C5馏分分离新工艺的基础研究和萃取剂的选择与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对线性溶剂化能关系进行了分析介绍,也介绍了采用溶剂化能关系得到溶质溶剂特性参数的方法步骤,并将这些参数用于萃取精馏萃取剂的选择与优化;也通过线性溶剂化能关系式建立无限稀释活度系数预测模型,取得了一定的预测精度;将通过上述方法初选的溶剂进行了常压汽液平衡的测定研究,通过实验研究选定含水4%(占NMP质量)的N-甲基吡咯烷酮溶液做为C5分离的萃取剂,测定了大量N-甲基吡咯烷酮与C5组分的二元平衡数据,并进行关联计算;以异戊二烯为目标产物在实验室规模的精馏塔内进行了C5分离的实验研究,取得大量塔内数据;通过选用合适的热力学模型,采用ASPEN中RadFrac模块对分离过程进行模拟研究,通过实验与模拟相结合,建立了C5分离的新工艺,为将来的工业化打下了坚实的基础。主要研究内容如下:
     1.对线性溶剂化能关系进行了分析介绍,并详细介绍如何通过线性溶剂化能关系得到的溶剂溶质的特性参数π~*、α和β,它们分别代表溶质溶剂的偶极诱导作用、氢键酸度和氢键碱度。并将这些数据用于萃取精馏中萃取剂的选择和优化。
     2.运用线性溶剂化能关系提出了预测无限稀释活度系数的模型,用大量无限稀释活度系数的实验值回归出模型中的参数,最后得出用溶质溶剂特性参数值预测无限稀释活度系数的经验模型式。
     3.以混合C5中的正戊烷和异戊二烯为分离的代表化合物,运用上述理论进行了萃取剂的定性选择和优化。将萃取剂的选择范围集中在7种溶剂中。
     4.建立了一套气液平衡装置,并对实验装置进行了实验检验,结果表明此装置可用于气液平衡的测定。运用上述装置运用理论选出的7种溶剂进行分离性能的实验研究,根据实验结果和溶剂综合性能,选定N-甲基吡咯烷酮为C5分离的萃取剂;并对N-甲基吡咯烷酮进行了优化实验研究,结果表明含水4%(占NMP的质量)的混合溶剂对于C5分离效果最佳。
     5.对C5中的主要组分和溶剂做了常压下气液平衡的测定研究,所测数据都通过了热力学一致性检验,并用NRTL-RK方程对实验数据进行了关联,得到了C5组分与溶剂二元交互作用参数和非随机性参数,为后边的工艺计算取得了大量基础数据。
     6.以异戊二烯为目标产物,在实验室规模的精馏塔内进行了C5分离的实验研究。实验分两步进行:第一步采用萃取精馏分离戊烷和单烯等轻组分,实验分别研究了萃取剂用量,回流比等操作条件对分离效果的影响,并取得大量实际塔内的实验数据;第二步分离重组分时采用两种方法进行了实验研究,即萃取精馏和普通精馏方法,研究了各种操作条件对分离效果的影响。又对第二步的两种分离方法进行了比较,结果表明,采用普通精馏效果更好,且分离工艺比较简单。
     7.通过ASPEN中RadFrac模块首先对实验条件进行了模拟研究,结果表明对于第一步萃取精馏的模拟,热力学模型采用NRTL-RK方程,气相采用RK方程,液相采用NRTL方程,采用的模型参数大都由所测和文献数据回归得到,只有个别采用ASPEN自带参数或预测得到,模拟数据与实验数据吻合较好,此模型可用于第一步萃取精馏的模拟;第二步普通精馏,热力学模型采用Peng-Robinson方程,模拟数据与实验结果吻合较好。结果表明RadFrac模块可用与C5分离工艺的模拟优化研究。
     8.通过模拟研究,得到分离各步的最佳塔高,进料位置和各种操作条件;并进行了全流程的模拟优化得到聚合级的异戊二烯的各种工艺参数;通过模拟研究对分离工艺进一步深化,得到了从C5中分离出环戊烯和间戊二烯的优化工艺条件,对工艺经济性进一步优化,给过程工业化提供了依据。
Linear solvation energy relation was firstly introduced in the paper, and the method and step of gaining the special parameters of solvent and solute were introduced in detail, and these special parameters were used to selection and optimization of extractive agent in extractive distillation. The model of predicting activity coefficient at infinite dilution was established by linear solvation energy relation. By the above theory, several candidate solvents were selected to separate C5 fraction, and by experiment of vapor-liquid phase equilibrium at atmosphere pressure, the mixture of N-methyl-pyrrolidone including 4% water was used extractive agent of separating C5 fraction. Then binary vapor-liquid phase equilibrium of the some compound in C5 fraction and N-methyl-pyrolidone were determined at atmosphere pressure and correlated by NRTL equation. Isoprene being objective compound, experiments were operated in the laboratory-scale column; the processes were simulated by RadFrac model in ASPEN PLUS. And by the combination of experiment and simulation, the new process of separation of C5 was established. In the paper, the main works were as follows:
     1. Linear solvation energy relation was firstly introduced, the special parameters of solvent and solute which wereπ~*、αandβwere also introduced, the scale ofπ~* described the ability of solvent-solute action by dipolarity and polarization; Theαscale of solvent/solute HBD (hydrogen-bond donor) acidity described the ability of solvent/solute to donate a proton in a solvent-to-solute hydrogen bond; theβscale of solvent/solute HBA (hydrogen-bond acceptor) basicity described the ability of solvent/solute to accept a proton in a solvent-to-solute hydrogen bond. By these special parameters extractive agent was selected and optimized qualitatively. 2. The model of predicting activity coefficient at infinite dilution was
     established by linear solvation energy relation, and the unknown parameters in the model were gained by linear correlation of abundant experimental values of activity coefficients at infinite dilution.
     3. The mixture of n-pentane and isoprene was model mixture in C5 fraction, by above selection and optimization of extractive agent theory, 7 kinds of solvents were used as candidate solvents.
     4. The vapor-liquid equilibrium equipment was set and was checked by literature values, the results showed the equipment could be used to determine vapor-liquid equilibrium at atmosphere pressure. The mixture of n-pentane and isoprene was used model mixture of C5 fraction, and effect on separation of the mixture of 7 solvents were studied by experiment, by combination of separation effect and other characteristics such as toxicity, stability, and so on, N-methyl-pyrrolidone was selected as extractive agent of the separation process of C5 fraction. The optimization of N-methyl-pyrrolidone was studied by vapor-liquid equilibrium experiment, and the result showed the mixture of N-methyl-pyrrolidone including 4% water could be better extractive agent than others.
     5. Vapor-liquid equilibrium of the important compound and N- methyl-pyrrolidone at atmosphere pressure was performed, and all values passed the thermodynamics consistency test by Herington method. These values also correlated by NRTL and RK equations; the binary interaction parameters and nonrandom factors in the NRTL equation were gained. These datum were the base of simulation.
     6. Isoprene being objective output, the experiments were performed in the laboratory-scale column. The process was two steps: the first step was extractive distillation, in the step some operation conditions were studied and gain a lot of experimental values; in the second step, ordinary distillation and extractive distillation were performed, respectively, some operation conditions were performed and a lot of data were gained. By comparing the separation effect of two method in the second step, the ordinary distillation was used because separation effect and simplicity.
     7. The experimental conditions were simulated by RadFrac in ASPEN PLUS, and the thermodynamics models were NRTL and RK equation in liquid phase and vapor phase, respectively, in extractive distillation process while the model was PR equation in the ordinary distillation, the calculated values agreed with the experimental values. RadFrac was used to simulate and optimize the separation processes of C5 fraction by above thermodynamics models.
     8. By simulation, the optimal operation conditions were gained in every step in the separation process, and polymerization-class isoprene was gained by the process. And to improve the economy of process, the process was studied by simulation, 99% cyclopentene and 1, 3-pentadiene were gained by continuous separation process. All were the base of the process industrialization.
引文
【1】 张旭之,马润宇,王松汉,谢立凡,碳四碳五烯烃工学,化学工业出版社, 1998:588
    【2】 吴海君,郭世卓,裂解碳五综合利用发展趋势,当代石油 石化, 2004, 12(6):25-28
    【3】 李省歧,国内外碳五资源利用综述,山东化工,2000,29(5):12-25
    【4】 M. Morgan, C5 hydrocarbons and derivatives: New opportunities Chemistry & Industry 1996, 9:645-648
    【5】 韩钟淇,裂解碳五分离与利用,精细石油化工,1995,3:48-55
    【6】 增强我国碳五资源的利用率,国内外石油化工快报,2003,33(3):26-27
    【7】 于豪瀚,杜春鹏,高建翼等,采用前脱除炔烃工艺的裂解碳五馏分的分离方法
    【P】CN1056823C,2000-09-27
    【8】 于豪瀚,杜敏仙,杜春鹏等,液相进料萃取精馏法分离石油裂解碳五馏分的方法
    【P】CN1055281C,2000-08-09
    【9】 杜春鹏,于豪瀚,杨德忠等,一种裂解碳五馏分的分离方法
    【P】CN1053881C,2000-06-28
    【10】 M. Benedict, R. L. Runin, Extractive and azeotropic distillation, Trans. Am. Inst. Chem. Eng, 1945,41:353:370
    【11】 F. M. Lee, J. C. Gentry, Don’t overlook extractive distillation, Chem. Eng. Prog., 1997, 93(10):56-64
    【12】 L. E. Colburn, LP-gas terminal design reduces Oil and Gas Journal, 1976, 74:47-51
    【13】 F. M. Lee, Extractive distillation: separating close-boiling-point components, Chem. Eng. 1998 (9):112-121
    【14】 时钧,汪家鼎,余国琮等,化学工程手册,北京:化学工业出版社,1996
    【15】 E. J. Pretel, P. A. Lopea, S. B. Bottini, Computer-aided molecular design of solvents for separation processes, AICHE, 1994, 40(8):1349-1360
    【16】 C. J. Schult, B. J. Neely, R. L. Robinson Jr. etal, Infinite-dilution activity coefficients for several solutes in hexadecane and n-methyl-2-pyrrolidone(NMP): experimental measurements and UNIFAC predictions, Fluid Phase Equilibria 2001, 179:117-129
    【17】 M. Van Winkle, Distillation. New York: McGraw-Hill,1977.
    【18】 S. O. Momoh, Assessing the accuracy of selectivity as a basis for solvent screening in extractive distillation process, Sep. Sci. Tech., 1991, 26(5):729-742
    【19】 R. H. Ewell, J. M. Harrion, L. Berg, Azeotropic distillation, Ind. Eng. Chem., 1944,36(10):871-875
    【20】 L. A. Robbins, Liquid-liquid extraction: a pretreatment process for wastewater, Chem. Eng. Prog., 1980, 76(10):58-61
    【21】 D. P. Tassions, Azeotropic and extractive distillation, American Chemical Society,1972, Washington, D. C.
    【22】 J. H. Hildebrand, R.L. Scott, J. Regular Solutions, Prentice-Hall, Englewood Cliffs, N.J., 1962
    【23】 G.. M. Wilson, Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing , J. Am. Soc. 1964, 86(2):127-130
    【24】 Renon H., Pransnitz J.M., Local Composition in Thermodynamics Excess Functions for Liquid Mixtures, ALCHE J.1968,14:135-144
    【25】 Abrams D.S., Prausnitz J.M., Statistical thermodynamics of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems, AICHE J., 1975, 2191):116-128
    【26】 Derr, E.L., Deal, C.H., Distillation Sect.3 P.40, Brighton, England, Int. Conf. Distillation,Sept,1969
    【27】 Fredenslund, A., Jones R.J., Prausnitz, J.M., Group-contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, AICHE J. 1975, 21:1086-1099
    【28】 B.G. Kyle, D.E. Leng, Solvent selection for extractive distillation, Ind. Eng. Chem.1965, 57(2)43-48
    【29】 R.F. Weimer, J.M. Prausnitz, Screen extraction solvents this way, Hydrocarbon Process. Petrol. Refiner. 1965,44(9):237-242
    【30】 J.G. Helpinstill, M. Van Winkle, Prediction of infinite dilution activity coefficients for polar-polar binary systems, I&EC Process Design and Development, 1968,7(2):213-220
    【31】 Eckert C.A., Newman B.A., Nicolaides G.L. Long T.C. Measurement and Application of Limiting Activity Coefficients, AICHE J, 1981,27(1):33-40
    【32】 Hsieh C.K., PH.D. Thesis, University of Illinois, Urbana, IL, 1973
    【33】 B.L.Krager, L.R. Snyder, C. Eon, An expanded solubility parameter treatment for classification and use of chromatographic solvents and adsorbents, Journal of Chromatography,1976,125:71-88
    【34】 R. Tijssen, H.A.H. Billiet, P.J. Schoenmakers, Use of the solubility parameter for predicting selectivity and retention in chromatography, Journal of chromatography,1976,122:185-203
    【35】 C.M. Hansen, J. Paint. Technol., 1967,39:505-511
    【36】 E.R. Thomas, C.A. Eckert, Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC, Ind. Eng. Chem. Process Des. Dev. 1984, 23:194-209
    【37】 W.J. Howell, A.M. Karachewski, K.M. Stephenson. Et al, An improved MOSCED equation for the prediction and application of infinite dilution activity coefficients, Fluid Phase Equilibria, 1989,52;151-160
    【38】 M.J Hait, C.L. Liotta, C.A. Eckert, SPACE predictor for infinite dilution activity coefficients, Ind. Eng. Chem. Res., 1993, 32;2905-2914
    【39】 C.B. Castells, P.W.Carr, Comparative study of semitheoretical models for predicting infinite dilution activity coefficients of alkanes in organic solvents, Ind. Eng.Chem.Res. 1999,38:4104-4109
    【40】 刘国杰,黑恩成,史济斌,一个新的溶解度参数,化工学报,1994,45(6):665-672
    【41】 徐云蕾,俞春芳,黑恩成,刘国杰,液体内压的预测和新溶解度参数值,化工学报,2000,51(6):407-413
    【42】 俞春芳,黑恩成,刘国杰,聚合物的溶剂选择与新的两维溶解度参数,化工学报,2001,52(4):287-294
    【43】 俞春芳,黑恩成,刘国杰,液体和聚合物的内压预测,高校化学工程学报,2004,18(2):135-140
    【44】 肖国军,史济斌,刘国杰,液体聚合物的内压与状态方程,化工学报,2004,55(4):526-530
    【45】 C.M. Hansen, 50 years with solubility parameters----past and future, Progress in organic coatings 2004,51:77-84
    【46】 T.J. Sheldon, C.S. Adjiman, J.L. Cordiner, Pure component properties from group contribution, Fluid Phase Equilibria, 2005,(231):27-37
    【47】 A. Fredenslund, R.L. Jones, J.M. Prausnitz, Group contribution estribution of activity coefficients in nonideal liquid mixtures, AICHE J., 1975,21(11):1086-1099
    【48】 S. Jorgensen, B. Kolbe, J. Gmehling, P. Rasmussen, Vapor-liquid equilibria by UNIFAC qroup contribution. Revision and extension. Ind. Eng. Chem. Process DES. Dev., 1979, 18(4):714-722
    【49】 J. Gmehling, P. Rasmussen, A. Fredenslund, Vapor-liquid equilibria by UNIFAC qroup contribution. Revision and extension. 2. Ind. Eng. Chem. Process DES. Dev., 1982, 21(1):118-127
    【50】 E.A. Macedo, U. Weidlich, J. Gmehling, P. Rasmussen, Vapor-liquid equilibria by UNIFAC qroup contribution. Revision and extension. 3. Ind. Eng. Chem. Process DES. Dev., 1983,22(4):676-678
    【51】 D. Tiegs, J. Gmehling, P. Rasmussen, A. Fredenslund. Vapor-liquid equilibria by UNIFAC qroup contribution. Revision and extension. 4. Ind. Eng. Chem. Process DES. Dev., 1987, 26(1):159-161
    【52】 T. Magnussen, P. Rasmussen, A. Fredenslund. UNIFAC parameter table for prediction of liquid-liquid equilibria, Ind. Eng. Chem. Process DES. Dev., 1981, 20(2):331-339
    【53】 J. Gmehling, T.F. Anderson, J.M. Prausnitz, Solid-liquid equilibria using UNIFAC, Ind. Eng. Chem. Fundam. 1978,17(40:269-273
    【54】 B. Sander, S. Jorgensen, P. Rasmussen, Gas solubility calculations by UNIFAC, Fluid Phase Equilibria, 1983, 11:105-126
    【55】 T. Jensen, A. Fredenslund, P. Rasmussen, Pure-component vapor pressures using UNIFAC group contribution. Ind. Eng. Chem. Fundam., 1981, 20(3):239-246
    【56】 Kikic I., Alessi P., Rasmussen P., Fredenslund A., On the combinatorial part of the UNIFAC and UNIQUAC models, Canadian Joural of Chemical Engineering, 1980,58(2):253-258
    【57】 Larson B.L., Rasmussen P., Fredenslund A., A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing, Ind. Eng. Chem. Process DES. Dev., 1987, 26(11)2274-2286
    【58】 Hooper H., Michel S., Prausnitz J.M., Correlation of liquid-liquid Equilibria for some water-organic liquid systems in the region 20-250℃, Ind. Eng. Chem. Process DES. Dev., 1988, 27(12): 2182-2187
    【59】 Weidlich U., Gmehling J., A modified UNIFAC model 1. prediction of VLE, hE, and γ ∞, Ind. Eng. Chem.Res., 1987, 26(7):1372-1381
    【60】 Hansen H.K., Rasmussen P., Fredenslund A., et al, A. Fredenslund. Vapor-liquid equilibria by UNIFAC qroup contribution. Revision and extension. 5. Ind. Eng. Chem. Process DES. Dev., 1991, 30(10):2352-2355
    【61】 Witting R., Lohmann J., Gmehling J. A. Fredenslund. Vapor-liquid equilibria by UNIFAC qroup contribution. Revision and extension. 6. Ind. Eng. Chem. Process DES. Dev., 2003,42(1):183-188
    【62】 Gmehling J., Li Jiding, Schiller M. A modified UNIFAC model 2. Present Parameter Matrix and Results for Different Thermodynamic Properties, Ind. Eng. Chem. Res.,1993, 32(1):178-193
    【63】 Gmehling J., Lohmann J., Jakob A., Li Jiding, Joh R., A modified UNIFAC model 3. Revision and extension, Ind. Eng. Chem. Res., 1998, 37(12):4876-4882
    【64】 Gmehling J., Witting R., Lohmann J., et al, A modified UNIFAC(Dortmund) model 4. Revision and extension, Ind. Eng. Chem. Res., 2002, 41(6):1678-1688
    【65】 CUI Xianbao, ZHAI Yarui, Yang Zhicai, FENG Tianyang, ZHANG Ying, Solvent Selection for Extractive Distillation by the Universal Quasichemical Functional Group Activity Coefficient(UNIFAC) Group Contribution Method, Chinese J. Chem. Eng., 2004, 12(6):862-868
    【66】 Vetere Alessandro, Prediction of vapor-liquid equilibria of non-aqueous systems in the subcritical range by using the NRTL equation, Fluid Phase Equilibria, 1993, 91:265-280
    【67】 Vetere Alessandro, Prediction of vapor-liquid equilibria of aqueous systems in the subcritical range by using the NRTL equation, Fluid Phase Equilibria, 1994, 99:63-74
    【68】 Vetere Alessandro, An improved method to predict VLE equilibria of subcritical mixtures, Fluid Phase Equilibria, 1996, 124:15-29
    【69】 Vetere Alessandro, A simple modification of the NRTL equation, Fluid Phase Equilibria, 2000, 173:57-64
    【70】 Vetere Alessandro, The NRTL equation as a predictive tool for vapor-liquid equilibria, Fluid Phase Equilibria, 2004, 218:33-39
    【71】 Gani R. Brignole E.A., Molecular design of solvents for liquid extraction based on UNIFAC, Fluid Phase Equilibria, 1983,13:331-340
    【72】 Brignole E.A., Bottini S., Gani R., A strategy for the design and selection of solvents for separation processes, Fluid Phase Equilibria, 1986,29:125-132
    【73】 Pretel E.J., Lopez P.A., Brignole E.A., et al, Computer-aided molecular design of solvents for separation processes, AICHE J, 1994, 40(8):1349-1360
    【74】 Crismondi M., Brignole E.A., Molecular design for solvents: an efficient search algorithm for branched molecules, Ind. Eng. Chem. Res., 2004, 43(3):784-790
    【75】 段占庭,雷良恒等,加盐萃取精馏的研究,石油化工,1980,9(6):350-353
    【76】 雷志刚,周荣琪,段占庭,加盐 DMF 萃取精馏分离 C4,化工学报,1999,50(3)407-410
    【77】 雷志刚,许峥,周荣琪,段占庭,萃取精馏分离 C4 的溶剂优化,高校化学工程学报,2001,15(1):17-22
    【78】 雷志刚,许峥,周荣琪,段占庭,溶剂加盐对分离非极性体系的影响,石油化工,2001,30(3):200-204
    【79】 Zhigang Lei, Hongyou Wang, Rongqi Zhou, Zhanting Duan, Solvent improvement for separating C4 with CAN, Computers and Chemical Engineering, 2002,26:1213-1221
    【80】 Zhigang Lei, Rongqi Zhou, Zhanting Duan, Process improvement on separating C4 by extractive distillation, Computers and Cenical Engineering, 2002,85:379-386
    【81】 Zhigang Lei, Rongqi Zhou, Zhanting Duan, Application of scaled particle theory in extractive distillation with salt, Fluid Phase Equilibria, 2002,200:187-201
    【82】 张志刚,张卫江,杨志才,崔现宝,萃取精馏分离乙酸乙酯-乙醇的溶剂,化工学报,2004,55(2):226-230
    【83】 廖晓星,伍志春,陈家镛,混合溶剂抽提甲基环己烷的溶剂性能,化工冶金,1999,20(3):235-240
    【84】 专 利 : 用 甲 乙 酮 系 列 混 合 溶 剂 分 离 丁 烷 与 丁 烯 的 方 法 ,CN1358697A,2002-07-17
    【85】 Lee F.M., Brown R.E., Extractive distillation of hydrocarbons employing solvent mixture[P], USP4921581,1990-05-01
    【86】 Brown R.E., Lee F.M., Extractive distillation of hydrocarbon feeds employing mixed solvent[P], USP4954224,1990-09-04
    【87】 Lee F.M., Extractive distillation of alkane/cycloalkane feed employing mixed solvent[P], USP4948470,1990-08-14
    【88】 Lee F.M., Brown R.E., Extractive distillation of hydrocarbon mixtures employing mixed solvent[P], USP4948472,1990-08-14
    【89】 Lee F.M., Extractive distillation of cycloalkane/alkane feed employing mixed solvent[P], USP4944849,1990-07-31
    【90】 Krummen M., Gruber D., Gmehling J. Measurement of activity coefficients at infinite dilution in solvent mixtures using the dilutor technique, Ind. Eng. Chem. Res. 2000, 39:2114-2123
    【91】 Fischer K., Gmehling J., Influence of water on the vapor-liquid equilibria, activity coefficients at infinite dilution and enthalpies of mixing for mixtures of N-methyl-2-pyrrolidone with C5or C6 hydrocarbons, Fluid Phase Equilibria, 2004,218:69-76
    【92】 魏文德主编,有机化工原料大全,化学工业出版社,1989:407-437
    【93】 胡竞民,李雪,徐宏芬等,碳五反应精馏中共聚物的研究,石油化工,2001,30(6):441-443
    【94】 Mamtsumura Yasuo, Suyama Kazuharu, Inomata Yoshihisa, Production of Cyclopentadiene, JP8225469, 1996
    【95】 Susumu Takao, Kanagawa Ken, Takeo Koide, etal, Isoprene purification process, USP 3,510,405,1970
    【96】 胡竞民,徐宏芬,杜春鹏等,一种从碳五馏分中分离双烯烃的方法,CN1253130A,2000-05-17
    【97】 胡竞民,徐宏芬,杜春鹏等,石油化工设计,1999,16(2):9-11
    【98】 Meyer W., DCPD: Abundant resin raw material, Hydrocarbon Processing, 1976,55(9): p235-238
    【99】 Bachman G.B., Lafayette W., Vapor phase production of halonitroethanes,USP2,933,535, 1958
    【100】 Mamtsumura Yasuo, Suyama Kazuharu, Inomata Yoshihisa, Production of Cyclopentadiene, JP8239332, 1996
    【101】 范伟云,吕艳,陈新华等,一种制备高纯度环戊二烯的方法,CN1150942, 1997-06-04
    【102】 Wolfgang S., Peter W., Wulf S., etal, Process for production of cyclopentadiene from dicyclopentadiene, CA956330, 1974
    【103】 Wulf S., Peter W., Fritz G., etal, Process for production of cyclopentadiene from dicyclopentadiene, CA964676,1975
    【104】 Nakamura Takao, Kawakita Masaru, Minomiya Katsumi, A process for the vapor-phase thermal cracking of dicyclopentadiene and a process for the manufacture of high purity dicyclopentadiene EP 0509445, 1992
    【105】 奥戈罗德尼科夫著,吴棣华、吴祉龙译,异戊二烯生产,化学工业出版社,1979
    【106】 Hein R.W., Extractive distillation of C5 hydrocarbons using acetonitrile and additives, USP 4,081,332, 1978
    【107】 Brandt H.W., Flittard C., Engelhard B., etal, Process of pure isoprene by extractive distillation of cyclopentadiene with aqueous aniline,USP3,501,550, 1970
    【108】 Swanson R.W., Gerster J.A., Purification of Isoprene by Extractive Distillation with Dimethylformamide. J. Chem. Eng. Data 1962, 7(1); 132-137.
    【109】 Reis t., Isoprene production-1. C5 extraction process uses acetonitrile, Chemical and Process Engineering, 1972,53(1):34-36
    【110】 Lindner A., Ulrich B.R., Klaus L., Recovery of isoprene from A C5-hrdrocarbon micture, USP4,647,344, 1987
    【111】 Hill A.B., Westfield N.J., Parnell D.C., etal, Isoprene purification process, USP3,230,157, 1966
    【112】 Progetti S., Process for recovering isoprene, GB 1417733,1975
    【113】 Brandt H.W., Flittard C., Engelhard B., etal, Process for production of isoprene from C5-fractions substantially free of paraffins of olefins by extractive distillation of cyclopentadiene with aniline, USP3,497,566, 1970
    【114】 Lybarger, Hugh M., Recovery of isoprene, USP3,947,506, 1976
    【115】 田保亮、李普阳、徐宏芬等,一种裂解碳五馏分的分离方法,CN1412165A,2003-04-23
    【116】 田保亮、李普阳、徐宏芬等,一种裂解碳五馏分的分离方法,CN1490286A,2004-04-21
    【117】 田保亮、李普阳、徐宏芬等,一种选择加氢催化剂及其制备方法和应用,CN1410515A,2003
    【118】 田保亮、李普阳、徐宏芬等,异戊二烯选择加氢除炔催化剂的研究。石油化工,2001,30(增刊):216-218
    【119】 阮细强、田保亮,冯海强等,碳五馏分选择性加氢除炔催化剂的研究,石油化工,2005,34(5):412-415
    【120】 Baoliang Tian, Puyang Li, Chunpeng Du, et al, Process for separating C5 cuts obtained from a petroleum cracking process, USP2003/0100809A1,2003
    【121】 Hein R.W. Extractive distillation of C5 hydrocarbons using acetonitrile and additives, USP4081332, 1978
    【122】 Roettger D., Nierlich F., Krissmann J., et al, Method for separation of substances by extraction or by washing them with ionic liquids, USP2005/0090704A1, 2005-04-28
    【123】 Shorter J.著,何宗士译,有机化学中的相关分析——线性自由能关系引论,第一版,化学工业出版社,北京,1990
    【124】 M. J. Kamlet, J. M. Abboud, M. H. Abraham, R. W. Taft, Linear Solvation Energy Relationships. 23.A Comprehensive Collection of the Solvatochromic Parameters, π *, α , and β , and Some Methods for Simplifying the Generalized Solvatochromic Equation, Org. Chem. 1983, 48, 2877-2887
    【125】 Rutan S.C., Motley C.B., Factor analysis and Kalman filter studies, Analytical Chemistry, 1987,59(17):2045-2050
    【126】 Nguyen T.H., Goss K.U., Ball P.U., Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments, Environmental Science and Technology, 2005,39(4):913-924
    【127】 Shannigrahi M., Bagchi S., Use of fluorescence probes for characterization of solvation properties of micells: A linear solvation energy relationship study, J. Phys. Chem. B 2004,108,17703-17708
    【128】 Mutelet F., Nicolas C., Rogalski M., Estimating phase equilibria of a van der waals fluid on the basis of molecular interactions, Ind. Eng. Chem. Res. 2004, 43, 6182-6186
    【129】 Kamlet M.J., Taft R.W., The solvatochromic comparison method. Ⅰ. The β -scale of solvent hydrogen-bond acceptor(HBA) basicities, Journal of the American Chemical Society, 1976,98(2):377-383
    【130】 Taft R.W., Kamlet M.J., The solvstochromic comparison method. 2. The α -scale of solvent hydrogen-bond donor(HBD) acidities, Journal of the American Chemical Society, 1976,98(10):2886-2894
    【131】 Kamlet M.J., Abboud J.L., Taft R.W., The solvstochromic comparison method. 6. The π * scale of solvent polarities, Journal of the American Chemical Society, 1977, 99(18):6027-6038
    【132】 Taft R.W., Abboud J.L., Kamlet M.J., Linear solvation energy relationships. 12. The dδ term in the solvatochromic equations, Journal of the American Chemical Society, 1981, 103(5):1080-1086
    【133】 Kamlet M.J., Abboud J.L., Abraham M.H., Taft R.W., Linear solvation energy relationships.23. A comprehensive collection of the solvatochromic parameters, π *, α, and β , and some methods for simplifying the generalized solvatochromic equation, J. Org. Chem. 1983, 48:2877-2887
    【134】 Essfar M., Guiheneuf G., Abboud J.L., Electronic absorption spectra of polarity-polarizability indicators in the gas phase, Journal of American Chemical Society, 1982, 104(24):6786-6787
    【135】 Bekarek V., Contribution to the interpretation of a general scale of solvent polarities, J. Phys. Chem., 1981, 85(6): 722-723
    【136】 Taft R.W., Gramstad T., Kamlet M.J., Linear solvation energy relationships.14. Additions to and correlations with the β scale of hydrogen bond acceptor basicities, J. Org. Chem., 1982, 47:4557-4563
    【137】 Frange B., Abboud J.L., Benamou C., Bellon L., A quantitative study of structural effects on the self-association of alcohols, J. Org. Chem., 1982, 47(23):4553-4557
    【138】 Abboud J.L., Sraidi K., Guiheneuf G., Negro A., Kamlet M.J., Study on amphiprotic compounds.2. Experimental determination of the hydrogen bond acceptor basicities of monomeric alcohols, 1985,50(16):2870-2873
    【139】 Li J.J., Zhang Y.K., Dallas A.J., Carr P.W., Measurement of solute dipolarity/polarizability and hydrogen bond acidity by inverse gas chromatography, Journal of Chromatography, 1991,550:101-134
    【140】 Li J.J., Zhang Y.K., Ouyang H., Carr P.W., Gas chromatographic study of solute hydrogen bond basicity, Journal of American Chemical Society, 1992, 114:9813-9828
    【141】 Abraham M.H., Whiting G.S., Doherty R.M., Shuely W.J., J. Chem. Soc. Perkin Trans.,1990,2:1451-
    【142】 Maria P.C., Franceschi J.D., Fargin E., Chemometrics of solvent basicity: multivariate analysis of the basicity scales relevant to nonprotogenic solvents, Journal of American Society, 1987, 109(2):483-492
    【143】 Michael H. Abraham, Priscilla L. Grellier, David V. Prior, Jeffrey J. Morris, Peter J. Taylor, Pierre-Charles Maria, Jean-Francois Gal,Hydrogen-bonding. Part 4. An analysis of solute hydrogen-bond basicity, in terms of complexation constants (log K), using F1 and F2 factors, the principal components of different kinds of basicity,Journal of Physical Organic Chemistry,1989,2(3):243-254
    【144】 Berg L., Separation of Xylenes by Extractive Distillation, USP5,441,608,1998-08-15
    【145】 张志刚,混合溶剂间歇萃取精馏的研究,博士学位论文,天津大学,2003
    【146】 林军,顾正桂,司玲,NMP-乙二醇混合溶剂用于萃取精馏的研究,南京师范大学学报,2003,3(2):19-21
    【147】 Mollmann C., Gmehling J., Measurement of activity coefficients at infinite dilution using gas-liquid chromatography. 5. Results for N-Methylacetamide, N,N-Dimethylacetamide, N,N-Dibutylformamide, and Sulfolane as stationary phases, J. Chem. Eng. Data, 1997, 42:35-40
    【148】 Topphoff M., Gruber D., Gmehling J., Measurement of activity coefficients at infinite dilution using gas-liquid chromatography. 10. Results for various solutes with the stationary phases Dimethyl Sulfoxide, Propyle Carbonate, and N-Ethylformamide, J. Chem. Eng. Data, 1999,44:1355-1359
    【149】 Kojima K., Zhang S.J., Hiaki T., Measuring methods of infinite dilution activity coefficients and a database for systems including water, Fluid Phase Equilibria 1997,131:145-179
    【150】 Castells C.B., Eikens D., Carr P.W., Headspace gas chromatographic measurements of limiting activity coefficients of eleven alkenes in organic solvents, J. Chem. Eng. Data, 2000,45:369-375
    【151】 Nanu D.E., Mennucci B., Loos T.W., Predicting infinite dilution activity coefficients with the group contribution solvation model, Fluid Phase Equilibria, 2004, 221(127-137
    【152】 Weldich U., Gmehling J., Measurement of γ∞ using gas-liquid chromatography. 1. results for the stationary phases n-Octacosane, 1-Docosanol, 10-Nonadecanone, and 1-Eicosene, J. Chem. Eng. Data, 1987, 32:138-142
    【153】 Weldich U., Rohm H.J., Gmehling J., Measurement of γ∞ using GLC.2. results for the stationary phases N-Formylmorpholine and N-Methylpyrrolidone, J. Chem. Eng. Data, 1987, 32:450-453
    【154】 Knoop C., Tiegs D., Gmehling J., Measurement of γ∞ using gas-liquid chromatography. 3. results for the stationary phases 10-Nonadecanone, N-Formylmorpholine, 1-Pentanol, m-Xylene, and Toluene, J. Chem. Eng. Data, 1989,34:240-247
    【155】 Schiller M., Gmehling J., Measurement of γ∞ using gas-liquid chromatography. 4. results for Alkylene Glycol Dialkyl Ethers as ststionary phases, J. Chem. Eng. Data, 1992,37:503-508
    【156】 Gruber D., Langenheim D., Gmehling J., Moollan W., Measurement of γ∞ using gas-liquid chromatography. 6. results for Systems exhiting gas-liquid interface adsorption with 1-Octanol, J. Chem. Eng. Data, 1997, 42:882-885
    【157】 Gruber D., Langenheim D., Gmehling J., Moollan W. Measurement of γ∞ using gas-liquid chromatography. 7. results for various solutes with N-Methyl-2-piperidone as stationary phase, J. Chem. Eng. Data, 1998, 43:226-229
    【158】 Gruber D., Topphoff M., Gmehling J., Gmehling J., Moollan W. Measurement of γ∞ using gas-liquid chromatography. 9. results for various solutes with the stationary phase 2-Pyrrolidone and N-Methylformamide, J. Chem. Eng. Data, 1998, 43:935-940
    【159】 Krummen M., Gruber D., Gmehling J. Measurement of γ∞ using gas-liquid chromatography. 12. results for various solutes with the stationary phases N-Ethylacetamide, N,N-Diethylacetamide, Diethylphthalate, and Glutaronitrile, J. Chem. Eng. Data, 2000, 45:771-775
    【160】 Cheng J.S., Tang M., Chen Y.P., Correlation and comparision of the infinite dilution activity coefficients in aqueous and organic mixtures from a modified excess Gibbs energy model, Fluid Phase Equilibria, 2004, 217:205-216
    【161】 程能林,胡声闻编,溶剂手册,化学工业出版社,北京,1986
    【162】 Bastos J.C., Soares M.E., Medina A.G., Selection of solvents for extractive distillation, A data bank for activity coefficients at infinite dilution, Ind. Eng. Chem. Process. Des. Dev. 1985, 24:420-426
    【163】 Gmehling J. Azeotropic data, 2nd, Wiley-VCH, Weiheim, 2004
    【164】 卢焕章,石油化工基础数据手册,化学工业出版社,北京,1980
    【165】 马沛生,石油化工基础数据手册 续编,化学工业出版社,北京,1993
    【166】 马新宾,李振花,夏清等,草酸二甲酯对甲醇-碳酸二甲酯汽液平衡的影响,石油化工,2001,30(9):699-702
    【167】 Gmehling J., Onken U., Arlt W., Vapor-liquid equilibrium data collection, Aliphatic hydrocarbons,C7-C18, DECHA Chemistry data series, Vol. 1 part6b, Frankfurt/Main, 1980
    【168】 周集义,鲍祈,异戊二烯-2-甲基-2-丁烯、2-甲基-2-丁烯-N-甲基吡咯烷酮在 101.3kPa 下的汽液平衡,化学推进剂与高分子材料,2001,80(2):27-33
    【169】 Fisher K., Gmehling J., Vapor-liquid equilibria, activity coefficients at infinite dilution and heats of mixing for mixtures of N-methyl pyrrolidone-2 with C5 or C6 hydrocarbons and for hydrocarbon mixtures, Fluid Phase Equilibria, 1996, 119:113-130
    【170】 Fisher K., Gmehling J., Influence of water on the vapor-liquid equilibria, activity coefficients at infinite dilution and enthalpies of mixing for mixtures of N-methyl-2-pyrrolidone with C5 or C6 hydrocarbons, Fluid Phase Equilibria, 2004,218:69-76
    【171】 金克新,赵传钧,马沛生,化工热力学,第 1 版,天津大学出版社,天津,1990
    【172】 Linek J., Wichterle I., Vapor-liquid equilibria for N-methyl-2-pyrrolidone+benzene, +toluene, +heptane, and +methylcyclohexane, J. Chem. Eng. Data, 1996,41:1212-1218
    【173】 冷志光,碳五馏分组分的 HP-1 毛细管色谱法测定,分析测试学报,1999,18(3):43-46
    【174】 冷志光,王莉,成世红,毛细管色谱法在 C5 馏分控制分析中的应用,石油炼制与化工,2000,31(4):64-67
    【175】 宋海华,多级分离理论(一)精馏模拟,天津,天津大学出版社,2005 年第 1 版