美国山核桃苗木根系生长规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文就美国山核桃苗木根系生长规律在浙江省建德市美国山核桃苗木扩繁基地进行了多种措施、多种处理试验,试验结果表明,在不同处理下美国山核桃苗木根系各指标、生长指标等均有较大差异。
     不同接穗美国山核桃苗木根系生物量、根系长度、根系表面积、根系体积、苗木粗度和高度等指标分析结果表明,不同接穗美国山核桃苗木根系之间均存在极显著差异,根系总长均值最大可达2911.36cm,为最小值的1.82倍;根系表面积最大为573.07cm~2,为最小值的1.79倍;根系体积差异也比较大,最大可达10.83cm~3,是最小值的2.11倍;对不同接穗美国山核桃苗木多个指标相关分析表明,各指标两两之间(极个别例外)均呈极显著相关,其中根冠比分别与嫁接点以上粗度、嫁接点以上长度、地上部分鲜重、地上部分干重呈极显著负相关,其它均呈极显著正相关;不同接穗美国山核桃苗木不同根级之间根系长度、根系表面积、根系体积均存在较大差异,根系长度最大在0.0<d<=0.5mm根级,根系表面积最大在1.0<d<=3.0mm根级,根系体积最大在d>3.0mm根级,在同一根级内接穗不同美国山核桃苗木根系长度、根系表面积、根系体积也存在较大差异。
     不同水分胁迫条件对苗木各指标均表现出显著性差异,苗木高度、地径最小值分别比对照减少了24.17%、16.14%,根系长度、根系表面积与根系体积均随着水分胁迫程度的加深而降低,干旱过程中复水根系长度、根系表面积、根系体积均会显著增长,其值比使用保水剂大,但均小于对照。随着土壤含水量的降低苗木地上、地下部分生物量逐渐减小,复水后,苗木地上、地下部分生物量会有所增加,但仍小于对照;随着水分胁迫程度的加深,美国山核桃叶片脯氨酸含量呈现出急剧增加而后又逐渐下降规律,而在干旱胁迫过程中复水,叶片脯氨酸含量重新恢复到原来的水平。
     不同容器类型对苗木地径、苗木高度、苗木地上部分和地下部分生物量、苗木根系长度、根系表面积和根系体积均表现出极显著差异,显著水平均在0.0001以上,通过不同一元非线性回归模型对苗木地径、苗木高度进行模拟表明,各回归模型均有较高决定系数,适应性较好。其中地径以Logistic模型拟合效果最佳,苗木高度以幂函数模型拟合效果最佳;以化学截根容器苗木根系长度、根系表面积最大,其次为空气截根容器,普通育苗容器苗木根系长度和根系表面积最小,空气截根容器根系体积最大,其次为化学截根容器,普通育苗容器苗木根系体积最小。去胚尖与否对苗木根系长度、根系表面积和根系体积未表现出显著性差异;通过对去胚尖措施与容器类型各组合不同径级苗木根系长度与大田直播苗根系对比研究发现,容器苗苗木根系长度要显著高于大田直播苗木根系长度,尤其是细根的长度表现得更为明显。
     截主根措施及不同施肥梯度对苗木地径、高度、新梢长、生物量等都表现出极显著差异,其中均以不截主根各指标较大。中度施肥或高施肥苗木各项指标值较大,不施肥或低施肥各指标值较小,通过对苗木地径、苗木高度、根系体积生长曲线拟合发现,各模型均能较好地对其生长曲线进行拟合,具有较高的适应性,其中,苗木地经以Gompertz等指数模型拟合效果最好,苗木高度以幂函数拟合效果最佳,根系体积以幂函数模型和指数函数模型拟合效果最佳;截主根措施及不同施肥梯度对苗木根系的影响与对地上部分各指标的影响不同,截主根后苗木根系长度、根系表面积、根系体积远远高于不截主根,不同的施肥梯度对苗木根系各指标影响不大。
     不同无性系苗木地上部分各指标随着种子大小降低而呈现下降趋势,种子大小的不同不仅对肉眼能看到的苗木地径、高度有较大影响,对隐藏在地下的根系也有较大影响。
     不同基质对苗木地径及苗木高度均有一定的影响,其中以普通育苗容器对苗木地径及高度影响最大,基质类型和去胚尖措施对苗木地径也有一定的影响,对苗木高度未表现出显著性影响;不同基质对美国山核桃苗木根系长度、根系表面积及根系体积影响结果表明,容器种类对地下部分各指标未表现出显著性影响,而基质类型及去胚尖措施对苗木地下部分各指标影响较大,其中以40%泥炭+40%珍珠岩+20%蛭石为基质及去胚尖1/2苗木的根系长度、根系表面积及根系体积最大;通过不同粗细根段播种试验结果表明,以1.2cm<d<=1.6cm径级根段播种出苗率最高,0.8cm<d<=1.2cm根段播种次之,以0.4cm<d<=0.8cm根段播种的出苗率最低,其中以100ppmABT_6溶液浸泡根段出苗率最大。
The experiment was conducted in multiplication base of pecan seedling in Jiande,Zhejiang Province,which mainly studied on the root growth rule of pecan seedling.Several measures and many treatments were carried out,and the results showed that there were remarkable differences in the indexes of root and growth rule under different experimental conditions.
     Analyzing on such indexes as root biomass,root length,root surface area,root volume,root diameter and root height of different grafted pecan seedling,we could concluded that:there were extremely remarkable differences among the roots of different grafted pecan seedling.That was,the maximum of the average total root length can arrive at 2911.36cm,which was 1.82 times the total length of the minimum;the maximum of the root surface area was 573.07cm2,which is 1.79 times the size of the minimum;the differences of root volume were relative large,the maximum is 10.83cm3 equaled to 2.11 times the size of the minimum;correlation analysis on these indexes showed that each two indexes(very few exceptions)showed a significant correlation:root crown had no collation with the root diameter and the root length which was beyond grafted union,the aboveground fresh weight,the underground dry weight;but had significant positive collation with others.
     Among different root level of different grafted pecan seedling,the root length,root surface area and root volume were different remarkable.The root was the longest in the level of 0.0<d<=0.5mm, the root surface area was the biggest in the level of 1.0<d<=3.0mm,and the root volume was the biggest in the level of d>3.0mm.Moreover,although in the same root level,there were relatively differences among root length,root surface area,root volume of various grafted pecan seedlings.
     Each index of pecan seedling was different dramatically under various water stressing. Comparing with control,the tree height and the minimum of the root diameter were reduced by 24.17%,16.14%respectively,and the indexes of root length,root surface area,the root volume were declining as the water stressing deepening and rising while rewatered,and their value were bigger than that treated by water-retaining,but were still less than the control.In different water stressing conditions,the biomass of aboveground and underground seedlings decreased as the reduction of soil moisture and increased with rewatered,but still less than the control;moreover,as the water stressing deepening,the proline contained in pecan leaves grow rapidly initial and appeared declining trend then,but it would retum to original level with rewatered.
     Affected on the seedling diameter,seedling height,the biomass of aboveground and underground seedling,root length,root surface area and root volume were affected by the type of container dramatically,and the level of dramatically association was beyond 0.0001.Stimulating the seedling diameter and seedling height with one-factor non-linear regression model,each model had higher decision coefficient and the adaptability was better.For example,Logistic model was preferred for root diameter;exponential model was suitable for root height.The indexes of root length,root surface area and root volume were different in various containers,and the index consequence from high to low was as follows:the former was chemical controlling container,air controlling container,ordinary cultivating container;the latter was air controlling container, chemical controlling,and ordinary cultivating container.Whether removing embryos or not had no dramatically association with root length,root surface area and root volume,comparing the root controlled by removing embryos in different containers with ones cultivated in the field,we found that root in container was longer than that in the field,especially the fine root.
     Measure of controlling main root and different fertilizer gradients affected the index of aboveground(seedling diameter,seedling height,fresh treetop strength,biomass and so on)and underground(root length,root surface area,root volume).That was,the indexes of underground were higher under controlling the main root than that without controlled,and the fertilizer gradients had little effect on root index.But the effect to the index of aboveground was different from to that underground,especially,the indexes of aboveground were higher under no controlling main root,middle-fertilizing or high fertilizing conditions,and lower under no fertilizing or low fertilizing conditions.Studying on the growth curving fitting of seedling diameter,seedling height and root volume,we found that each model were fitting for the growth curving very well,including Gompertz index model was suitable for root height,exponential model and index model were fitted for root volume.
     The indexes of aboveground cloning seedling,which appeared decline trend with the size of seed contract,not only had great effect on root diameter and root height,but also had effect on the indexes of underground root.
     Substrate effected the indexes of seedling diameter and seedling height,especially ordinary cultivating container,substrate types and removing embryos measures had some effect on root diameter,but had no association with root height;studying on the effect of substrate on root length, root surface area,root volume,the results were as follows:the indexes of underground had no association with container types,but effected by substrate types and removing embryos measures, especially using 40%turfs + 40%pearlite + 20%vermiculite as substrate and removing half of embryos,in this condition,the indexes reached the maximum.Studying on sowing with various root diameter,we found that the rate of seedling emergence was highest when the diameter was between 1.2cm and 1.6cm,and lowest when the diameter was between 0.4cm and 0.8cm.
引文
[1]S.S.Ray.小麦根重分布模式的定量研究[J].国外农学-麦类作物,1994,(1):25-26.
    [2]Vogt K A,Vogt D J,Palmiotto P A.Review of root dynamics in forest ecosystems grouped by climatic forest type and species.Plant and Soil,1996,187:159-219
    [3]Jackson R B,Mooney H A,Schulze E D.A globe budget for fine root biomass,surface area,and nutrient contents.Proc.Natl.Acad.Sci.USA 1997,94,7362-7366
    [4]Waisel E A,Kafkafi U.Plant Roots.The Hidden Half.Marcel Dekker Inc.New York.1991,948
    [5]马元喜,王晨阳,贺德先,孙剑慧,等.中国农业栽培植物根系研究史料浅析[J].河南农业大学学报,1994,28[4]:332-338
    [6]程建峰,潘晓云,刘宜柏,等.作物根系研究法最新进展[J].江西农业学报,1999,11(4):55-59
    [7]刘晓冰,王光华,[日]森田茂纪,等.根系的研究与展望(上)[J].世界农业 2001,8(总268):33-34
    [8]Weaver,J.E.Root development of field crops[M].McGraw-Hill,New York,1926.
    [9]赵延明.玉米根系研究进展[A].中国作物学会学术年会[C].2003:219-223
    [10]Persson H.Methods of studying root dynamics in relation to nutrient cycling.In:Harrison,A.F.,Ineson P.,Heal O.W.eds.Nutrients cycling in terrestrial ecosystems:Field methods,Application and interpretation.London and New York:Elsvier,1990.
    [11]王志芬,陈学留,余美炎,等.大田冬小麦根系吸收活力的空间分布及其变化动态研究[J].作物学报,1998,24(3):354-360.
    [12]蔡昆争,沈宏,等.根:植物与土壤的动态界面—第六届国际根系研究大会介绍[J].生态学报,2002,22(1):139-140.
    [13]单建平,陶大立.国外对树木细根的研究动态.生态学杂志,1992,11(4):46-49
    [14]Gholz,H.L,Hendry,L.C.,Cropper,W.P.,Jr.Organic matter dynamics of fine roots in plantation of slash pine(Pinus elliottii)in north Florida.Can.J.For.Res.1986,16:529-538
    [15]Hermann R K.Growth and production of tree roots:a review.In:The belowground ecosystem:a synthesis of plant associated processes.Ed.Marshall JK.Range Sci.Sci.Ser.(Colo.State Univ.,Range Sci.Dep.),1977,No.26,7-28
    [16]Kimmins J P,Hawkes B C.Distribution and chemistry of fine roots in a white spruce-subalpine fie stands in British Columbia:implication for management.Can.J.For.Res.1978.8:256-279
    [17]White E H,Pritchett W L.Slash pine biomass and nutrient conditions.In:Forest biomass studies.Editted by Young HE.Misc Publ.Life Sci.Agric.Exp.Stn.(Maine),1971,165-176
    [18]Fogel R.Roots as primary producers in below-ground ecosystems.In:Ecological interactions in soil.Eds.Fitter AH,Atkinson D,Read DJ,Usher M.Blackwell Scientific,Oxford.1985,23-36
    [19]Kurz W A,Kimmins J P.Analysis of error in methods used to determine fine root production in forest ecosystem:a simulation approach.Can J For Res,1987,17:909-912
    [20]Santantonio D,Grace J C.Estimating fine root production and turnover from biomass and decomposition data:a compartment flow model.Can.J.For.Res.1987,17:900-908
    [21]Joslin,J D,Henderson G S.Organic matter and nutrients associated with fine root turnover in a white oak stand.For Sci,1987,33:330-346
    [22]McClaugherty C A,Aber J D,Melillo J M.The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems.Ecology,1982,63:1481-1490
    [23]Bohm,W.Methods of studying root system springer-verlag[M].Berlin.1-140.
    [24]黄瑞冬.植物根系研究方法的发展[J].沈阳农业大学学报,1991,22(4):164-168.
    [25]范辉华.新造毛竹种源竹鞭生长规律研究.竹子研究汇刊,1999,18(3):25-28.
    [26]范辉华.新造毛竹林竹鞭生长相关分析.浙江林学院学报,1999,16(2):203-206.
    [27]Joslin,J D,Henderson G S.Organic matter and nutrients associated with fine root turnover in a white oak stand.For Sci,1987,33:330-346.
    [28]周本智,Mary Anne Sward,Jim L.Chambers等.利用Minirhizotron技术监测火炬松新根生长动态.林业科学研究,2002,15(3):276-284.
    [29]张小全,吴可红,Dieter Murach.树木细根生产与周转研究方法评述.生态学报,2000,20(5):875-883.
    [30]黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展.生态学报,1999,19(2):270-277.
    [31]宇万太,于永强.植物地下生物量研究进展.应用生态学报,2001,12(6):927-932.
    [32]Cheng W,Coleman D C,Box J E.Root dynamics,production and distribution in agroecosystems on the Georgia Piedmont using minirhizotrons Journal of Applied Ecology,1990,27:592-604.
    [33]Crocker T L,Hendrick R L,Ruess R W,etal Substituting root mumbers for length:improving the use of minirhizotrons to study five root dynamics.Applied Soil Ecology,2003,23:127-135.
    [34]Joslin J D,Wolfe M H.Impacts of water input manipulations on fine root production and mortality in a mature hardwood forest.Plant and Soil,19981204:165-174.
    [35]Van Noordw ijk M,de Jager A,Floris J.A new dinension to observations in minirhizotron:a stereo scopic view on root photographs.Plant and Soil,1985,86:447-453.
    [36]白文明,程维信,李凌浩.微根窗技术及其在植物根系研究中的应用[J].生态学报,2005, 25(11):3076-3081.
    [37]Bates G H.A device for the observation of root growth in the soil.Nature,1937,139:966-967.
    [38]Vogt KA,Vogt D J,Bloomfield J.Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level.Plant and Soil,1998,200:71-89.
    [39]周本智.基于小观察窗技术的竹林地下系统动态研究[D].北京:中国林科院,2006.
    [40]麦克丹尼尔斯 L H.坚果栽培[M].北京:中国林业出版社,1990
    [41]姚小华,王开良,任华东等.薄壳山核桃优新品种和无性系开花物候特性研究[J].江西农业大学学报,2004,26(5):675-680
    [42]Darrell Sparks.Pecan Cultivars The Orchard's Foundation[M].Pecan Production Innovations Watkinsville,Georgia,1992:20-21
    [43]张日清,吕芳德,何方等.美国山核桃引种栽培区划研究:Ⅰ原生境与新生境自然条件比较[J].中南林学院学报,2001,21(2):1-5
    [44]张日清,吕芳德,何方,等.美国山核桃引种栽培区划研究:Ⅱ前期引种效果[J].中南林学院学报,2002,22(2):17-20
    [45]傅松玲,吴照柏.美国山核桃嫁接与栽培技术研究[J].经济林研究,2003,21(4):87-89
    [46]S.S.Ray.小麦根重分布模式的定量研究[J].国外农学- 麦类作物,1994,(1):25-26.
    [47]Grier C C,Vogt K A,Keyes M R,et al.Biomass distribution and above- and below-ground production in young and mature Abie amabilis zone ecosystem of the Washington Cascades.Can.J.For.Res.1981,11,155-167
    [48]Keyes M R,Grier C C.Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites.Can.J.For.Res.1981,11:599-605
    [49]Arthur M A,Fathey T J.Biomass and nutrients in an Engelmann spruce-subalpine fir forest in north central Colorado:pools,annual production,and interal cycling.Can J.For.Res.1992,22:315-325
    [50]Joslin,J D,Henderson G S.Organic matter and nutrients associated with fine root turnover in a white oak stand.For Sci,1987,33:330-346
    [51]李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量的研究.应用生态学报,1998,9(4):337-340
    [52]廖利平,杨跃军,汪思龙等.杉木(Cunninghamia lanceolata)、火力楠(Michelia macclurei)纯林及其混交林细根分布、分解与养分归还.生态学报,1999,19(3):342-346
    [53]Vogt K A,Vogt D J,Palmiotto P A.Review of root dynamics in forest ecosystems grouped by climatic forest type and species.Plant and Soil,1996,187:159-219
    [54]Jackson R B,Mooney H A,Schulze E D.A globe budget for fine root biomass,surface area,and nutrient contents.Proc.Natl.Acad.Sci.USA 1997,94,7362-7366
    [55]姚小华,王开良,任华东等.薄壳山核桃优新品种和无性系开花物候特性研究[J].江西农业大学学报,2004,26(5):675-680
    [56]Darrell Sparks.Pecan Cultivars The Orchard's Foundation[M].Pecan Production Innovations Watkinsville,Georgia,1992:20-21
    [57]麦克丹尼尔斯 L H.坚果栽培[M].北京:中国林业出版社,1990
    [58]姚小华,王开良,任华东,等.薄壳山核桃优新品种和无性系开花物候特性研究[J].江西农业大学学报,2004,26(5):675-680
    [59]Sparks D.Pecan Cultivars:The Orchard's Foundation[M].Watkinsville:Pecan Production Innovations,1992:20-21
    [60]Abrams M D,Kloeppel B D,Kubiske M E.Ecophysiological and morphological responses to shade and drought in two contrasting ecotypes of Prunus seroti na[J].Tree Physiology,1992,10:343-355.
    [61]Smit J,Van den driessche R.Root growth and water use efficiency of Douglas fir(Pseudotsuga menziesii(Mirb.)Franco)and lodgepole pine(Pi nus contorta Dougl.)seedlings[J].Tree Physiology,1992,11:401-410.
    [62]Norby R J.Forest canopy productivity index[J].Nature,1996,381:561-564.
    [63]肖春旺,周广胜,赵景柱.不同水分条件对毛乌素沙地油蒿幼苗生长和形态的影响[J].生态学报,2001,21 12):2136-2140.
    [64]苏梦云,范铭庆.渗透胁迫和钙处理对杉木幼苗膜脂过氧化及保护酶活性的影响[J].林业科学研究,2000,13(4):391-396.
    [65]肖春旺,刘玉成.不同光环境的四川大头茶幼苗的生态适应[J].生态学报,1999,19(3):422-426.
    [66]肖春旺,董鸣,周广胜等.鄂尔多斯高原沙柳幼苗对模拟降水量变化的响应[J].生态学报,2001,21(1):171-176.
    [67]Wilson J B.Shoot competition and root competition[J].Appl.Ecol.,1988,25(2):279-296.
    [68]Huston M A,Smith T M.Plant succession:Life history and competition[J].American Naturalist,1987,130(2):168-198.
    [69]Tilman D.Plant Strategies and the Structure and Dynamics of Plant Communities[M].Princeton:Princeton University Press,1988:52-97.
    [70]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,(1):15-21.
    [71]Burdett A.N,Martin P.A.F.Chemical root pruning improves the root system morphology of of coniferous seedlings[J].HortScience,1982,17(4):622-624
    [72]Wenny D.L,Liu J,et al.First year field growth of chemically root pruned container seedlings[J].New Forests,1988,2(2):111-118
    [73]刘勇.碳酸铜在容器育苗中的应用[J].世界林业研究,1991,4(1):91-92
    [74]柏志清.马尾松大田芽苗截根育苗技术[J].安徽林业科技,2005,3:34-36
    [75]王德祥,杨灵仙,蒋明等.马尾松大田育苗截根技术[J].浙江林学院学报,1998,15(3):256-259
    [76]齐国辉,张林萍等.核桃断根育苗效果试验[J].河北果树,2002,(2):8-9
    [77]邓君玉,刘玉芬,蒲天华等.黑松当年生苗切根培育试验[J].江苏林业科技,2004,31(1).28-30
    [78]周本智.麻竹出笋和高生长规律的研究.林业科学研究,1999,12(5):461-466
    [79]宇万太,于永强等.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927-932
    [80]苏建荣,邓疆,罗香等.元宝槭幼树施肥研究Ⅰ.不同施肥处理对生长与构型的影响[J].林业科学研究,2005,18(2):147-152
    [81]郑芳楫,高传壁,朱永元,任华东等.黑荆树施肥研究[J].林业科学研究,1990,3(2):172-177
    [82]邱尔发,郑郁善,洪伟等.竹林施肥研究现状及探讨[J].江西农业大学学报,2001,23(4):551-555
    [83]赵和文,刘勇,柳振亮等.黄连木幼苗施肥试验研究[J].北京农学院学报,2005,20(1):68-70
    [84]倪丽,章建新,金加伟等.氮肥施用对高产大豆根系、干物质积累及产量的影响[J].新疆农业大学学报,2004,27(2):36-39
    [85]唐启义,冯光明.实用统计分级及其DPS数据处理系统[M].北京:科学出版社,2002