,et.An Experimental Study on Fuzzy Parking Control Using a Model Car[M].in Industrial Applications of Fuzzy Control.Amsterdam:North Holland.1985.
    97.Xiaodong Wang.Localized density effects on fastener holding capacities in wood-based panels[J].Forest Products Journal,2007,3-5.
    98.Bader,F.P.Tappi-j.Re-engineering the distributed control system.The Technical Association of the Pulp and Paper Industry.Mar 1995.v.78(3) p.41-47.
    99.Norcross.Distributed control system controls demineralized water plant.The Technical Association of the Pulp and Paper Industry.Nov 1992.v.75(11) p.156-163.
    100.Matsuda-T,Yoichi-T.Manufacture of medium density fiberboard from Malaysian fast growing tree species and bamboo.Bulletin-of-the-Forestry-and-Forest-Products-Research-Institute,-Ibaraki.1995,No.369,177-187;9.
    101.Minato-K,Seto-Y.Formaldehyde treatment of medium-density fiberboard in the low temperature range I. Reaction kinetic aspects.Mokuzai-Gakkaishi=Journal-of-the-Japan-Wood-Research-Society. 1995,41: 3,318-323; 10 ref.
    
    102. Sturgeon-MG, Lau-NM, Maloney-TM .Continuous pressing medium density flbreboard at Nelson Pine Industries New Zealand. Proceedings of the twenty-third Washington State University International Particleboard-Composite Materials Symposium, April 4, 5, 6, 1989.1989, 179-185; 4 ref.
    
    103. Long-PJ,Maloney-TM.Continuous pressing of medium density fibreboard at Fibron Industries [Australia]. Proceedings of the twenty-third Washington State University International Particleboard-Composite Materials Symposium, April 4, 5, 6, 1989. 1989, 187-199.
    
    104. OMRON 公司.SYSMAC C200H-LK401/C500-LK009-Vl,No.W135-El-2A
    
    105. Wallin-G .Cornerstones of an MDF plant investment. Wood-News. 1994, 4: 1, 35-38.
    
    106. Spelter-H. Capacity, production, and manufacturing of wood-based panels in North America.General-Technical-Report -Forest-Products-Laboratory,-USDA-Forest-Service. 1994,FPL-GTR-82, 17; 4 ref.
    
    107. Geci-F; Sievers-H. Distributed control system for fermentation processes in production and research. Chem.Tech.(Heidelberg); (1983) 12, 7, 37-40
    
    108- Zhu-WeiXing; Mao-HanPing .Research on design of intelligent greenhouses using microcomputer distributed control system. Transactions of the Chinese Society of Agricultural Engineering. 1999, 15: 4, 162-166.
    
    109. Bader,-F.P. Re-engineering the distributed control system. Tappi-journal (USA). (Mar 1995). v.78(3)41-47.
    
    110. Edwards,-L.; Thompson-J. Implementing a distributed control system in a greenfield mill.Tappi-journal (USA). (Feb 1989). 71-73.
    
    111. Smith-PM,MaIoney-TM (ed.). Medium density fiberboard (MDF) and particleboard markets in Taiwan and South Korea. Proceedings of the twenty-third Washington State University International Particleboard-Composite Materials Symposium, April 4, 5, 6, 1989. 223-233;
    
    112. Pattu-S.A review of distributed control system at NFCL process plants. Fertilizer-News. 1995,40: 6, 55-59.
    
    113. Hindriks K V. Formal Semantics for an Abstract Agent Pro2 gramming Language[A]. Singh M P ,Rao A S ,Wooldridge MJ1 Intelligent Agent IV[C]. LNAI ,1999. 215 - 229.
    
    114. Dalton S., Ph.D. Intelligent control of patient-ventilator synchrony[D]. The University of Alabama in Huntsville.2007.
    
    115. Kamke.FA, M.P.Wolcot, Blacksburg. VA.USA. Fundamentals of flake board manufacture:wood- moisturer elationships. Wood Science and Technology, 1991
    
    116. Kamke.EA, L. J.Casey. a Gas pressure and temperature in the mat during flakeboard manufacture. Forest Products Joumah 1988,38(3):41-43
    
    117. Kamke.F.A,L. J.Casey.b Fundamentals of flakeboard manufacture: internal -matconditions.Forest Products Journal, 1988,3 8(6):3 8-44.
    
    118. Kamke,F.A,L.J.Casey. Gas pressure and temperature in the mat during flakeboard mnufacrure.Forest P roducts Journal, 1988,38(3):41-43.
    
    119. Lang,E.M,M .P.WoIcotptl.A m odelfo rv iscoelasticc onsolidation of wood-strandm ats.Part L Structural characterization viaMonte Carlo simulation. Wood and Fiber Science 1996, 28(1): 100-109.
    120.L ang.E.M,M.P.Wolcot.p.tl.A model foriscoelasticc on solidation of wood-strand mats.Part 11.Statics tress-strain behaviour of them at.Wood and Fiber Science,1996,2 8(3):369-479.
    121.Lenth,C.A,F.A.Kamke.Equilibrium moislure content of wood in high-temperature pressured envir nments.Wood and FiberScience,2001,33(1):104-118.
    122.Wolcot,M.P,F.A.Kamke,D.A.Dillard.Fundamentals of flakcboard manufacture:viscoclastastic behaviour of the wood component.Wood and Fiber Science,1990,22(4):345-361.