高性能热电材料的高温高压合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:HPHT Synthesis Investigations of High Performance Thermoelectric Materials
  • 作者:宿太超
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2009
  • 导师:贾晓鹏
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-06-01
  • 答辩委员会主席:申德振
摘要
本论文工作主要是对几种有应用前景的热电材料进行了高温高压合成研究。
     高温高压制备出接近单相且元素分布均匀的三元热电材料AgSbTe_2。电学性质测试发现高压克服了常压制备AgSbTe_2样品电阻率高的缺点,最大ZT值为0.7。
     对非化学计量比AgSbTe_2进行研究,发现高压下加入少量Sb2Te3能够增大AgSbTe_2的Seebeck系数,降低其电阻率,同时得到极低的热导率,最大的ZT值达1.03。
     高温高压制备了Ag0.8Pb18SbTe_20,室温下测试发现高压降低了其电阻率和Seebeck系数,特别在4.0 GPa附件变化很大,可能发生了半导体到半金属的转变。利用Se替代Te制备了五元合金Ag0.8Pb18SbTe_20-xSex,其中高压合成Ag0.8Pb18SbTe10Se10样品具有较大的功率因子和很低的热导率,室温下的ZT值达到0.43,很接近Hus在Science中报道的结果(0.44)。
     高压制备了方钴矿结构材料CoSb3,研究表明高压方法能够在较短的时间内、采用很简单的固相反应工艺合成出常压下制备比较困难的CoSb3。其电阻率和Seebeck系数随合成压力的升高而增大,采用第一原理计算显示高压下CoSb3的帯隙变宽可能是导致其高压电学性质变化的原因。
     高压制备了无裂纹、力学性能好的新型热电材料Zn4Sb3,通过电学测试发现高压对其热电性能影响不大。高温高压淬冷制备了PbSe,适当的高压能够有效降低其电阻率、提高其功率因子,最大的ZT达到0.88。对PbTe进行了高温高压下重金属化合物Bi2Te3和Sb2Te3的掺杂,表明高压掺杂Bi2Te3和Sb2Te3具有常压PbI2掺杂可有效地调制载流子浓度和重金属掺杂降低晶格热导率的优点。
Thermoelectric material is one kind of function materials that can directlyconvert electricity and heat. The thermoelectric materials could be used asgenerators and refrigeration. The thermoelectric generators can convertterrestrial heat and the waste heat of industry to electricity directly;Thermoelectric refrigeration devices use electricity to pump heat from cold tohot, both without any moving parts or bulk fluids. They are lightweight, small,portable, inexpensive, quiet performance and the ability for localized‘spot’cooling. Thus thermoelectric materials are wildly used.
     Presently, the use of TE devices is limited by their low efficiencies. Up todate, thermoelectric materials were mostly used in the field of national defenceand high-tech. The efficiency of a TE device depends on the TE material. Theefficiency of a TE material can be defined by the dimensionless thermoelectricfigure of merit, ZT, where T is the absolute temperature and Z =σκS2(S is thethermopower,σis the electrical conductivity andκis the total thermalconductivity). In the function,σS2 or S2/ρ(ρis the electrical resistivity) is thepower factor which characters the electric properties.
     There are now several good reasons to renew the quest for superior TE materials, with worsening environment and energey source. Several approacheshave been adopted in the research for the improved thermoelectric materials,ranging from the synthesis of new bulk materials with complex structure andquantum-well structures that may exhibit improved ZT to combinatorialsynthesis techniques that rapidly screen materials for desirable thermoelectricproperties. Pressure tuning may offer a new mean.
     The group of J. V. Badding in Pennsylvania State University and Sergey VOvsyannikov in Russian Academy of Sciences found that the power factor and figure ofmerit for many materials could be improved largely. For example, the power factor ofPbTe based materials could be improved 107 times. Unfortunately, these highthermoelectric performance can not be kept after unload the pressure. While the hightemperature combined with high pressure could resolve this defect for high pressuresolely.
     About high pressure and high temperature synthesized TE materials, DoctorZhu first prepared TE materials used cubic multi-anvil high pressure apparatus.PbTe samples that have NaCl construction were synthesized under pressureranging 3.0-5.0GPa and temperature ranging 900-1000℃and time ranging 10-30 minuter. His results showed that the electrical properties of PbTe sampleswere modulated HPHT and the thermoelectric performance was improvedlargely. The in-stiu measurement of PbTe under HPHT shows that the highperformance of PbTe under high pressure was kept by quenching successfully. Inaddition, the PbTe doped with Bi, Sb and I were studied and the TE propertieswere improved farther.
     Up to date, there is slightly report on thermoelectric materials except PbTebased materials synthesized by HPHT. As mention above, the best bulk TEmaterials are the compound with complex structure. For example: LAST(AgPb18SbTe_20) and TAGS (GeTe-AgSbTe_2) which contain all four elements. In addition, they could be regarded as the alloys of AgSbTe_2. The ternarycompound AgSbTe_2 has the same crystal structure (Fm3m) with PbTe. AgSbTe_2is one kind of thermoelectric material with high performance which was foundin 1960s. But there was found that this material has many drawbackssynthesized with normal methods. For example: it is difficult to obtain singlephase AgSbTe_2; the TE properties is not uniform; it is difficult to doping and theelectrical resistivity is so high that harms the TE performance. According to thestudies about PbTe early, the HPHT method many advantages, such as restrainingthe disorder, phase separation and other complicating factors during the preparation formaterials.
     First, we prepared ternary TE materials AgSbTe_2 by vacuum melting andHPHT methods. The measurement of XRD shows that the sample prepared byvacuum melting contains many other phases such as Ag2Te and Sb2Te3. Whilethe HPHT synthesized samples are all near single phase except a small mount ofSb2Te3. The SEM-EDS show that the sample prepared at HPHT are moreuniformly than that of the same sample prepared by vacuum melting.
     The electrical resistivity and Seebeck coefficient of AgSbTe_2 synthesized byHPHT were measured at room temperature. The measured results show that theelectrical resistivity and Seebeck coefficient decrease with an increase ofpressure. The power factor of AgSbTe_2 increases with an increase of syntheticpressure. In order to study the mechanism of AgSbTe_2 under high pressure, thein-stiu measurement of electrical resistivity was used. The result show that theresistivity of the AgSbTe_2 sample prepared by vacuum melting decreases with anincrease of pressure, however, regretfully, low electrical resistivity under highpressure returns again to the primary state once unloading the pressure. The in-stiumeasurement results and the HPHT synthesis experimental results indicate thatAgSbTe_2 sample has low electrical resistivity under high pressure, which is partially kept by HPHT quenching.
     Nonstoichiometric AgSbTe_2 with excessive Ag2Te (with the expression as(AgSbTe_2)1-x(Ag2Te)x) were prepared by high pressure and high temperature (HPHT)method. The samples are near single phase AgSbTe_2 with a small quantity of impuritiesincluding Sb2Te3 and Ag2Te. The measurements of electrical properties at roomtemperature show that the Seebeck coefficient and the electrical resistivity for(AgSbTe_2)1-x(Ag2Te)x decrease with an increase of the synthetic pressure and x, whichindicate that high pressure combining with alloying with Ag2Te could modulate theelectrical properties of AgSbTe_2 effectively.
     Nonstoichiometric AgSbTe_2 with excessive Sb2Te3 (AgSbTe_2)1-x(Sb2Te3 )x) werealso studied under HPHT. The results show that the resistivity of AgSbTe_2 wasdepressed by the effect of high pressure and the doping of Sb2Te3. In addition, theSeebeck coefficient was improved when doped with a small quantity of Sb2Te3. So thepower factor was improved effectively by alloying with a little of Sb2Te3. Thetemperature dependence of thermoelectric performance was studied for theAg0.9Sb2.1Te_2.2 prepared at 2.0 GPa which has the largest power factor at roomtemperature. The temperature dependent electrical properties indicate that the sample isdegenerate semiconductor. The thermal conductivity is much lower than that of PbTe andBi2Te3 and similar to the AgSbTe_2 sample prepared at normal pressure. The largestfigure of merit ZT=1.03 was obtained at 500K, which is match to the state of artthermoelectric materials.
     The alloy of AgSbTe_2 and PbTe (Ag0.8Pb18SbTe_20) were synthesized by HPHTquenching. The samples were single phase with the structure of NaCl. The pressuredependence of thermoelectric properties were studied at room temperature, which hasthe similar effect to that of AgSbTe_2. Especially, the Seebeck coefficient and electricalresistivity dropped suddenly at the pressure of 4.0 GPa. This pressure may be thechanging pressure of semiconductor to semimetal.
     Thermoelectric materials Ag0.8Pb18SbTe_20-xSex were studied under high pressure. Themeasurement results show that pressure and alloying with Se have the similar effect onthe electrical properties for AgPb18SbTe_20. The reason should be contribute to thedifferent ionic radii of Te and Se which is 0.142 and 0.122nm respectively. The chemicalinternal stress should be improved when the Te atom was substituted by Se, which isequal to the effect of exterior pressure. Large power factor and lower thermalconductivity was obtained for the sample of Ag0.8Pb18SbTe10Se10. The high figure ofmerit, ZT reach to 0.43 at room temperature which is nearly to the result of Hus report atScience (0.44).
     Skutterudites compound CoSb3 were studied by HPHT. Single phase CoSb3 could besynthesized within just 20 minutes, which indicates that HPHT is effective method tofabricate this kind of compound. The measurement of transport properties show that theSeebeck coefficient and resistivity increase with an increase of synthetic pressure. Thecalculation of the band structure studies show that the band gap increases with anincrease of pressure which may be source of decreasing of carrier concentration.
     New kind of TE materials Zn4Sb3 were fabricated by HPHT successfully. Theelectrical properties measurements show that the TE performance of Zn4Sb3 was nearlynot impacted by high pressure.
     PbSe with NaCl structure were prepared by HPHT. The electrical resistivity decreaseswith increase of pressure up to 4.5 GPa and then increase largely. The largest powerfactor at room temperature reach to 29μWcm-1K-2 for the sample prepared at 4 GPawhich is much higher that of the same sample prepared by the method at ambientpressure. The temperature- dependent TE properties study show that the PbSe sampleprepared at 4 GPa is a degenerate semiconductor. The maximum figure of merit,ZT=0.88 was obtained at 530K which matches to that of the state of art TE materialPbTe.
     The transport properties and thermoelectric performance of PbTe doped with Bi2Te3 and Sb2Te3 at HPHT were studied. The carrier concentrations increase with the dopedcontent. The Seebeck coefficient and resistivity were sensitive to the dopant, whichdecrease largely when doped with trice of Bi2Te3 and Sb2Te3. The phonon thermalconductivity decreases with an increase of the content of dopant. High figure of merit0.28 and 0.26 were obtained at room temperature.
     In conclusion, the results obtained in our work indicate that HPHT is an effectivemethod for synthesizing the TE materials. The TE performance for the materials with thestructure of NaCl could be improved by high pressure according to the results by now.
引文
[1] Disalvo F. J., Thermoelectric Cooling and Power Generation [J]. Science, 1999, 285: 703.
    [2] Venkatasubramanian R., Siivola E.,. Colpitts T et al. Thin-film thermoelectricdevices with high room-temperature figures of merit [J]. Nature, 2001,413 :597.
    [3] Tritt. T. M. Thermoelectric Materials [J]. Science,1999,283 : 804.
    [4] Sales B. C., Mandrus D., and Williams R. K. Filled Skutterudite Antimonides: ANew class of thermoelectric Materials [J]. Science, 1996, 272(5) : 1325-1328.
    [5] Wood C.. Materials for thermoelectric energy conversion [J]. Rep Prog Phys,1988,51 : 459.
    [6] Vining C. B., Semiconductors are cool [J]. Nature, 2001, 413 : 577.
    [7] B. C. Sales. Smaller is cooler [J]. Science, 2002, 295 : 1248.
    [8] G. D. Mahan, B. Sales and J. Sharp. Thermoelectric Materials [J]. Phys.Today, Mar1997, 42.
    [9] Crane D. and Jackson G., The potential of thermoelectric waste heat recovery forautomotive electrical systems, on advanced automotive electrical/electroniccomponents and systems. 2002.
    [10]J. Seebeck,Abh. Preuss. Akad. Wiss., P. 265 (1822-1823).
    [11]高敏,张景韶等.《温差电转换及其应用》[M].兵器工业出版社,1996.
    [12]Hsu K. F., Loo S., et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials withhigh figure of merit [J]. Science, 2004, 303 : 818.
    [13]糜建立.方钴矿基热电材料的纳米化及热电性能[D].浙江大学博士论文.
    [14]Bhandari C. M., Handbook of Thermoelectrics.[M]. Florida. CRC Press, 1995.
    [15]Mahan G. D., Solid State Physics[M]. 1998, 51 : 81.
    [16]R. P. Chasmar and R. Stratton. J. Electron. Control [M]. 1959, 7 : 52.
    [17] G. D. Mahan, Figure of merit for thermoelectrics [J].Journal. Applied of. Physics.65 (1984)1578.
    [18]Chen N. et al. Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1–x[J]. Applied. Physics. Letters, 2005, 87 : 171903.
    [19] Androulakis, J. et al. Advanced. Materials. 2006, 18, : 1170.
    [20] Androulakis, J.; Hsu, K. F.; Pcionek, R.; Kong, H. J.; Uher, C.; D’Angelo, Downey,J.; Hogan A. D., Kanatzidis T., M. G.. Nanostructuring and High ThermoelectricEfficiency in p-Type Ag(Pb1-ySny)mSbTe2+m., [J]. Advanced Materials. 2006, 18, :1170.
    [21]Poudeu, P. F. P.; D’Angelo, J.; Downey,A. D.; Short, J. L.; Hogan, T.; Kanatzidis, M.G. Angew. High thermoelectric figure of merit and nanostructuring in bulk p-typeNa1-xPbmSbyTem+2 , Chem., Int. Ed. 2006, 45 : 3835.
    [22]Aurelie Gueguen, Pierre F. P. Poudeu, Chang-Peng Li, Steven Moses, Ctirad Uher,Jiaqing He, Vinayak Dravid, Konstantinos M. Paraskevopoulos, and Mercouri G.Kanatzidis. Thermoelectric Properties and Nanostructuring in the p-Type MaterialsNaPb18-xSnxMTe20 (M = Sb, Bi) [J].Chemistry. Materials. 2009, 21 (8), pp1683–1694
    [23]Shi X., Chen L., Yang J., et al. Enhanced thermoelectric figure of merit of CoSb3 vialarge-defect scattering.[J]. Applied. Physics. Letters, 2004, 84 : 2301.
    [24]Lee C., Kito H., Ihara H., et al., Single crystal growth of skutterudite CoP3 underhigh pressure[J].Journal. of Crystal. Growth, 2004, 263 : 358.
    [25]Yang L, Wu J., Zhang L., Microstructure evolvements of a rare-earth filledskutterudite compound during annealing and spark plasma sintering [J]. Materialsand Design 2004, 25 : 97.
    [26]Kim S. W. Kim, Kimura Y., Mishima Y., Effects of doping on the high-temperaturethermoelectric properties of IrSb3 skutterudite compounds [J]. Journal of. ElectronicMaterials 2003, 32 : 1141.
    [27]Borsshchevsky A., Fleurial J. P., et al., Proceedings of the International Conferenceon Theremoelectrics [J]. AIP Conference Proc. (316)31-33.
    [28] Li D ,Yang K, Hng H H , et al, Synthesis and high temperature thermoelectricproperties of calcium and cerium double-filled skutterudites Ca0.1CexCo4Sb12. [J]J. Phys. D:Appl. Phys. 2009 42: 105408.
    [29]M.Puyet, Lenoir B., Dauscher A., et al., High temperature transport properties ofpartially filled CaxCo4Sb12 skutterudites [J]. Journal. Applied of. Physics. 2004, 95 :4852.
    [30]Feldman J. L., Singh D. J., Kendziora C., et al., Lattice dynamics of filledskutterudites: La(Fe,Co)4Sb12, [J]. Physical. Review. B., 2003, 68 : 94301.
    [31]Kuznetsov V. L., Kuznetsova L. A., Rowe D. M., Effect of partial void filling on thetransport properties of NdxCo4Sb12 skutterudites [J]. J. Phys. Condens. Mat. 2003,15 : 5035.
    [32]Berardan D., Godart C., Alleno E., et al., Chemical properties and thermopower ofthe new series of skutterudite Ce1-pYbpFe4Sb12 [J]. Journal. of Alloys. Compounds.2003, 351 : 18.
    [33]Bauer E., Berger S., Paul C., et al., Crystal field effects and thermoelectric propertiesof PrFe4Sb12 skutterudite [J]. Physical. Review. B. 2002, 66 : 214421.
    [34]Abe K., Sato H., Matsuda T. D., et al., Transport properties in the filled-skutteruditecompounds RERu4Sb12 (RE-La, Ce, Pr and Nd); an exotic heavy fermion semimetalCeRu4Sb12 [J]. J. Phys.: Condens. Mat. 2002, 14 : 11757.
    [35]Grytsiv A., Rogl P., Berger S., et al., Structure and physical properties of thethermoelectric skutterudites EuyFe4-xCoxSb12 [J]. Physical. Review. B, 2002, 66 :94411.
    [36]Dyck J. S., Chen W., Yang J. H., et al., Effect of Ni on the transport and magneticproperties of Co1-xNixSb3 [J]. Physical. Review. B., 2002, 65 : 115204.
    [37]He Qinyu , Hu Shejun , Tang Xingui, Lan Yucheng, Yang Jian, Wang Xiaowei, RenZhifeng , Hao Qing , and Chen Gang , The great improvement effect of pores on ZTin Co1?xNixSb3 system [J]. Applied. Physics. Letters. 2008, 93, : 042108 (1-3)
    [38]He Zeming, Stiewe Christian , Platzek Dieter , Karpinski Gabriele , Müller Eckhard ,Li Shanghua , Toprak Muhammet , and Muhammed Mamoun, Effect of ceramicdispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites [J]. Journal.Applied of. Physics. 2007, 101 : 043707 (1-7).
    [39]Muhammet S. Toprak, Christian Stiewe, Dieter Platzek, Simon Williams, LucaBertini, Eckhard Muller, Carlo Gatti, Zhang Yu, Michael Rowe, and MamounMuhammed. The Impact of Nanostructuring on the Thermal Conductivity ofThermoelectric CoSb3 [J]. Advanced. Functional. Materials. 2004, 14, No.12,December : 1189-1196.
    [40]Mi J.L., Zhao,X.B, Zhu T.J., Tu J.P.. Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites [J]. Applied. Physics. Letters. 2007, 91 : 172116.
    [41]Liu Wei-Shu, Zhang Bo-Ping, Zhao Li-Dong and Li Jing-Feng, Improvement ofThermoelectric Performance of CoSb3?xTex Skutterudite Compounds by AdditionalSubstitution of IVB-Group Elements for Sb [J]. Chemistry. Materials, 2008, 20 (24),: 7526–7531.
    [42]Iversen Bo B., Anders E. C. Palmqvist, David E. Cox, George S. Nolas, Galen D.Stucky, Nick P. Blake, Horia Metiu, Why are Clathrates Good Candidates forThermoelectric Materials? [J]. Journal of Solid State Chemistry, 2000, 149 ( 2) :455-458.
    [43]Nolas G. S.,Cohn J. L.,Slack G. A. and Schujman S. B.,Semiconducting Geclathrates: Promising candidates for thermoelectric applications [J], Applied.Physics. Letters, 1998, 73(2) : 178-180.
    [44]Nick P. Blake, Susan Latturner, and J. Daniel Bryan, et al., Band structures andthermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30,and Ba8In16Sn30 [J]. Journal of Chemitry. Physics., 2001, 115(17) : 8060-8073.
    [45]Cai K., Muller E., Drasar C., et al., Preparation and thermoelectric properties of Al-doped ZnO ceramics [J]. Mat. Sci. Eng. B-Soid, 2003, 104 : 45.
    [46]Terasaki I., Sasago Y., Uchinokura K.. Large Thermoelectric Power in NaCo2O4Single Crystals [J]. Physical. Review. B. 1997, 56(20) : R12685~12687.
    [47]Wang Y., Rogado N., Cava R., et al., Spin entropy as the likely source of enhancedthermopower in NaxCo2O4 [J]. Nature, 2003, 423 : 425.
    [48]Iwasaki K., Yamane H., Kubota S., et al., Power factors of Ca3Co2O6 and Ca3Co2O6-based solid solutions [J]. Journal. of Alloys. Compounds., 2003, 358 : 210.
    [49]He Qinyu, Hao Qing and Chen Gang, Poudel Bed, Wang Xiaowei, Wang Dezhi, andRen Zhifeng, Thermoelectric property studies on bulk TiOx with x from 1 to 2 [J].Applied. Physics. Letters, 2007, 91 : 052505.
    [50]Migiakis P., Androulakis J., Giapintzakis J., Thermoelectric properties of LaNi1-xCoxO3 solid solution [J]. Journal of Applied. Physics., 2003, 94 : 7616.
    [51]Ken Kurosaki, Atsuko Kosuga, Hiroaki Muta, Masayoshi Uno, and ShinsukeYamanaka. Ag9TlTe5: A high-performance thermoelectric bulk material withextremely low thermal conductivity [J]. Applied. Physics. Letters. 2005, 87 : 061919.
    [52]W?lfing Bernd, Kloc Christian, Teubner Jens, and Bucher Ernst. High PerformanceThermoelectric Tl9BiTe6 with an Extremely Low Thermal Conductivity [J]. Physical.Review. Letters. 7 May 2001, 86 : 4350-4353.
    [53]Kosuga Atsuko, Kurosaki Ken, Muta Hiroaki, and Yamanaka Shinsuke.Thermoelectric properties of Tl–X–Te (X=Ge, Sn, and Pb) compounds with lowlattice thermal conductivity [J]. Journal of Applied. Physics. 2006, 99 : 063705.
    [54]Kurosaki Ken, Uneda Hironori, Muta Hiroaki, Yamanaka Shinsuke. Extremely lowthermal conductivity of AgTlTe [J]. Journal of. Alloys Compounds. 2005, 395 : 304-306.
    [55]Kurosaki Ken, Kosuga Atsuko, Yamanaka Shinsuke. Thermoelectric properties ofTlBiTe2 [J]. Journal of. Alloys Compounds. 2003, 351 : 279-282.
    [56]Heremans Joseph P., Jovovic Vladimir, Toberer Eric S., Ali Saramat, Kurosaki Ken,Charoenphakdee Anek, Yamanaka Shinsuke, Snyder G. Jeffrey. Enhancement ofThermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States[J]. Science. 25 July 2008, 321 : 554-557.
    [57]Sales B. C., Chakoumakos B. C., and Mandrus D. G., Thermoelectric properties ofthallium-filled skutterudites [J]. Physical. Review. B. 2000, 61 : 2475 .
    [58]Ali Shakouri and John E. Bowers, Heterostructure integrated thermionic coolers [J].Applied Physics Letters, 1997, 71 : 1234.
    [59]Ovsyannikov S. V. and Shchennikov V. V. Pressure-tuned colossal improvement ofthermoelectric efficiency of PbTe, Applied Physics Letters. 2007, 90 : 122103.
    [59]Ovsyannikov S. V., Shchennikov V. V., Vorontsov G. V., Manakov A. Y.,Likhacheva A. Y., and Kulbachinskii V. A. [J]. Journal of Applied. Physics. 2008,104, : 053713.
    [60]Meng J. F., Polvani D. A., Jones C. D. W., DiSalvo F. J., Fei Y., and Badding J. V.,Pressure tuning in the chemical search for improved thermoelectric materials:NdxCe3-xPt3Sb4 [J]. Chemistry. Materials, 2000, 12 : 197.
    [61]Meng J. F., Shekar N. V. C., Badding J. V., Chung D. Y., and G.Kanatzidis M.,Multifold enhancement of the thermoelectric figure of merit in p-type BaBiTe3 bypressure tuning [J]. Journal of Applied. Physics. 2001, 90 : 2836.
    [62]Polvani D A, Meng J F, N V Chandra Shekar, Sharp J and Badding J V, Largeimprovement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3 [J].Chemistry Material. 2001, 13 : 2068.
    [63]Meng J. F., Shekar N. V. C., Badding J. V., et al., Threefold enhancement of thethermoelectric figure of merit for pressure tuned Sr8Ga16Ge30 [J]. Journal of Applied.Physics 2001, 89 : 1730.
    [64]Meng J. F., Shekar N. V. C., Chung D. Y., et al., Improvement in the thermoelectricproperties of pressure-tuned beta-K2Bi8Se13[J]. Journal of Applied. Physics. 2003,94 : 4485.
    [65]Chandra Shekar N.V., Polvani D.A., Meng J.F., Badding J.V. , Improvedthermoelectric properties due to electronic topological transition under high pressure[J]. Physica B: Condensed Matter, 2005, 358: 14-18.
    [66]Zhu P. W., Jia X., Chen H. Y., Chen L. X., Guo W. L., Mei D. L., Liu B. B., Ma H.A., Ren G. Z., and Zou G. T. Giant improved thermoelectric properties in PbTe byHPHT at room temperature, [J]. Chemical. Physics. Letter. 2002, 359 : 89.
    [67]Zhu P. W., Chen L. X., Jia X., Ma H. A., Ren G. Z., Guo W. L., Liu H. J. and Zou G.T.,Synthesis of Bulk Nanocrystalline Pb-Sn-Te Alloy Under High Pressure [J]. J.Phys.: Condens. Matter, 2002, 14 : 11011.
    [68]Ren G Z, Jia X P, Zhu P W, Zang C Y, Ma H A and Wang X C, Chin. Phys. Lett.2005, 22 : 236.
    [69]Bundy F. P., In Progress in Very High Pressure research. Edited by F. P. Bundy [M].J. W. R. Hibbard, and H. M. Strong Wiley, New York,1961.
    [70]Ubaldini A., Awana V.P.S., Balamurugan S., Takayama-Muromachi E., Highpressure high temperature (HPHT) synthesis and physical characterization ofFeSr2EuCu2O8?δ.[J]. Physica C: Superconductivity, 2007, 460-462 : 366-368.
    [71]Wang Xianjie, Sui Yu, Song Xiudan, Zhu Ruibin, Qian Zhengnan, Su Wenhui, TangJinke, Influence of hot pressure on the magnetoresistance of CrO2 [J]. Journal ofApplied Physics, 2007, 101(9) : 09J509.
    [72]Qin J M, Yao B, Jia X P , Shan C X , Zhang J Y , Ma H A and Shen D Z ,Characterizations of single-phased cubic Mg0.5Zn0.5O prepared at high pressure andhigh temperature [J]. J. Phys. D:Appl. Phys. 2008, 41 : 155408
    [73]Badding J. V., Meng J. F., and Polvani D. A., Pressure tuning in the search for newand improved solid state materials [J]. Chemistry. Materials. 1998, 10 : 2889.
    [74]S. K. Plachkova, Phys. Status Solidi A, 1985, 92 : 273.
    [75] Christakudis G Ch, Plachkova S K, Shelimova L E, et al. Thermoelectric Figure ofMerit of Some Compositions in the System (GeTe)1-x[(Ag2Te)1-y(Sb2Te3)y]x, [J].Phys. State Sol. (a), 1991, 128: 465.
    [76] Christakudis G Ch, Plachkova S K, Shelimova L E. Thermoelectric Power of(GeTe)1-x ((Ag2Te)1-y (Sb2Te3)y)x Solid Solutions (y = 0.6; 0 x 1), [J]. Phys.State Sol. (a), 1987, 102 : 357.
    [77] Christakudis G Ch, Plachkova S K, Avilov E S, et al. Electrical resistivity andscattering mechanisms of (GeTe)1-x ((Ag2Te)1-y (Sb2Te3)y)x solid solutions, [J]. Phys.State Sol. (a) , 1987, 99: 593.
    [78] Christakudis G Ch, Plachkova S K, Petrov K, et al. Bulg. J. Phys, 1984, 11: 36.
    [79] Rosi F D, Hockings E F, Lindblad N E. Semiconducting materials forthermoelectric power generation, [J]. RCA Rev, 1961, 22: 82.
    [80] Chung D Y, Hogan T, Brazis P, et al. CsBi4Te6: A High-PerformanceThermoelectric Material for Low-Temperature Applications, Science, 2000,287:1024.
    [81] Assenov R, Polychroniadis E K. On the comparative characterization of singlecrystalline PbTe(I) grown by vertical Bridgman and travelling heater methods, [J].Journal of crystal growth, 1991, 112 (1): 227.
    [82] Nakanishi T, Takeshita N, Mori N. A newly developed high-pressure cell by usingmodified Bridgman anvils for precise measurements in magnetic fields at lowtemperatures, [J]. Review of Scientific Instruments, 2002, 73 (4): 1828-1831.
    [83] Distanov V E, Nenashev B G, Kirdyashkin A G., et al. Proustite single-crystalgrowth by the Bridgman–Stockbarger method using ACRT, [J]. Journal of CrystalGrowth, 2002, 235, (1-4): 457-464
    [84] Radojevic V, Valcic A, Nikolic S. Interface shape and distribution of solute duringvertical Bridgman growth of Al–Cu alloy, [J]. Materials Letters, 2002, 52(4-5): 248-254
    [85] Srifhar K, Chattopadhyay K. Synthesis by mechanical alloying and thermoelectricproperties of Cu2Te , [J]. J. of Alloys and Compounds, 1998, 264 : 293.
    [86] Kuhr C t, Schults L. Magnetic properties of nanocrystalline mechanically alloyedFe-M(M=Al, Si, Cu), [J]. J. Appl. Phys., 1993,73: 1975.
    [87] Zhou Min, Li Jing-Feng, Kita Takuji. Nanostructured AgPbmSbTem+2 System BulkMaterials with Enhanced Thermoelectric Performance, [J]. Am. Chem. Soc.,2008,130 (13): 4527–4532
    [88] Bokhonov B B. Konstanchvk I G . The stages of formation of a solid solutionduring the mechanical alloying of Si and Ge [J]. .J. of Alloys and Compounds, 1993,191: 239-242.
    [89] Zhao X B , Ji X H, Zhang Y H, et al. Ismuth telluride nanotubes and the effects onthe thermoelectric properties of nanotube-containing nanocomposites, [J]. Appl.Phys. Lett., 2005, 86(6) :062111.
    [90] Venkatasubramanian, Siivola R., Colpitts E T.; O'Quinn B. Thin-filmthermoelectric devices with high room-temperature figures of merit., [J]. Nature ,2001, 413 (6856): 597-602.
    [91] Harman T C, Taylor P J, Spears D L, et al. in Proc. 1999, [C]. Piscataway, NJ: 18thInt. Conf. on Thermoelectrics (ed.Ehrlich, A.) 280-284 (IEEE,).
    [92] Harman T C, Walsh M P, Laforge B E, Turner G W. Nanostructured thermoelectricmaterials, [J]. J. Electron. Mater. 2005, 34 (5): 19-22.
    [93] Disalvo F J. Thermoelectric Cooling and Power Generation , [J]. Science, 1999,285: 703.
    [94] J. V. Badding. High-pressure synthesis, characterization, and tuning of solid statematerials, [J]. Annu. Rev. Mater. Sci, 1998, 28 : 631.
    [95] Haygarth T C, Geffing I C, Kenned y G C. Determination of the Pressure of theBarium I-II Transition with Single-Stage Piston-Cylinder Apparatus, [J]. J. Appl.Phys,1967,38:4557
    [96]郝兆印,陈宇飞,邹广田,《人工合成金刚石》,[M]吉林大学出版社,1996,252页
    [97] Badding J V, Meng J F, Polvani D. A. Pressure tuning in the search for new andimproved solid state materials, [J]. Chem. Mater, 1998,10 : 2889.
    [98]贾晓鹏,高品质金刚石的合成及杂质的研究,[D]博士学位论文,1996
    [99] Harman T. C, Special techniques for measurement of thermoelectric properties,[J]J. Appl. Phys. 1958,29, 1373.
    [100] Harman T. C, Cahn J. H. and Logan M. J, Measurement of thermal conductivityby utilization of the peltier effect, [J] J. Appl. Phys. 1959, 30 ,1351.
    [101] Penn A. W, The corrections used in the adiabatic measurement of thermalconductivity using the peltier effect, [J] J. Sci. Instrum. 1964, 41, 626.
    [102] St?hver U, Sci Meas, Technol. Measurement of the transport properties of FeSi2and HMS by utilization of the Peltier effect in the temperature range 50-800℃,[J]Measurement Science and Technology ,1994, 5, 440.
    [103] A. Uhlir, Jr., Bell System Tech. [J] J., 1955, 34,105.
    [104] F. M. Smits, Bell System Tech. [J] J., 1958, 37, 711.
    [105] D.A.Polvani, J. F. Meng, M. Hasegawa, and J. V. Badding, Measurement of thethermoelectric power of very small samples at ambient and high pressures Rev. Sci.Instrum. 1999, 70, 3586.
    [106] A. Uhlir, Jr., Bell System Tech. [J] J., 1955, 34,105.
    [107] H. W J, E. B K. New semiconducting ternary compounds [J]. Journal of Physicsand Chemistry of Solids, 1957,3(1/2):157-157.
    [108] Hockings E.F. The thermal conductivity of silver antimony telluride [J]. Journalof Physics and Chemistry of Solids , 1959,10:341-342.
    [109] McHugh J.P, Tiller W.A, Haszko S.E, et al.Phase Diagram for the PseudobinarySystem Ag2Te-Sb2Te3 [J] .Journal of Applied Phyiscs,1961,32:1785-1785
    [110] Matsushita H, Hagiwara E, Katsui A, et al. Phase diagram and thermoelectricproperties of Ag3?xSb1+xTe4 system [J]. Mater Sci,2004,39:6299-6301
    [111] Yoneda S , OhnoY , Ohta E, et al. Improved Thermoelectric Properties inStructure Controlled Ag-Sb-Te System [J]. IEEJ Trans, 2004,124: 312-316
    [112] Noda Y, Kawami K, Mizuno K, et al.Funct. Graded Mater. 1999, 13 131. (inJapanese).
    [113] Ragimov S S, Aliev S A.α→βphase transition of Ag2Te in the AgSbTe2 alloyof the Ag-Sb-Te system [J].Inorg. Mater,2007,43:1184
    [114] Wolfe R, Wernick J H , Haszko S E. Anomalous Hall Effect in AgSbTe2 [J].Appl. Phys,1959(1960),31.
    [115] Geller S, Wernick J H. Ternary semiconducting compounds with sodiumchloride-like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2 [J]. Acta Cryst,1959,12:46-54.
    [116] Eric Q, Kuei-Fang H, Robert P, et al. Compositional Fluctuations, and AtomicOrdering in the Thermoelectric Materials AgPbmSbTe2+m.The Myth of SolidSolutions [J]. AM. CHEM. SOC,2005, 127:9177-9190
    [117] Badding J V, Annu. High-pressure synthesis, characterization, and tuning ofsolid state materials [J]. Rev. Mater. Sci,1998, 28:631–658.
    [118] Tananaeva O I, Sapozhnikova R A , Novoselova A V. A study of the oxidation oflead telluride by oxygen [J]. Izv. Akad. Nauk SSSR, Neorg. Mater,1969, 5:737-740.
    [119] Klipstein P C, Friend R H. Semiconductor to semimetal transition in TiS2 at 40kbar [J]. J. Phys. C: Solid State Phys,1984, 17:2713-2734.
    [120] Shchennikova V V, Gudina S V, Misiuk A, et al. Czochralski siliconcharacterization by using thermoelectric power measurements at high pressure [J].Physica B,2003, 340–342 :1026–1030.
    [121] Agarwal A, Trivedi P H, Lakshminarayana D, et al. Impact of electricalresistance and TEP in layered SnSe crystals under high pressure [J]. Cryst. Res.Technol,2005, 40:789– 790.
    [122] Godwal B K, Jayarmnan A, Meenakashi, et al. Electronic topological andstructural transition in AuIn2 under pressure [J].Phys. Rev,B.1998, 57:773.
    [123] Blanter Y M , Kaganov M I, Pantsulaya A V, et al. The theory of electronictopological transitions [J].Phys. Rep,1994, 245 :159-257.
    [124] Itskevich E S, Kashirskay L M , Kraidenov V F. Anomalies in the low-temperature thermoelectric power of p-Bi2Te3 and Te associated with topologicalelectronic transitions under pressure [J]. Semiconductors,1996,31:276-278.
    [125] Zhou J S, Archibald W, Goodenough J B. Pressure dependence ofthermoelectric power in La1-xNdxCuO3 [J]. Phys. Rev. B,1998, 57: 2017.
    [126] Thonhauser T, Jeon G S, Mahan G D, et al. Stress-induced defects in Sb2Te3 [J].Phys. Rev. B,2003, 68 :205207.
    [127] Jovovic V, Heremans J P. Measurements of the energy band gap and valenceband structure of AgSbTe2 [J]. Phys. Rev. B, 2008,77:245204, ().
    [128] Wojciechowski K, Tobola J, Schmidt M, et al. Crystal structure,electronic andtransport properties of AgSbSe2 and AgSbTe2 [J]. Journal of Physics and Chemistryof Solids,2008,9:2748–2755.
    [129] Wang H, Li J, Nan C W, et al. High-performance Ag0.8Pb18+xSbTe20thermoelectric bulk materials fabricated by mechanical alloying and spark plasmasintering [J]. Applied Physics Letters, 2006, 88: 092104 1-3.
    [130] Wang H, Li J.F, Kita T, et al. Thermoelectric enhancement at low temperature innonstoichiometric lead-telluride compounds[J]. Journal of Physics D: AppliedPhysics, 2007, 40: 6839-6845.
    [131] Zhao X Y , Shi X , Chen L D , et al. Synthesis of YbyCo4Sb12/Yb2O3 compositesand their thermoelectric properties[J]. Applied Physics Letters, 2006, 89: 092121.
    [132] Fujikane M, Kurosaki K, Hiroaki M, et al. Electrical properties ofαandβAg2Te[J]. Journalof alloys and compounds, 2005, 387:297–299.
    [133] Kohri H, Chen L, Nishida I A, et al. Preparation and thermoelectric porperties ofTe-rich Sb2Te3[J]. Journal of Materials Science, 1998, 35: 303-308.
    [134] Zhu P W, Imai Y, Isoda Y, et al. High Thermoelectric Properties of PbTe Dopedwith Bi2Te3 and Sb2Te3[J]. Chinese Physics Letters, 2005, 22: 2103-2105.
    [135] Barnard R D.Thermoelectricity in Metals and Alloys[M]. Taylor& Francis,London,1972.
    [136] Bruno E, Ginatempo B, Giuliano E.S, et al. Phys. Phys. Rep. Rev. Sec. 1994,249, 353
    [137] Abrikosov I.A, Vekilov Y.K, Korzhavyi P.A, et al. Shilkrot, Fiz. Tverd. Tela 34,2922 -1992.
    [138] Velikokhatnyi O I, Naumov I.I and Puchkarev E V. Electronic-topologicaltransition and shear stability of theβalloys Ni-Al and TiNi[J]. Physics of the SolidState, 1997, 39:872.
    [139] Morelli D T, Jovovic V, and Heremans J P. Intrinsically Minimal ThermalConductivity in Cubic I-V-VI2 Semiconductors[J]. Physics Review Letters,2008,101: 035901.
    [140] Kishimoto K, Koyanagi T J. Preparation of sintered degenerate n-type PbTe witha small grain size and its thermoelectric properties[J]. Journal of Applied Physics,2002, 92: 2544-49.
    [141] Dughaish Z H. Effect of temperature variation on the transport properties offine-grained heavily doped n-type PbTe [J]. Physica B:Condensed Matter, 2001,299: 94-100.
    [142] Kosuga A, Kurosaki K, Uno M, Yamanaka S. Electrical properties ofAg1?xPb18SbTe20 (x = 0, 0.1, 0.3), [J] Journal of Alloys and Compounds. 2005,386315-318
    [143] Kosuga A, Uno M, Kurosaki K, Yamanaka S. Thermoelectric properties ofAg1?xPb18SbTe20 (x = 0, 0.1, 0.3), [J]Journal of Alloys and Compounds. 2005,38752-55
    [144] Kosuga A, Uno M, Kurosaki K, Yamanaka S, Thermoelectric properties ofstoichiometric Ag1?xPb18SbTe20 (x = 0, 0.1, 0.2), [J] Journal of Alloys andCompounds. 2005,391 ,288-291.
    [145] Wang Heng, Li Jing-Feng, Nan Ce-Wen, Zhou Miin, Liu Weishu and Zhang Bo-Ping, Kita Takuji, High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulkmaterials fabricated by mechanical alloying and spark plasma sintering, [J] AppledPhysics Letters 2006,88, 092104.
    [146] Zhu T J, Yan F, Zhang S N and Zhao X B, Microstructure and electricalproperties of quenched AgPb18Sb1?xTe20 thermoelectric materials,[J] J. Phys. D:Appl. Phys. 2007 ,40, 3537–3540.
    [147]吴代明[M]固体物理2007
    [148] Devyatkova E D, Tikhonov V V and SoV. [J] Physics of the Solid State, 1965, 7,1427-1431.
    [149] Poudeu P F P, D’Angelo J, Kong H J, et al. Nanostructures versus SolidSolutions: Low Lattice Thermal Conductivity and Enhanced ThermoelectricFigure of Merit in Pb9.6Sb0.2Te10-xSex Bulk Materials. [J] Journal of the AmericanChemistry, 2006, 128:14347-14355.
    [150] Mei Z. G., Zhang W., and Chen L. D.,Filling fraction limits for rare-earth atomsin CoSb3:An ab initio approach,[J] Physical Review B ,2006,74, 153202
    [151] Hirotsugu Takizawa, Keiichi Miura, Masayuki Ito, Tsutomu Suzuki, TadashiEndo,Atom insertion into the CoSb3 skutterudite host lattice under high pressure,[J] Journal of alloys and compounds,1999,282 ,78-83.
    [152] Nolas G. S.,Takizawa H.,Endo T et al, Thermoelectric properties of Sn-filledskutterudites, [J] Applied Physics Letters, 2000, 77:52
    [153] Caillat T, Chung S, Fleurial J.-P, Snyder G. J, and Borshchevsky A,SomeProperties of Re2Te5-based Materials, [M] Proceedings of the XVII InternationalConference on Thermoelectrics, 1998 ,298,24-29.
    [154] Mandrus D, Migliori A., Darling T. W, Hundley M. F., Peterson E. J, andThompson J. D, Electronic transport in lightly doped CoSb3 [J] Phys. Rev. B 1995,52, 4926.
    [155] Sofo J. O., Mahan G. D, Electronic structure of CoSb3 : A narrow-band-gapsemiconductor [J] Physical Review B ,1998 ,58: 15620
    [156] Ma Yanming, Eremets Mikhail, OganovArtem R., Transparent dense sodium, [J]Nature letter 2009 458:182.
    [157] Caillat T., Fleurial J.-P. and Borshchevsky A, Preparation and thermoelectricproperties of semiconducting Zn4Sb3, [J] J. Phys. Chem Solids, 1997 , 58, 1119-1125,
    [158] Mayer H W, Mikhail I, Schubert K, J. Less Common Meatl, 1978, 59: 43-49
    [159] Zhu T.J., Zhao X.B., Yan M., et al, Transport properties of b-ZnSb prepared byvacuum melting [J] Materials Letters 2000,46,44
    [160] Soon-Chul Ur Il-Ho Kim Philip Nash,Thermoelectric properties of Zn4Sb3processed by sinter-forging,[J] Materials Letters ,2004,58, 2937– 2941.
    [161] Jovovic V, Thiagarajan S. J, and West J et al, Transport and magnetic propertiesof dilute rare-earth–PbSe alloys[J] Journal of Applied Physics, 2007, 102, 043707.
    [162] Kengo Kishimoto, Kazuo Yamamoto and Tsuyoshi Koyanagi , Influences ofPotential Barrier Scattering on the Thermoelectric Properties of Sintered n-TypePbTe with a Small Grain Size,[J] J. Appl. Phys. 2003,42, 501-508.