旱作和水作条件下稻田CH_4和N_2O排放的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田土壤是大气中CH_4和N_2O的主要生物排放源之一。中国是水稻生产大国,稻田对温室效应的影响已成为众人关注的焦点。由于世界范围内的水资源紧缺,水稻旱作已逐渐成为人们研究和推广的重点。土表覆盖旱作水稻是一项崭新的栽培技术,它具有节水、省工、节本等优点。相对于水作稻田而言,水稻旱作栽培后,稻田温室气体排放的种类和数量也相应地有所改变。然而这种栽培方式对温室气体排放的影响尚未见报道。本文通过对不同覆盖处理旱作稻田与水作稻田CH_4和N_2O排放特点进行的比较,旨在阐明水稻旱作栽培对大气环境和温室效应的影响,为该技术的推广提供环境评价依据。
     于2001和2002年的5~10月在盐城市郊的江苏沿海地区农科所试验场进行了大田试验。通过连续两年的观察,比较了水稻旱作不同覆盖处理以及水作处理稻田甲烷和氧化亚氮的排放特征。试验中设有盖膜、盖草和裸露3种不同旱作处理和1个常规水作对照,第二年去除旱作裸露处理,增设旱作覆草推荐施肥处理(基肥不施氮肥)。研究结果表明:
     常规施肥条件下,水稻生长季旱作各处理稻田的CH_4排放通量显著低于水作处理,而N_2O排放通量显著高于水作处理,旱作各处理间没有显著差异。水作稻田CH_4的排放总量2001年是旱作处理的8~19倍,2002年是旱作处理的5~7倍;而旱作稻田当季N_2O的排放总量2001年是水作稻田的5~6倍,2002年是水作稻田的3~4倍。水作处理稻田CH_4排放通量与生育期密切相关,以2001年分蘖盛期的5.0 mg m~(-2) h~(-1)为最大。氮肥的施用是旱作各处理N_2O排放通量的主控因子,每次施肥后都会出现一个N_2O的排放高峰,最高可达4.394 mg m~(-2) h~(-1)。旱作盖草推荐施肥处理由于基肥不施氮,整个生长季N_2O排放总量显著降低,只有5.565 kg hm~(-2),与水作处理稻田的N_2O排放总量(3.742 kg hm~(-2))相当。
     2001年水作处理的产量(9574.1 kg ha~(-1))显著高于旱作各处理的产量(覆膜8518.5 kg ha~(-1),盖草8481.5 kg ha~(-1),裸露7833.3 kg ha~(-1)),而旱作处理间没有显著性差异;2002年的产量除旱作覆草推荐施肥处理(7508.5 kg ha~(-1))和旱作覆膜处理(7207.9 kg ha~(-1))显著低于常规水作处理(8250 kg ha~(-1))外,其余各处理间皆无显著性差异。
     在20年的短时间尺度下,2001年旱作各处理稻田产生的CH_4和N_2O对全球温室效应的增温潜势(GWP)与水作处理差异不显著;如果从长远角度看(如500年),由于
    
    旱作和水作条件下稻田CH4和N20排放的研究
    水稻旱作造成土壤NZO的排放增加,反而会导致对温室效应的影响加剧。2002年增
    设的旱作盖草推荐施肥处理对减少温室效应效果显著,无论在短时间尺度下还是从长
    远角度看,对全球增温效应都大为减小。
     在本试验中,旱作和水作稻田甲烷的排放受化学氮肥施用的影响都不明显。试验
    表明,氮肥的施肥方式和施肥时期都会影响土壤NZO的排放。氮肥表施的稻田氧化亚
    氮的排放峰值比穴施的要提前;穗肥后稻田氧化亚氮的排放峰值出现时间比分集肥施
    用后早,而分集肥后的峰值出现时间又比基肥施用后早。
     水作处理搁田后ld左右,稻田甲烷会出现一个排放高峰,此后迅速下降到较低的
    排放水平;而氧化亚氮的排放从第2d开始逐渐增加,与甲烷的排放互为消长。复水
    后,稻田甲烷的排放回升速度很慢;而氧化亚氮的排放迅速回落,几乎检测不到。灌
    溉试验结果表明,田间灌溉对旱作盖草处理的甲烷和氧化亚氮的排放通量都没有显著
    的影响。
     通过单因子分析,气温、土温和降水都不是旱作稻田C场和NZO排放的主控因子,
    与旱作稻田C执和NZO排放没有明显的相关性。旱作稻田CH;和NZO排放通量的变
    化趋势可能是多种因素共同作用的结果。
It is well known that rice field soils are the major sources of atmospheric methane and nitrous oxide (NO2). Since China is the largest producer of rice grain, the contribution of trace gas emissions from rice field soils to the greenhouse effects have become the focus of researches both in agriculture and environment. With the limitation of water resource, worldwide, a number of studies have been conducted in rice planting in aerobic condition, in which the ground cover rice production in aerobic condition is a novel cultivation technique. The characteristics of trace gas fluxes from rice field soils are accordingly changed in aerobic condition compared with those in waterlogged condition.
    Field experiments were carried out to assess CH4 and N2O emission rate in such two different cultivation systems of rice as traditional waterlogged production and aerobic production with different covers during rice-growing seasons in 2001 and 2002. The experimental field was selected in the suburb of Yancheng city of Jiangsu Province, located at latitude 33 27'N, longitude 120 11 E. The total rainfall during rice-growing season was 484.2 mm in 2001 and 440 mm in 2002. The soil (Halaquepts) had 12.5 g kg-1 of organic matter, 0.8 g kg-1 of total nitrogen and 8.3 of pH in the cultivated layer.
    There were four treatments, i.e., three treatments designed in aerobic rice production system such as the plots covered with plastic film (F), mulched with crop straw (M) and
    bare (without any cover)(B) and one treatment in waterlogged rice production (W)(as CK)
    in 2001. The bare treatment was replaced by the treatment covered with straw mulch using recommendation fertlization(R) in the second trial season (2002), for the results of 2001 showed many advantages of the straw mulching treatment, i.e., saving labour and costs, low-pollution and high yield.
    The total N2O fluxes in aerobic condition were five to six times higher than those in waterlogged soil, while the total emissions of CH4 in waterlogged soil were eight to
    
    
    
    nineteen times higher than those in aerobic condition during the rice growing period in 2001. There was no significant difference in the emission rates of methane and nitrous oxide in aerobic condition with traditional fertilization. The methane emission rates during the growing period in waterlogged condition were closely related to the different growing stages. The maximum emission rate of CH4(5.0 mg CR4 m~2 h-1) from waterlogged soil was found in the tillering stage of the rice crop in 2001. Fertilization was the primary factor affecting the N2O emissions in aerobic condition. A peak of the nitrous oxide emission rate was observed after each fertilization during the rice growing stages of all treatments in aerobic condition. Because of no basal fertilization in the treatment R, the total N2O fluxes of this treatment during the entire cultivation period was equal to that in waterlogged condition.
    In 2001, the rice grain yield of the treatment W was higher than that of the treatments in aerobic condition, while there was no significant difference of the rice grain yield among the treatments in aerobic condition on the significant level of 5%. There was no significant difference of the rice grain yield in 2002 between the different treatments except that the yields of treatment R and F were significantly lower than that of treatment W.
    In a 20-year time domain, there was no significant difference between the global warming potentials of the three treatments in aerobic condition and that of the treatment W based on the calculation of both N2O and CH4 emissions in the different treatments. But for the long-term period of 500-year, the greenhouse effect would be aggravated by the increased N2O emission from rice field soil in aerobic condition. Calculation of the total global warming potential for these two gases indicated that treatment R would be a preferable fertilization management to mitigate greenhouse gases emission either for the short or for the long-term period.
    The methane emission rate from ri
引文
1.蔡祖聪.Arivn R.Mosier.土壤水分状况对CH_4氧化,N_2O和CO_2排放的影响.土壤,1999,6:289~294,298.
    2.蔡祖聪,沈光裕,颜晓元等.土壤质地、温度和Eh对稻田甲烷排放的影响[J].土壤学报,1998,35(2):145~153.
    3.蔡祖聪.中国稻田甲烷排放研究进展[J].土壤,1999,5:266~269.
    4.曹金留.任立涛,陈国庆等.水稻田烤田期间甲烷排放规律研究[J].农村生态环境,1998,14(4):1~4。
    5.曹金留.任立涛,汪国好等.爽水性稻田甲烷排放特点[J].农业环境保护,2000,19(1):10~14.
    6.曹云英.朱庆森,郎有忠等.水稻品种及栽培措施对稻田甲烷排放的影响[J].江苏农业研究,2000,21(3):22~27.
    7.陈德章.王明星,上官行健等.我国西南地区的稻田CH_4的排放[J].地球科学进展,1993,8(5):47~62.
    8.陈德章.王明星.稻田甲烷排放和土壤、大气条件的关系[J].地球科学进展,1993,8(5):37~46.
    9.陈冠雄,黄国宏,黄斌等.稻田CH_4和N_2O排放关系及其养萍和施肥的影响[J].应用生态学报,1995,6(4):378~382.
    10.陈苇,卢婉芳,段彬伍等,猪粪和沼气渣对双季稻田甲烷排放的影响[J].生态学报,2001,21(2):265~270.
    11.陈苇,卢婉芳,段彬伍等.稻草还田对晚稻稻田甲烷排放的影响[J].土壤学报,2002,39(2):170~175.
    12.陈苇,卢婉芳,段彬伍等.灌溉对稻田甲烷排放的影响[J].浙江农业学报,1998,10(1):12~17.
    13.陈文新.1989.土壤环境微生物学[M].北京:北京出版社,pp:133~151.
    14.过益先.水稻旱种技术研究进展[J].农业科技,1982,(2):3~16.
    15.侯爱新,陈冠雄,Cleemput O.Van.不同种类氮肥对土壤释放N_2O的影响[J].应用生态学报,1998,9(2):176~180.
    16.侯爱新,陈冠雄,吴杰等.稻田CH_4和N_2O排放关系及其微生物学机理和一些影响因子[J].应用生态学报,1997,8(3):270~274.
    17.黄国宏.陈冠雄,韩冰.土壤含水量与N_2O产生途径研究[J].应用生态学报,1999,10(1):53~56.
    18.黄国宏,陈冠雄,黄斌等.玉米植株对大田温室气体N_2O排放的影响[J].应用生态学报,1998,9(3):261-264.
    19.黄国宏,陈冠雄,吴杰等.东北典型旱作农田N_2O和CH_4排放通量研究[J].应用生态学报,1995,6(4):383~386.
    
    
    20.黄国宏,陈冠雄,张志明等.玉米田N_2O排放及减排措施研究[J].环境科学学报,1998,18(4):344~349.
    21.黄国宏,肖笃宁,李玉祥等.芦苇湿地温室气体甲烷(CH_4)排放研究[J].生态学报,2001,21(9):1494~1497.
    22.黄义德,李金才,张自立等.水稻地膜覆盖旱作技术研究初报[J].安徽农业科学,1997,25(3):208~210.
    23.黄义德,张自立,魏凤珍等.水稻覆膜旱作的生态生理效应[J].应用生态学报,1999,10(3):305~308.
    24.黄仲青,蒋之陨,李奕松等.水稻旱作膜、秆接力覆盖高效栽培技术[J].作物杂志,2001,(4):5~6.
    25.蒋静艳.2001.农田土壤甲烷和氧化亚氮排放的研究.南京农业大学环境工程硕士论文,PP:1,22~29.
    26.李晶,王明星,陈德章.水稻田甲烷的减排方法研究及评价[J].大气科学,1998,22(3):354-362.
    27.李星海,等.地膜覆盖水稻旱种试验研究初报[J].农业科技,1982,(2):20~27.
    28.李英能.1998.节水农业新技术[M].江西科学技术出版社.
    29.梁森,韩莉,李慧娴等.水稻旱作栽培方式及调亏灌溉指标试验研究[J].干旱地区农业研究,2002,20(2):13~19.
    30.梁森.韩莉.水稻旱作节水高产技术的可行性及季节性干旱的综合防治措施[J].江苏农业科学,2001,(6):7~10.
    31.梁永超,胡锋,杨茂才等.水稻覆膜旱作高产节水机理研究[J].中国农业科学,1999,32(1):26~32.
    32.林匡飞,项雅玲,姜达炳等.湖北地区稻田甲烷排放量及控制措施的研究[J].农业环境保护,2000,19(5):267~270.
    33.刘景双,王金达,李仲根等.三江平原沼泽湿地N_2O浓度与排放特征初步研究.环境科学,2003,24(1):33~39.
    34.卢维盛,廖宗文,张建国等.不同水旱轮作方式对稻田甲烷排放影响的研究[J].农业环境保护,1999,18(5):200~202.
    35.卢维盛,张建国,廖宗文.广州地区晚稻田CH_4和N_2O的排放通量及其影响因素[J].应用生态学报,1997,8(3):275~278.
    36.闵航,陈美慈,钱泽澍.水稻田的甲烷释放及其生物学机理[J].土壤学报,1993,30(2):125~130.
    37.齐玉春,董云社,章中.华北平原典型农业区土壤甲烷通量研究[J].农村生态环境,2002,18(3):56~58,60.
    38.齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素[J].地理学报,1999,54(6):534~542.
    
    
    39.上官行健,王明星,陈德章等.稻田甲烷的传输[J].地球科学进展,1993a,8(5):13~22.
    40.上官行健,王明星,沈壬兴等.稻田甲烷的排放规律[J].地球科学进展,1993b,8(5):23~36.
    41.上官行健,王明星.稻田CH_4排放的控制措施[J].地球科学进展,1993,8(5):56~62.
    42.上官行健.1993.中国稻田甲烷的产生和排放过程.大气物理所博士论文,北京.
    43.沈其荣,崔国贤,梁永超等.覆盖旱作水稻营养生理的变异特征及其适应机理[A].中国土壤学会第九次全国会员代表大会论文集[C].南京,1999,228~229.
    44.石玉林等.2001.中国农业需水与节水高效农业建设.北京:中国水利水电出版社,PP:1,11,23.87.
    45.宋文质,王少彬,苏维翰等.我国农田土壤的主要温室气体CO_2、CH_4、N_2O排放研究[J].环境科学,1996,17(1):85-88.
    46.王碚,朗家文.稻田半旱耕作的作用与效应[J].耕作与栽培,1983,(3):9~12.
    47.王承斌,等.水稻旱地覆盖栽培试验总结[J].黑龙江农业科学,1985,(3):35~38.
    48.王福荣.何绍桓,于万利等.旱作水稻生理特性与栽培技术研究[J].吉林农业大学学报,1982,(2):1~10.
    49.王甲辰,刘学军,张福锁等.不同土壤覆盖物对旱作水稻生长和产量影响[J].生态学报,2002,22(6):922~929.
    50.王敬国.农业生态系统和大气间的温室效应气体交换[J].环境科学,1993,14(2):49~53.
    51.王玲,魏朝富,谢德体.稻田甲烷排放的研究进展[J].土壤与环境,2002,11(2):158~162.
    52.王明星,李晶,郑循华.稻田甲烷排放及产生、转化、输送机理[J].大气科学,1998,22(4):600~612.
    53.王艳芬,陈佐忠,周涌.内蒙古典型草原N_2O研究刍议[J].气候与环境研究,1997,2(3):280~285.
    54.王寅寿,等.地膜旱作水稻初步试验[J].山西农业科学,1985,(3):14~15.
    55.王友贞,许浒,曹秀清等.水稻旱作覆膜节水效果与提高降雨利用率的研究[J].中国农村水利水电,2001:4~5.
    56.王友贞,袁先江,许浒等.水稻旱作覆膜的增温保墒效果及其对生育性状影响研究[J].农业工程学报,2002,18(2):29~31.
    57.王智平,杨永辉,张万军等.减缓大气温室气体的方案和措施[J].农业环境保护,1998,17(4):151~155.
    58.魏朝富,高明,黄勤等.耕作制度对西南地区冬水田甲烷排放的影响[J].土壤学报,2000,37(2):157~164.
    59.吴文革,徐秀娟,陈周前等.覆膜早作水稻生育特点及其适宜栽培技术研究[J].安徽农业科学,1998,26(3):227~230.
    60.吴宪章,张矢,蒋本福等.水稻、陆稻薄膜地面覆盖栽培效果初报[J].黑龙江农业科学,1980,(3):19~26.
    
    
    61.吴一才,宋嵩山.地膜覆盖旱栽水稻试验总结[J].农业科技,1983,(2):21~26.
    62.谢小立,王卫东,上官行健等.施肥对稻田甲烷排放的影响[J].农业生态环境(学报),1995,11(1):10~14.
    63.熊正琴,邢光熹,鹤田治雄等.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究[J].中国农业科学,2002,35(9):1104~1108.
    64.徐华,蔡祖聪,李小平.烤田对种稻土壤甲烷排放的影响[J].土壤学报,2000a,37(1):69~75.
    65.徐华.邢光熹,蔡祖聪等.土壤水分状况和氮肥施用对稻田N_2O排放的影响[J].应用生态学报,1999,10(2):186~188.
    66.徐华,邢光熹,蔡祖聪等.土壤水分状况和质地对稻田N_2O排放的影响[J].土壤学报,2000b.37(4):499~504.
    67.徐华,邢光熹,蔡祖聪等.土壤质地对小麦和棉花田N_2O排放的影响[J].农业环境保护,2000c.19(1):1~3.
    68.徐华,邢光熹,张汉辉.太湖地区水田土壤N_2O排放通量及其影响因素[J].土壤学报,1995,32(增):144~150.
    69.徐文斌,刘维屏,刘广深.温度对旱地土壤N_2O排放的影响研究[J].土壤学报,2002,39(1):1~8.
    70.徐雨昌,王增远,李震等.不同水稻品种对稻田甲烷排放量的影响[J].植物营养与肥料学报,1999,5(1):93~96.
    71.杨安中.水稻秸秆与地膜二元覆盖旱作栽培效应研究[J].水土保持学报,2000,14(2):66~69.
    72.衣纯真,梁洪波,张建华等.1994.温度、湿度及通气状况对土壤中N_2O释放量影响的研究[M].见:李韵珠、陆锦文、罗远培eds.土壤水和养分的有效利用[M],北京:北京出版社,pp:120~125.
    73.于克伟,陈冠雄,杨思河等.几种旱地农作物在农田N_2O释放中的作用及环境因素的影响[J].应用生态学报,1995,6(4):387-391.
    74.于克伟,黄斌,陈冠雄等.田闻大豆植株N_2O通量的测定及光照的影响[J].应用生态学报,1997,8(2):171~174.
    75.于心科,李宁,李春园等.温度对稻田甲烷排放的影响[J].地球科学进展,1994,9(5):54~56.
    76.余叔文,陈景治,刘存德等.不同生长时期土壤干旱对水稻的影响[J].作物学报,1962,1(4):399-410.
    77.余叔文,陈景治,刘存德等.水、陆稻的比较研究:水稻老来青和陆稻南通早的水分关系及抗旱性的比较[J].植物学报,1958,7(4):187~199.
    78.俞慎,李振高.稻田生态系统生物硝化-反硝化作用与氮素损失[J].应用生态学报,1999,10(5):630-634.
    79.曾江海,王智平.张玉铭等.小麦-玉米轮作期土壤排放N_2O通量及总量估算[J].环境科学,1995,16(1):32~35,67.
    
    
    80.张矢.吴宪章,蒋本福等.水稻、陆稻地膜覆盖栽培的技术效应[J].黑龙江农业科学,1983,(5):20~24.
    81.赵其良.等.日本东北地区水稻旱种地膜覆盖栽培技术[J].辽宁农业科学,1982,(3):52~56.
    82.郑循华,王明星.王跃思等.稻麦轮作生态系统中土壤湿度对N_2O产生与排放的影响[J].应用生态学报.1996,7(3):273~279.
    83.郑循华,王明星,王跃思等.华东稻田CH_4和N_2O排放[J].大气科学,1997a,21(2):231~237.
    84.郑循华,王明星,王跃思等.温度对农田N_2O产生与排放的影响[J].环境科学,1997b,18(5):1~5.
    85.郑循华.农田N_2O产生与排放过程研究.中国科学院大气物理所博士论文,北京:1996:76~77.
    86.朱玫,田洪海,李金龙等.大气甲烷的源和汇[J].环境保护科学.1996,22(2):5-9.
    87.朱庭芸.1994.水稻高产高效益灌溉原理与方法[M].辽宁科学出版社.
    88.钱晓晴.2002.旱作水稻的水、氮利用特征研究.南京农业大学植物营养博士论文,PP:1~2.
    89. Abao E. B. Jr. 1998. Methane and nitrous oxide production in rice-based systems under rained conditions[M]. College, Laguna (Philippine), pp: 83.
    90. Abao E. B. Jr., Bronson K.F., Wassmann R. & Singh U. Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rain fed conditions[J]. Nutr Cycl Agroecosyst, 2000, 58:131~139.
    91. Betlach M. R. and Tiedje J. M. 1981. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification[J]. Applied and Environmental Microbiology, 42(6): 1074~1084.
    92. Bosse U et al. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiology Ecology, 1993, (13): 123~134.
    93. Bossio D A, Horwath W R, Mutters R G, et al. Methane pool and flux dynamics in a rice field following straw incorporation[J]. Soil Biol. Biochem., 1999, 31 : 1313~1322.
    94. Bouwman A. F, 1990. Introduction. In: A. F. Bouwman(ed.): Soils and the greenhouse effect[M]. John Wiley & Sons Ltd, Chichester, pp: 25~32.
    95. Bronson-K. F., Singh-U., Neue H.-U., et al.1997. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil. Ⅱ. Fallow period emissions[J]. Soil Science Society of America, 61(3): 988~993.
    96. Bronson-K.F., Neue H.-U., Singh-U., et al. 1997. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil. Ⅰ. Residue, nitrogen, and water management[J]. Soil Science Society of America, 61 (3): 981~987.
    97. Cai Zucong, Xing Guangxi, Shen Guangyu, et al. 1999. Measurements of CH_4 and N_2O emission from rice paddies in Fengqiu, China[J]. Soil sci. Plant Nutr., 45(1): 1~13.
    98. Chen Z. L. & Li D. B. et al. Features of CH_4 emission from rice fields in Beijing and Nanjing[J].
    
    Chemophere, 1993, 26: 239~245.
    99. Cicerone R. J. and Shetter J. D. Sources of atmospheric methane: Measurements in rice paddies and a discussion[J]. J. Geophys. Res., 1981, 86: 7203~7209.
    100. Daum D and Schenk M K. Influence of nutrient solution pH on N_2O and N_2 emissions from a soilless culture system[J]. Plant and Soil, 1998, 203: 279~287.
    101. Delgado J A and Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux[J]. J. Environ. Qual., 1996.25(5): 1105~1111.
    102. Denier van der Gon H A C, Neue H U. Influence of organic matter incorporation on the methane emission from a wetland rice field[J]. Global Biogeochemical Cycles, 1995, 9(5): 11~22.
    103. Dlugokencky E J, Steeele L P, Lang P M, et al. The growth rate and distribution of atmospheric methane[J]. Journal of Geophysical Research, 1994, 99:17021~17043.
    104. Dobbie K E, McTaggart I P, and Smith K A. Nitrous oxide emission from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors[J]. Journal of Geophysical Research, 1999, 104(D21): 26891~26899.
    105. Dorland S and Beauchamp E. Denitrification and ammonification at low soil temperatures[J]. Soil Sci, 1991, (71): 293~303.
    106. Eichner, M. J. Nitrous oxide emission from fertilized soil: summary of available data[J]. J. Environ. Qual., 1990, 19: 272~280.
    107. FAO and IAEA. 1992. Measurement of methane and nitrous oxide emissions from agriculture. A Joint Undertaking by the Food and Agriculture Organization of the United Nations and International Atomic Energy Agency, International Atomic Energy Agency, Vienna, 5~6.
    108. Huang Yao, Sass R. L. and Fisher F. M. Methane emission from Texas rice paddy soils.2.Seasonal contribution of rice biomass production to CH_4 emission[J]. Global Change Biology, 1997b, 3: 491~500.
    109. Huang Yao, Sass R. L. and Fisher F. M. Methane emission from Texas rice paddy soils.1 .Quantitative multi-year dependence of CH_4 emission on soil, cultivar and grain yield[J]. Global Change Biology, 1997a, 3: 479~489.
    110. Hutchinson G. J. & Moiser A.R. Improved soil cover method for field measurement of nitrous oxide fluxes[J]. Soil Sci. Soc. Am., 1981, 45:311~316.
    111. IPCC. 1995. Climate Change: The science of climate change. Contribution of working group Ⅰ to second assessment report of the Intergovernmental Panel on Climate Change[M].
    112. IPCC. 1996. Climate Change: The IPCC scientific assessment. Working group Ⅱ. Chapter 23. Agricultural options for mitigation of greenhouse gas emission[M].
    113. IPCC. 2000. Climate Change: IPCC WGI third assessment report. Chapter 6. Assessment and expert review draft[M].
    
    
    114. Jakebsen, R, W. H. Patrick, Jr. and B. G. Willams, Sulfide and methane formation in soils and sediments[J]. Soil Sci., 1981, 132: 279~287.
    115. King G M. Regulation by light of methane emissions from a wetland[J]. Nature, 1990, 345: 513~515.
    116. Lindau, C. W., R. D. Delaune, et al. Fertilizer effects on dinitrogen, nitrous oxide and methane emission from lowland rice[J]. Soil Sci. Soc. Am., 1990, 54: 1789~1794.
    117. Lu WF et al. Methane emission and mitigation options in irrigated rice fields in southeast China[J], Nutr Cycl Agroecosyst, 2000, 58: 65~73.
    118. Minami, K. and S. Fukushi. Methods for measuring N_2O flux from water surface and N_2O dissolved in water from agricultural land[J]. Soil Sci. Plant Nutr., 1984, 30: 495~502.
    119. Minoda T & Kimura M. Photosysthates as dominant source of CH_4 and CO_2 in soil water and CH4 emitted to the atmosphere from paddy fields[J], d Geophy Res, 1996, 101 : 21091~21097.
    120. Mosier, A. R., D. Schime, et al. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands[J]. Nature, 1991, 350: 330~332.
    121. Nesbit, S. P. and G. A. Breitenbeck. A laboratory study of factors influencing methane uptake by soil[J]. Agri. Ecos. Environ., 1992, 41 : 39~54.
    122. Neue H.-U., Lantin R.S., Wassmann R., et al. 1994. Methane emission from rice soils of the Philippines[M]. In: Atmospheric methane: Sources, sinks and role in global change(M.A.K. Khslil, ed.), Spriger-Verlag Berlin Heidelberg, pp: 55~63.
    123. Nouchi I. 1994. Mechanisms of methane transport through rice plants[M]. In: CH_4 and N_2O: Global emissions and controls from rice fields and other agricultural and industrial sources (eds Minami K, Mosier A. And Sass R.)[M] YOKENDO Publishers, Tokyo. pp: 87~104.
    124. O'Toole J C, et al. Greenhouse selection for drought resistance in rice[J]. Crop Sci, 1981, 21: 325~327.
    125. Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248: 1217~1219.
    126. Sass R. L., Fisher F. M., Harcombe R A. & Turner F. T. Methane production and emission in a texas rice field[J]. Global Biogeochem Cycles, 1990, 4: 47~68.
    127. Sass R. L., Fisher F. M. and Harcombe. Mitigation of methane emission from rice fields: possible adverse effects of incorporated rice straw [J]. Global Biogeochemical Cycles, 1991a, 5(3): 275~287.
    128. Sass R. L., Fisher F. M. CH_4 from paddy fields in the United States Gulf Coast Area[A]. In: CH_4 and N_2O: Global emissions and controls from rice fields and other agricultural and industrial sources[C](eds Minami K, Mosier A, And Sass R.) Tsukuba, Japan: National institute of Agro-Environment Sciences, 1994, 5: 65~77.
    129. Sass R. L., Fisher F. M., Turne F. T. et al. Methane emission from rice fields as influenced by solar
    
    radiation, temperature, and straw incorporation [J]. Global Biogeochemical Cycles, 1991b, 5(3): 335~350.
    130. Sass R. L., Fisher F. M., Wang Y. B., et al. Methane emission from rice fields: The effect of floodwater management[J]. Global Biogeochemical Cycles, 1992, 6: 249~262.
    131. Schütz H., Holzapfel-Pschorn A., Conrad R., et al. A three-year continuous record on the influence of daytime, season, and fertilize treatment on methane emission: rates from an Italian rice field[J]. Journal of Geophysical Research, 1989, 94: 16405~16416.
    132. Shangguan Xingjian, Wang Mingxing, Reine Wassmann, et al. Experimental Study on Methane Production Rate in Rice Paddy Soil[J]. Chinese Journal of Atmospheric Sciences, 1993, 17(3): 313~320,
    133. Shin Yong-Kwang, Lee Yang-soo, Yun Seong-Ho, et al. A simple closed static chamber method for measuring methane flux in paddy soils[J]. J. of Korean Soc. of Soil Sci. and Fert., 1995, 28(2): 183~190.
    134. Wang Mingxing & Li Jing. CH_4 emission and oxidation in Chinese rice paddies[J]. Nutrient Cycling in Agro ecosystems, 2002, 64: 43~55.
    135. Wang Mingxing & Shangguan Xingjian. CH_4 emissions from various rice fields in P.R. China[J]. Theor Appl Climatol, 1996, 55: 129~138.
    136. Wang Mingxing, Dai Aiguo, Shen Renxing, et al. CH_4 emission from a Chinese rice paddy field[J]. Acta Meteorlogica Sinica, 1990, 4(3): 265~274.
    137. Wang Mingxing. 1996. Methane in the rice agriculture, in: From Atmospheric General Circulation to Global Change, Beijing: China Meteorological Press, 647~659.
    138. Wang MingXing. 2001. Methane Emission from Chinese Rice Fields[M], Beijing: Science Press, pp 223.
    139. Wang MX, Shangguan XJ, Shen RX, Wasmann R & Seiler W. Methane production, emission and possible control measures in rice agriculture[J]. Adv Atmos Sci, 1993, 10:307~314.
    140. Wang ZY et al. A four year record of methane emissions from irrigated rice fields in Beijing region of China[J]. Nutr Cycl Agroecosyst, 2000, 58: 55~63.
    141. Weier K. L., Doran J. W., Power J. F., et al. 1993. Denification and the dinitrogen/nitrous oxide ration as affected by soil water, available carbon, and nitrite[J]. Soil Sci. Soc. Am. J., 57: 66~72.
    142. Yagi K & Minami K. Effect of organic matter application on methane emission from some Japanese paddy fields[J]. Soil Sci Plant Nutr, 1990, 36: 599~610.
    143. Yagi K., Tsuruta H., Minami K. The effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring[J]. Global Biogeochemical Cycles, 1996, 10: 255~267.
    144. Yan Xiaoyuan and Cai Zucong. Effects of Nitrogen Fertilizer, Soil Moisture and Temperature on
    
    Methane Oxidation in Paddy Soil[J]. Pedosphere, 1996, 6(2): 175~181.
    145. Yang SS, Chang E H. Effect of fertilizer application on methane emission/production in the paddy soils of Taiwan[J], Biol Fertil. Soils, 1997, 25:245~251.
    146. Z. J. Jia. Z. C. Cai, H. Xu, et al. Effects of rice cultivars on methane fluxes in a paddy soil[J]. Nutrient Cycling in Agro ecosystems, 2002, 64: 87~94.
    147. Zheng X H, Wang M X, Wang Y S et al. Characters of greenhouse gas (CH_4, N_2O, NO) emission from croplands of southeast China[J]. World Resource Review, 1999, 11 (2): 229~246.