水中电晕放电染料脱色比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水中高压脉冲电晕放电水处理是近年来一种新兴的污水治理技术,其具有处理对象无选择性、高效、无二次污染等优点。研究大体积、低能耗水处理装置是目前研究的重要方向。我们开发了一种同轴棒-筒式电极放电装置,其阳极为直径3mm、长60mm不锈钢棒状电极,阴极为直径44mm、长65mm的不锈钢网圆筒。不锈钢棒状电极用壁厚0.4mm的绝缘管包裹,绝缘管壁上切有一系列间距约4mm、宽20-80μtm的小缝,在高压脉冲作用下,从一系列缝隙中随机形成指向不锈钢网阴极的放电流注。本研究利用这种放电装置对日落黄、亮蓝等染料分别进行脱色处理,定量分析染料的脱色速率与能耗,考察溶液放电脱色处理条件的影响。将这种装置与针-筒式放电装置的放电脱色效果进行对比,揭示大体积放电装置相对于针-筒式电极在脱色处理方面的优越性。实验结果如下:
     (1)溶液电导率变化对于染料脱色速率没有显著影响。
     (2)溶液pH值变化对于染料脱色速率影响显著,酸性溶液加快溶液脱色,碱性溶液减缓溶液脱色。
     (3)放电频率的增加会加快染料溶液脱色,加快程度高于简单的线性增长。
     (4)随溶液电导率或pH值的增大,放电脱除单位质量的染料能耗增加。
     (5)对于不同染料脱色效果不同,日落黄染料的脱色速率高于亮蓝染料,能耗低于亮蓝染料。
     (6)亮蓝溶液pH保持自然值7.8不变,600Hz放电频率下,棒-筒电极系统脱色速率常数是针-筒电极系统3倍左右,脱除单位质量亮蓝染料棒-筒电极系统能耗低于针-筒电极系统。
     (7)亮蓝溶液电导率保持为150μS/cm不变,600Hz放电频率下,脱色速率常数随着pH升高而降低,并且棒-筒电极系统脱色速率常数降低更快。在pH<8时,脱除单位质量亮蓝染料,棒-筒电极系统的能耗低于针-筒电极系统,在pH=10时,棒筒电极系统与针筒电极系统能耗相当。
Underwater corona discharge is found to be a good kind of wastewater treatment technology in these years. It has lots of advantages as no selectivity, high efficiency, no secondary pollution and so on. Resently, water treatment device with large volume and low energy consumption has received extensive attention. We have developed a coaxial rod-to-cylinder electrode system. It takes a stainless steel rod with3mm in diameter and60mm in long as the anode, and a stainless steel mesh with44mm in diameter and65mm in long as the cathode. The stainless steel rod electrodes is covered with a insulated pipe of0.4mm in thickness. There are a series of slits on the pipe spaced about4mm with each other and20-80μm in width. Under the high voltage pulse, streamer discharge can be formed from the slits randomly pointing the stainless steel cathode. Decolorize the dyes of sunset yellow and brilliant blue with the rod-to-cylinder electrode system. The decolorization rate and energy consumption are quantitative analyzed. Also, the effect of the solution condition on the decolorization rate and energy consumption are investigated. Compared with the rod-to-cylinder electrode system, it is easy to find the superiority to the pin-to-cylinder one. Main findings are as followed:
     (1) The solution conductivity has little effect on decolorization rate.
     (2) The decolorization rate decreases and the energy consumption increases with increasing the pH value.
     (3) The decolorization rate increases with increasing the frequency, and it's faster than linear growth.
     (4) The energy consumption increases with increasing the solution conductivity and pH value.
     (5) The decolorization rate constant for the sunset yellow solution is higher and the energy consumption is lower than that for the brilliant blue.
     (6) Fixing the pH value at7.8, the frequency at600Hz, the degradation rate constant for the rod-to-cylinder one is about3times larger than that for the pin-to-cylinder one. The energy consumption is lower for the rod-to-cylinder one.
     (7) Fixing the solution conductivity at150μS/cm, the frequency at600Hz, the degradation rate constant decreases with increasing the solution pH value, but the rod-to-cylinder one decreases faster. The energy consumption increases with increasing the solution pH value,but it is significantly lower in the rod-to-cylinder one when the solution pH <8, when the solution pH=10, they are nearly the same.
引文
[1]M. F. Coughlin, B. K. Kinkle, P. L. Bishop. High performance degradation of azo dye Acid Orange 7 and sulfanilic acid in a laboratory scale reactor after seeding with cultured bacterial strains[J]. Water Research,2003,37:2757-2763.
    [2]M. F. Coughlin, B. K. Kinkle, P. L. Bishop. Removal of azo and anthraquinone dyes from aqueous solutions by Eichhornia Crassipes[J]. Water Research,2004,38: 2967-2972.
    [3]JO-SHU CHANG, CHIEN CHOU, YU-CHIH LIN, et al. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola[J]. Elsevier Science, 2001,35(12):2841-2850.
    [4]Esther Forgacs, Tibor Cserha'ti, Gyula Oros. Removal of synthetic dyes from wastewaters:a review[J]. Environment International,2004,30:953-971.
    [5]刘芳,黄海涛.高压脉冲放电等离子体水处理中的放电方式及其应用[J].工业安全与环保,2006,32(7):1-4.
    [6]Joshi, R P, J F Kolb, S Xiao, et al. Aspects of Plasma in Water:Streamer Physics and Applications [J]. Plasma Processes and Polymers,2009,6(11):763-777.
    [7]Akiyama, H. Streamer discharges in liquids and their applications [J]. Ieee Transactions on Dielectrics and Electrical Insulation,2000,7(5):646-653.
    [8]Sarkisov, G S, N D Zameroski, and J R Woodworth. Observation of electric field enhancement in a water streamer using Kerr effect [J]. Journal of Applied Physics, 2006,99(8).
    [9]Lukes, P, M Clupek, V Babicky, et al. Ultraviolet radiation from the pulsed corona discharge in water [J]. Plasma Sources Science & Technology,2008,17(2).
    [10]Hemmert, D, K Shiraki, T Yokoyama, et al. Optical diagnostics of shock waves generated by a pulsed streamer discharge in water [C].14th Ieee International Pulsed Power Conference, Hyatt Regency Holtel, Dallas, Texas, USA,2003:232-235.
    [11]Sunka, P, A Fuciman, V Babicky, et al. Generation of focused shock waves by multi-channel electrical discharges in water [J]. Czechoslovak Journal of Physics, 2002,52:397-405.
    [12]Gupta, S B and H Bluhm. The potential of pulsed underwater streamer discharges as a disinfection technique [J]. Ieee Transactions on Plasma Science,2008,36(4): 1621-1632.
    [13]Mededovic, S and B R Locke. Primary chemical reactions in pulsed electrical discharge channels in water [J]. Journal of Physics D-Applied Physics,2007,40(24): 7734-7746.
    [14]Malik, M A, A Ghaffar, and S A Malik. Water purification by electrical discharges [J]. Plasma Sources Science & Technology,2001,10(1):82-91.
    [15]Locke, B R, M Sato, P Sunka, et al. Electrohydraulic discharge and nonthermal plasma for water treatment [J]. Industrial & Engineering Chemistry Research,2006,45(3): 882-905.
    [16]Mok Y S, Nma C M, Cho M H, Nma I. Decomposition of Volatile Organic Compounds and Nitric Oxide by Nonhtermal Plamsa Dischagre Poreess[J]. IEEE Transactions on Plasma Science,2002,30:408-415.
    [17]兰生,杨嘉祥,蒋杰灵.脉冲放电处理苯酚废水降解过程的分析[J].环境科学学报,2009,29(6):1208-1213.
    [18]朱承驻,董文博,潘循皙,等.等离子体降解水相中有机污染物的机理研究[J].环境科学学报,2002,22(4):428-433.
    [19]F. Abdelmalek, S. Gharbi, B. Benstaali, el. Plasmachemical degradation of azo dyes by humid air plasma:Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste[J]. Water Research,2004,38:2339-2347.
    [20]Hui juan Wang, Jie Li, Xie Quan. Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water [J]. Journal of Electrostatics, 2006,64:416-421.
    [21]Taiki Handa, Yasushi Minamitani. The Effect of a Water-Droplet Spray and Gas Discharge in Water Treatment by Pulsed Power[J]. IEEE Transactions on Plasma Science,2009,37(1):179-193.
    [22]Zi Li, Shunsuke Sakai, Chiemi Yamada, el. The Effects of Pulsed Streamerlike Discharge on Cyanobacteria Cells[J]. IEEE Transactions on Plasma Science, 2006,34 (5):1719-1724.
    [23]A. T. Sugiarto, T. Ohshima, M. Sato. Advanced oxidation processes using pulsed streamer corona discharge in Water[J]. Thin Solid Films,2002,407:174-178.
    [24]Lukes, P, M Clupek, V Babicky, et al. Erosion of needle electrodes in pulsed corona discharge in water [J]. Czechoslovak Journal of Physics,2006,56:B916-B924.
    [25]Abou-Ghazala, Katsuki, Schoenbach. Bacterial decontamination of water by means of pulsed-corona discharges[J]. IEEE Transactions on Plasma Science, 2002,30 (4):1449-1453.
    [26]P. S. Lang, D. M. Willberg, M. R. Hoffmann. Oxidative degradation of 2,4,6-trinitrotoluene by ozone in an electrohydraulic discharge reator[J]. Environmental Science & Technology,1998,32:3142-3148.
    [27]M. A. Malik, Y. Minamitani, S. Xiao, et al. Streamers in water filled wire-cylinder and packed-bed reactors[J]. IEEE Transactions on Plasma Science,2005,33(2): 490-491.
    [28]Pavel Sunka. Pulse electrical discharges in water and their applications[J]. Physics of plasmas,2001,8 (5):2587-2594.
    [29]P. Lukes, M. Clupek, V. Babicky, et al. Pulsed electrical discharge in water generated using porous-ceramic-coated electrodes [J]. Ieee Transactions on Plasma Science,2008,36(4):1146-1147.
    [30]Takuma, T and T Kawamoto. Field enhancement at a triple junction in arrangements consisting of three media [J]. Ieee Transactions on Dielectrics and Electrical Insulation,2007,14(3):566-571.
    [31]Jordan N M, Lau Y Y, French D M, et al. Electric field and electron orbits near a triple point [J]. Journal of Applied Physics,2007,102(3).
    [32]Jordan N M, Lau Y Y, French D M, et al. Modeling high-voltage breakdown for single and multi-stack insulators [J]. Journal of Applied Physics,2007,102:033301.
    [33]Xiao, S, R P Joshi, J F Kolb, et al. Nanosecond, Electrical Triggering of Water Switches [J]. Ieee Transactions on Dielectrics and Electrical Insulation,2009, 16(4):1066-1075.
    [34]Xiao Qiong Wen, Gui Shi Liu, Zhen Feng Ding. Streamer Propagation in a Large-Volume Underwater Corona Discharge Reactor[J]. IEEE Transactions on Plasma Science, 2010,38(12):3330-3335.
    [35]Katsuki S, Akiyama H, Abou-Ghazala A, et al. Parallel Streamer Discharges between Wire and Plane Electrodes in Water[J]. IEEE transactions on dielectrics and electrical insulation,2002,9:498.
    [36]J. Hoigne. Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation[M]. Berlin, Heidelberg:The Handbook of EnVironmental Chemistry Vol.5, Part C. Quality and Treatment of Drinking Water II,1998.
    [37]P. Bruggeman, D. Schram, M. Gonz'alez, R. Rego, M. G. Kong and C. Leys. Characterization of a direct dc-excited discharge in water by optical emission spectroscopy[J]. Plasma Sources Science and Technology,2009,18:025017.
    [38]J. Bandara, J. Nadtochenko, J. Kiwi, C. Pulgarin. Dynamics of oxidant addition as a parameter in the modelling of dye mineralization (Orange Ⅱ) via advanced oxidation technologies[J]. Water Science and Technology,1997,35:87-93.