基于WAMS信息的大区域互联电网主动解列控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:大区域互联电网已经成为国内外电力系统发展的必然趋势,电网的动态安全稳定问题也变得日益严峻。当发生严重的级联故障时,电网系统会面临着大面积停电事故的风险。解列控制作为电力系统安全稳定控制的最后一道防线,能够有效地防止故障的扩散和全系统的崩溃。针对主动解列控制中不同故障模式下的发电机群在线同调识别、最佳解列断面搜索和孤岛内实时校正控制三个关键问题,分别展开了系统的理论研究和分析。充分利用广域量测系统提供的故障后的动态信息,提出了一套完整的大电网主动解列控制策略,并通过仿真算例验证了所提出方法的有效性和适用性,主要工作如下:
     在发电机群同调识别方面,提出了基于核空间的改进拉普拉斯特征映射算法的发电机在线同调识别方法。研究分析多时间尺度系统中的慢模式数和同调分群数的关联,基于慢同调理论的最优同调分群引入样本学习类别信息。以WAMS提供的故障后发电机受扰轨迹作为研究对象,在核空问坐标系中,结合样本学习类别信息建立核空间距离度量,利用拉普拉斯特征映射进行低维数据流形嵌入特征提取。并利用余弦相似度因子映射到三维空间坐标系下,直观清晰反映发电机组的同调识别结果。分析不同故障模式下,利用改进拉普拉斯特征映射算法识别发电机同调机群的有效性和对不同故障模式的适应性。该方法能充分考虑不同故障场景的动态特性和系统的非线性时变特性,使得主动解列控制具有了同调性和选择性。
     在解列断面搜索方面,提出了基于图谱最优分割算法和启发式变邻域搜索算法的最佳解列断面搜索方法。基于同调识别结果,利用发电机虚拟节点聚合方法实现网络简化,缩小解列断面的搜索空间。基于简化后的系统网络拓扑,通过分析拉普拉斯图谱的多分区算法,提出了综合考虑输电线路有功功率和电气距离来定义图谱权重的扩展拉普拉斯分割算法,得到的改进解列断面减小了净不平衡功率。在此基础上,提出了考虑功率方向的启发式变邻域搜索算法来优化解列断面。它是以改进解列断面作为初始解集,利用分组并行方法系统地改变邻域结构集来拓展搜索范围,能够考虑同调发电机组的聚合和支路有功潮流方向,进一步减小了解列后孤岛内的净不平衡功率和主动解列控制对系统的冲击,使得主动解列控制具有了协调性。
     在解列后电力孤岛内校正控制方面,提出了综合解列断面双向潮流跟踪算法和直流潮流算法的快速切机切负荷控制方法。通过解列断面支路对发电机和负荷功率的灵敏度分析,提出了基于解列断面各支路的双向潮流跟踪算法,确定孤岛内发电机和负荷的调整对象和调整量。利用直流潮流算法对电力孤岛实施切机切负荷控制的功率平衡和支路潮流约束进行校验,再结合PQ潮流分解法验证是否满足节点电压约束,最后得到能保证电力孤岛稳定运行的最优切机切负荷量。基于新英格兰39节点系统设计仿真算例,结果表明孤岛控制后能够保证系统的同步稳定运行和频率稳定,具有较好的控制效果,解决了解列后各电力孤岛内的功率平衡和稳定运行,提高了孤岛内校正控制的求取速度和精度,实现了主动解列控制的稳定性。
     综上,论文利用广域测量系统提供的系统全局动态实时信息,针对主动解列控制中的发电机群同调识别、解列断面搜索和解列后电力孤岛校正控制三个关键问题进行深入研究,提出了一套完整的基于WAMS信息的大区域互联电网的主动解列控制策略,实现了主动解列控制的同调性、选择性、协调性和稳定性,增强了电力系统第三道防线,以避免大停电事故的发生。
ABSTRACT:With the large-scale interconnected power grid has become the inevitable trend of power systems development at home and abroad, the dynamic security and stability of the power grid is also becoming increasingly serious. When power grid suffers from severe cascading failures, it will face with the risk of blackouts. As the last degense to prevent power systems from blackouts, islanding control can separate the whole power system into several islands for preventing accidents to expand up to widespread blackout. There are three key problems for theoretical research and analysis:on-line identification of coherent generator based on various failure modes, the searching of optimum controlled separation surfaces and fast corrective control in islands. An integrated set of controlled islanding strgetgy based on WAMS in large-scale power grid is proposed. The simulation examples validate the effectiveness and flexibility of this approach. The main work of this dissertation is summarized as follows:
     In coherency identification research, an improved Laplacian Eigenmap algorithm is proposed to identify coherent generators. The relations between slow mode number and coherency group number are researched and analysed in multiple time-scale system. Based on the optimum coherency group method, the sample learning category information is introduced. It focuses on the disturbed trajectory information post-fault clearance provided by WAMS. Combined with categorization inforation in the kernel space, the kernal space distance measurementare is established. Then the mainifold embedded fearute extraction is obtained by Laplacian Eigenmap algorithm in the low dimensional space. With cosine similarity factor expressed the tightness of the coherence, it can provide automation for identifying coherent generator in the three-dimensional space. Under the different failure modes, the practicality and efficiency of conherency identification are analyzed based on the improved Laplacian Eigenmap algorithm. This approach can fully consider dynamic behavior of different fault modes and time varying characteristic of nonlinear system, which makes the controlled islanding with the coherence and selectivity.
     In separation surfaces identification research, it is proposed that combined with the optimal segmentation of graph soectral and variable neighborhood heuristic searching algorithm to search the optimum separation surfaces. Based on the coherent generator groups, it is introduced that the aggregation of virtual coherent generator nodes to simplify the complicated network structure. Then based on the simplified network structure, analyzing the multiple partition algorithm of Laplace graph spectrum, it is defined that the laplacian graph spectrum considering the absolute value of the active power and electrical distance. By considering the direction of the power flows, it adopts a variable neighborhood heuristic searching algorithm to search for the optimal separation surfaces so that the net power imbalance of islands is minimized. It takes the preliminary separation surfaces as the initial solution and changes the neighborhood structure setting with parallel grouping method to expand the searching scope so that the total amount of imbalanced active power could be further reduced. It makes the controlled islanding with the coordination.
     In corrective control of islands research, it is proposed that the bidirectional power flow tracing algorithm of separation surfaces and the DC flow algorithm develop generator tripping and load shedding to maintain the power balance and stable operation. By analyzing the sensitivity of separation surfaces to generator and load power, the bidirectional power flow tracing algorithm is proposed. According to the unbalanced power in each island, the object of need adjustment generators and load nodes and the amount of adjustment can be determined. Then DC flow algorithm for fast generator tripping and load shedding is proposed, which makes the power balance and identify the branch power folw constraints. Furthermore, combined with PQ power flow decomposition method, it is necessary to verify the constraints of transimission lines power and node voltage. Finally the optimal generator tripping and load shedding are determined to guarantee the stability of each island. Based on the New England39node system, the island post controlled can maintain sybchronized operation and power balance. This approach improves the calculating speed and precision of corrective control in the island. It makes the controlled islanding with stability.
     In summary, this thesis takes full advantage of the global dynamic real-time information by wide area measurement system. Three critical issues of coherent identification, separation surfaces searching and corrective control in island are further researched. An integrated set of controlled islanding strgetgy based on WAMS in large-scale power grid is proposed. It achieves the coherency, selectivity, coordination and stability, which enhances the third defensive line of power system to avoid the blackout accidents.
引文
[1]郑宝森,郭日彩.中国互联电网的发展[J].电网技术,2003,27(2):1-3.
    [2]U.S.-Canada Power System Outage Task Force. Final Report on the August 14th Blackout in the United States and Canada:Causes and Recommendations. Http://www.nerc.com. April 2004.
    [3]中华人民共和国国务院.国家处置电网大面积停电事件应急预案.http://www.gov.cn/yjgl/2006-01/24/content_168998.htm.
    [4]胡邦基.法国大停电事故和我们应采取措施的几点意见[J].北京电力技术,1980,(8):1-4.
    [5]卢卫星,舒印彪,史连军,等.美国西部电力系统1996年8月10日大停电事故[J].电网技术,1996,20(9):40-42.
    [6]印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [7]林伟芳,孙华东,汤涌,等.巴西"11.10”大停电事故分析及启示[J].电力系统自动化,2010,34(7):1-5.
    [8]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):1-7.
    [9]方勇杰.用紧急控制降低由输电断面开断引发系统崩溃的风险对印度大停电事故的思考[J].电力系统自动化,2013,(4):1-6.
    [10]梁志峰,葛睿,董昱,等.印度“7.30”、“7.31”大停电事故分析及对我国电网调度运行工作的启示[J].电网技术,2013,(7):1841-1848.
    [11]国家电力调度通信中心,电网典型事故分析(1999~2007年).中国电力出版社,2008,北京.
    [12]许广婷.分布式发电系统中计及负荷频率特性的孤岛划分算法的研究[学位论文].江苏:东南大学.2007.
    [13]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考.电力系统自动化.2004,28(3),1-4.
    [14]曾鸣,李红林,薛松,等.系统安全背景下未来智能电网建设关键技术发展方向一印度大停电事故深层次原因分析及对中国电力工业的启示[J].中国电机工程学报.2012,32(25),175-181.
    [15]辛阔,吴小辰,和识之.电网大停电回顾及其警示语对策探讨[J].南方电网技术,2013,7(1):32-38.
    [16]曹一家,郭剑波,梅生伟,等.大电网安全性评估的系统复杂性理论[M].清华大学出版社,2010,北京.
    [17]包磊,熊为军,吴雪娟.电网解列的研究现状[J].电力学报,2007,22(3):336-340.
    [18]吴佳耘.主动解列控制问题研究[硕士学位论文].北京:清华大学.2006.
    [19]You Haibo, Vijay Vittal, Wang Xiaoming. Slow coherency-based islanding[J]. IEEE Transactions on Power Systems,2004,19(1):483-491.
    [20]肖世杰.电网安全稳定控制应用技术.中国电力出版社,2011.
    [21]孙光辉,吴小辰,曾勇刚,等.电网第三道防线问题分析及失步解列解决方案构想[J].南 方电网技术,2008,2(3):1-11.
    [22]Ito H, Shuto I, Ayakawa H, et al. Development of an improved multifunction high speed operating current differential relay for transmission line protection[C]//Proceedings of 7th International Conference on Developments in Power Systems Protection,2001. Amsterdam, Netherlands:IEE,2011:511-514
    [23]潘贞存,桑在中,厉吉文,等.电网自动解列的新判据[J].电力系统自动化,1995,19(7):34-37.
    [24]Paunescu, D., Transelectrica, Romania, Lazar, F, et al. Out-of-step prediction in moden power networks [J]. Eighth IEE International Conference on Developments in Power System Protection,2004,1:11-14.
    [25]高鹏,王健全,甘德强.电力系统失步解列综述[J].电力系统自动化,2005,29(19):90-96.
    [26]Binod Shrestha, Ramakrishna Gokaraju, Mohindar Sachdev. Out-of-Step Protection Using State-Plane Trajectories Analysis [J]. IEEE Transactions on Power Delivery,2013,28(2): 1083-1093.
    [27]丛伟,潘贞存,战杰,等.基于功率变化量的电网振荡解列判据与算法研究[J].继电器,2004,32(18):20-28.
    [28]高鹏,王建全,周文平,等.捕捉失步断面的实现方案及其仿真[J].电力系统自动化,2005,29(12):42-47.
    [29]宗洪良,孙光辉,刘志,等.大型电力系统失步解列装置的协调方案[J].电力系统自动化,2003,27(22):72-75.
    [30]Li Li, Liu Yutian, Mu hong, et al. Out-of-step splitting scheme based on PMUs[C]. The 3rd IEEE International Coference on Electric Utility Deregulation and Restructuring and Power Technologies, Apri16-9,2008, Nanjing, China:1086-1091.
    [31]卢芳,于继来.基于网络能量的电力系统失步解列方案[J].哈尔滨工程大学学报,2011,32(6):780-785.
    [32]吴学娟,沈沉,向学军,等.主动解列策略求解过程中的网络化简[J].中国电机工程学报,2008,28(7):7-12.
    [33]王英涛,汤涌,丁理杰,等.新型电力系统失步广域控制技术研发[J].电网技术,2013,37(7):1827-1833.
    [34]张保会,汪成根,郝治国.电力系统失步解列存在的问题及需要开展的研究[J].电力自动化设备,2010,30(10):1-6.
    [35]王艺璇.基于PMU信息的电网失步解列方法研究[学位论文].北京:华北电力大学.2011.
    [36]B A Archer, J B Davies, System islanding considerations for improving power systems restoration at Manitoba Hydro [C]. IEEE Canadian Conference on Electrical and Computer Engineering (CCESE 2002),1:60-65.
    [37]Nilanjan Senroy, Gerald T Heydt. A conceptual framework for the controlled islanding of interconnected powr system [J]. IEEE Transactions on power systems,2006,21(2):1005-1006.
    [38]胡学浩.美加联合电网大面积停电事故的反思和启示[J].电网技术,2003,27(9):2-6.
    [39]段振国,高曙,杨以涵,等.基于图论理论的电力系统解列策略生成方法[J].中国电力,1998,31(3):7-9.
    [40]Sun Kai, Zhao Qiangchuan, Zheng Dazhong, et al. A two-phase method based on OBDD for searching for splitting strategies of large-scale power systems [C]. Proceedings of Power System Technology,2002. PowerCon 2002. International Coference on,2002,834-838.
    [41]Zhao Qianchuan, Sun Kai, Zheng Dazhong, et al. A study of system splitting strategies for island operation of power system:a two-phase method based on OBDDs [J]. IEEE Transactions on Power Systems,2003,18(4):1556-1565.
    [42]Sun Kai, Zheng Dazhong, Qiang Lu. Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods[J]. IEEE Transactions on Power Systems,2003, 18(2):912-923.
    [43]Sun Kai, Zheng Dazhong, Lu Qiang. A simulation study of OBDD-based proper splitting strategies for power systems under consideration of transient stability [J]. IEEE Transactions on Power Systems,2005,20(1):389-399.
    [44]沈沉,乔颖,吴佳耘,等.电力系统主动解列仿真平台的研究[J].中国电机工程学报,2006,26(18):13-18.
    [45]沈沉,吴佳耘,乔颖,等.电力系统主动解列控制方法的研究[J].中国电机工程学报,2006,26(13):1-6.
    [46]乔颖,沈沉,卢强.大电网解列决策空间筛选及快速搜索方法,中国电机工程学报,2008,28(22):23-28.
    [47]乔颖,沈沉,卢强.大规模电网解列控制可行性判断,中国电机工程学报,2008,28(25):50-55.
    [48]倪敬敏,沈沉,李颖,等.主动解列控制中电网弱连接的一种在线识别方法[J].中国电机工程学报,2011,31(4):24-30.
    [49]林济铿,李胜文,吴鹏,等.电力系统最优主动解列断面搜索模型及算法[J].中国电机工程学报,2012,32(13):86-94.
    [50]林济铿,孙雷,蒲天娇,等.基于主从问题的电力系统最优主动解列[J].中国电机工程学报,2014,34(4):578-586.
    [51]Ding Lei, Gonzalez-Longatt F M, Wall P, et al. Two-step spectral clustering controlled islanding algorithm [J]. IEEE Transactions on Power Systems,2013,28(1):75-84.
    [52]Li Hao, Rosenwald GW, Jung J, et al. Strategic power infrastructure defense [J]. Proceedings of the IEEE,2005,93(5):918-933.
    [53]Yang Bo, Vijay Vittal. A novel slow coherency based graph theoretic islanding strategy[C]. IEEE Power Engineering Society General Meeting,2007. Tampa, FL:IEEE,2007:1-7.
    [54]Zhou Ziguan, Bai Xiaomin. A new islanding boundary searching approach based on slow coherency and graph theoretic[C].The 4th International Conference on Natural Computation, 2008. Jinan:IEEE,2008:438-442.
    [55]Song Honglei, Wu Junyong, Wu Linfeng. Controlled islanding based on slow-coherency and KWP theory[C]. IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia),2012. Tianjin:IEEE PES, 2012:1-6.
    [56]苗伟威,贾宏杰,田圳.电力系统主动解列断面的快速搜索方法[J].电力系统自动化,2013,37(12):24-30.
    [57]Li Juan, Liu Chen-Ching, Schneider K P. Controlled partitioning of a power network considering real and reactive power balance [J]. IEEE Transactions on Smart Grid,2010,1(3): 261-269.
    [58]倪敬敏.电力系统主动解列研究综述[C].中国高等学校电力系统及其自动化专业第二十 五届学术年会,长沙理工大学,2009.
    [59]Date R A, Chow Joe H. Aggregation properties of linearized two-time-scale power networks [J]. IEEE Transactions on Circuits and System,1991,38(7):720-730.
    [60]Yusof S.B., Rogers GJ., Alden R.T.H. Slow coherency based network partitioning including load buses [J]. IEEE Transactions on Power Systems,1993,8(3):1375-1382.
    [61]You Haibo, Vijay Vittal, Zhong Yang. Self-healing in power systems:an approach using islanding and rate of frequency decline-based load shedding [J]. IEEE Transactions on Power Systems,2003,18(1):174-181.
    [62]Yang Bo, Vijay Vittal, Heydt G T. Slow coherency-based controlled islanding-a demonstration of the approach on the August 14,2003 blackout scenario [J]. IEEE Transactions on Power Systems,2006,21(4):1840-1847.
    [63]乔颖.大规模电网主动解列防御体系研究[博士学位论文].北京:清华大学,2007.
    [64]倪敬敏.基于慢同调的自适应主动解列控制及相关实用技术研究[博士学位论文].北京:清华大学,2012.
    [65]Wang X, Vittal Vijay, Heydt G T. Tracing generator coherency indices using the continuation method:a novel approach [J]. IEEE Transactions on Power Systems,2005,20(3):1510-1518.
    [66]汪成根,张保会,李鹏,等.基于自适应解列的电力系统解列面快速搜索[J].西安交通大学学报,2009,43(2):90-95.
    [67]Xu Guangyue, Vijay Vittal. Slow Coherency Based Cutset Determination Algorithm for Large Power Systems [J]. IEEE Transactions on Power Systems,2010,25(2):877-884.
    [68]Diao Ruisheng, Vijay Vittal, Sun Kai, et al. Decision tree assisted controlled islanding for preventing cascading events [C]. Power Systems Conference and Exposition,2009. PSCE'09. IEEE/PES,2009,1-8.
    [69]Romeres, D. Dorfler, F. Bullo, F. Novel results on slow coherency in consensus and power networks [C]. Control Conference (ECC),2013 European,2013,742-747.
    [70]Irving M R, Sterling M J H. Optimal network tearing using simulated annealing [J]. IEE Proceedings C:Generation Transmission and Distribution,1990,137(1):69-72.
    [71]Shazely S, Baraka H, Abdel-Wahab A. Solving graph partitioning problem using genetic algorithms[C]. Proceedings of the 1998 Midwest Symposium on Systems and Circuits,1998. Notre Dame, IN, USA:IEEE Circuits and Systems Society,1998:302-305.
    [72]Liu Li, Liu Wenxin, Cartes D A. Slow coherency and angle modulated particle swarm optimization based islanding of large scale power systems [J]. Advanced Engineering Informatics, 2009,23(1):45-56.
    [73]Aghamohammadi M R, Shahmohammadi A. Intentional islanding using a new algorithm based on ant search mechanism [J]. International Journal of Electrical Power & Energy Systems,2012, 35(1):138-147.
    [74]Amany El-Zonkolym, Mostafa Saad, Reem Khalil. New algorithm based on CLPSO for controlled islanding of distribution systems [J]. International Journal of Electrical Power & Energy Systems,2013,45(1):391-403.
    [75]胥威汀,刘俊勇,李曼,等.避免电网连锁解列的全局协调控制策略[J].电力自动化设备,2013,33(3):33-39.
    [76]胥威汀,刘俊勇,姚良忠,等.考虑节点电压可控性的聚类型电网解列分析[J].电力系统 自动化,2013,37(21):72-79.
    [77]Wang C G, Zhang B H, Hao Z G, et al. A novel real-time searching method for power system splitting boundary [J]. IEEE Transactions on Power Systems,2010,25(4):1902-1909.
    [78]Najafi S, Hosseinian S H, Abedi M, et al. Proper splitting of interconnected power system [J]. IEEJ Transactions on Electrical and Electronic Engineering,2010,5(2):211-220.
    [79]Strphan Koch, Spyros Chatzivasileiadis, Maria Vrakopoulou, et al. Mitigation of cascading failures by real-time controlled islanding and graceful load shedding [C].2010 IREp Symposium-Bulk Power System Dynamics and Control-VIII(IREP), August 1-6,2010, Buzios, RJ, Brazil,2010.
    [80]Tortos J Q, Terzija V. Controlled islanding strategy considering power system restoration constraints[C]. IEEE Power and Energy Society General Meeting,2012. San Diego, CA, United states:IEEE,2012:22-26.
    [81]Nilanjan Senroy, Heydt Gerald T., Timing of a Controlled Islanding Strategy [C]. Transmission and Distribution Conference and Exhibition,2005/2006 IEEE PES,2006,1460-1466.
    [82]Nilanjan Senroy, Heydt Gerald T., Vijay Vittal. Decision Tree Assisted Controlled Islanding [J]. IEEE Transactions on Power Systems,2006,21(4):1790-1797.
    [83]张保会.广域动态信息条件下电网安全紧急控制的研究[J].电力自动化设备,2005,37(7):1-8.
    [84]Anderson P M, Mirheyda M. An adaptive method for setting underfrequency load shedding relays [J]. IEEE Transactions on Power System,1992,7(2):647-655.
    [85]Proasetijo D, Lachs W R, Sutanto D. A new load shedding scheme for limiting underfrequency [J]. IEEE Transactions on Power Systems,1994,9(3):1371-1381.
    [86]Delfino B, Massucco S, Morini A, et al. Implementation and comparison of different under frequency load-shedding schemes [C]. IEEE PES Summer Meeting, Vancouver, Canada,2001, 1:307-312.
    [87]于达仁,郭钰锋.电网一次调频能力的在线估计[J].中国电机工程学报,2004,24(3):72-76.
    [88]熊小伏,周永忠,周家启.计及负荷频率特性的低频减载方案研究[J].中国电机工程学报,2005,25(19):48-51.
    [89]张瑞琪,闵勇,侯凯元.电力系统切机/切负荷紧急控制方案的研究[J].电力系统自动化,2003,27(18):6-12.
    [90]倪向萍,张雪敏,梅生伟.基于复杂网络理论的切机控制策略[J].电网技术,2010,34(9):35-41.
    [91]Shah S, Shahidehpour S. M. A heruistic approach to load shedding scheme [J]. IEEE Transactions on Power Systems,1989,4(4):1421-1429.
    [92]谢开贵,周家启.基于ANN削减负荷的发输电组合系统可靠性评估[J].电力系统自动化,2002,26(22):31-33.
    [93]赵渊,周家启,周念成,等.发输电系统可靠性评估的启发式就近负荷削减模型[J].电网技术,2005,29(23):34-39.
    [94]李文沅.电力系统风险评估[M].北京:科学出版社,2009.
    [95]王韶,董光德,晏健.基于最优负荷削减的小世界电网连锁故障模拟[J].电网技术,2012,36(6):152-156.
    [96]金华征,程浩忠,翟海保.电网规划中最小切负荷费用计算方法[J].电力系统及其自动化 学报,2005,17(6):5-9.
    [97]赵书强,常伯涛,马燕峰,等.基于潮流追踪的最小负荷削减费用计算[J].电力系统及其自动化学报,2008,20(6):107-110.
    [98]王磊,赵书强,张明文.基于最小负荷削减费用的输电系统可靠性评估[J].中国电力,2011,44(5):26-29.
    [99]Phadke A.G. Synchronized phasor measurement in power systems [J]. IEEE Computer Applications in Power,1993,6(2):10-15.
    [100]Rehtanz Christian, Bertsch Joachim. A new wide area protection system [C].2001 IEEE Porto Power Tech Proceedings. Porto, Portugal,2001:186-191
    [101]Zima Marek, Larsson Mats, Korba Petr;, et al. Design aspects for wide-area monitoring and control systems [J]. Proceedings of the IEEE,2005,93(5):980-996.
    [102]Karlsson Daniel, Hemmingsson Morten, Lindahl Sture. Wide area system monitoring and control terminology, phenomena, and solution implementation strategies [J]. IEEE Power and Energy Magazine,2004,2(5):68-76.
    [103]C.W. Taylor, D.C. Erickson, K.E. Martin, et al. WACS-wide-area stability and voltages control systems:R&D and online demonstration. Proceedings of the IEEE,2005,93(5):892-906.
    [104]鞠平,郑世宇,徐群,等.广域测量系统研究综述[J].电力自动化设备,2004,24(7):37-40.
    [105]高厚磊,贺家李,江世芳.基于GPS的同步采样及在保护与控制中的应用[J].电网技术,1995,19(7):30-32.
    [106]丁仁杰,闵勇,冯亚东,等.基于GPS的全网同步时钟的建立和误差校正[J].清华大学学报(自然科学版),1997,37(7):74-77.
    [107]丁仁杰,闵勇,熊炜华,等.基于GPS的电力系统动态安全监测装置及其动态模拟实验[J].清华大学学报(自然科学版),1997,37(7):106-108.
    [108]谭振宇,王少荣,苗世洪,等.基于GPS的电网状态监测系统[J].电力系统及其自动化学报,1999,11(3):46-50.
    [109]曹华珍,陈允平,陈华.基于GPS的电力系统暂态稳定预测[J].华中电力,2000,13(6):4-7.
    [110]肖晋宇,谢小荣,李建,等.电网广域动态安全监测系统及其动态模拟试验[J].电网技术,2004,28(6):5-9.
    [111]李丹,韩福坤,郭子明,等.华北电网广域实时动态监测系统[J].电网技术,2004,28(23):52-56.
    [112]薛禹胜.时空协调的大停电防御框架(二)广域信息、在线量化分析和自适应优化控制[J].电力系统自动化,2006,30(2):1-10.
    [113]李建.WAMS技术发展现状及四川电网应用模式探讨[J].四川电力技术,2008,31(2):62-64.
    [114]Power System Relaying Committee. IEEE Std 1344-1995(R2001) IEEE standard for synchrophasors for power systems.2001.
    [115]Power System Relaying Committee. IEEE Std 118-2005(Revision of IEEE Std 1344-1995) IEEE standard for synchrophasors for power systems.2006.
    [116]国家电力调度通信中.电力系统实时动态监测系统技术规范(试行)[S].2004.
    [117]鞠平.电力系统建模理论与方法.科学出版社,2010年,北京.
    [118]鞠平.电力系统广域测量技术,机械工业出版社,2011年,北京.
    [119]王克英,穆刚,陈雪允.计及PMU的状态估计精度分析及配置研究[J].中国电机工程学 报,2001,21(8):29-33.
    [120]李强,周京阳,于尔铿,等.基于相量量测的电力系统线性状态估计[J].电力系统自动化,2005,29(18):24-28.
    [121]侯世英,汪瑶,祝石厚,等.基于相量量测的电力系统谐波状态估计算法的研究[J].电工电能新技术,2008,27(2):42-46.
    [122]谢会玲,鞠平,陈谦,等.广域电力系统负荷整体建模方法[J].电力系统自动化,2008,32(1):1-5.
    [123]谢会玲,鞠平,罗建裕,等.基于灵敏度计算的电力系统参数可辨识性研究[J].电力系统自动化,2009,33(7):17-21.
    [124]曹一家,李大虎.基于广域测量系统的大区域电网负荷建模的研究[J].电力科学与技术学报,2007,22(2):1-7.
    [125]徐兴伟,陶家琪,高德宾,等.实时动态监测系统再东北电网负荷建模中的作用[J].电网技术,2007,31(5):45-49.
    [126]施雄华,陈根军,鞠平,等.一种新的广义电力负荷模型及其工程应用[J].电力科学与技术学报,2011,26(2):44-48.
    [127]陈树恒,李兴源.基于WAMS的交直流并联输电系统模型辨识算法[J].中国电机工程学报,2008,28(4):48-53.
    [128]鞠平,刘伟航,项丽,等.电力系统负荷建模的自动故障拟合法[J].电力系统自动化,2013,37(10):60-64.
    [129]鞠平,谢欢,孟远景,等.基于广域测量信息在线辨识低频振荡[J].中国电机工程学报,2005,25(22):56-60.
    [130]杨东俊,丁坚勇,周宏,等.基于WAMS量测数据的低频振荡机理分析[J].电力系统自动化,2009,33(23):24-28.
    [131]易建波,黄琦,丁理杰,等.结合WAMS的低频振荡模式信息在线检测算法研究[J].仪器仪表学报,2013,34(7):1616-1624.
    [132]Ohura Y.A. Predictive Out-of-step protection system based on observation of the phase difference between substation [J]. IEEE Transactions on Power Delivery,1990,5(4):23-28.
    [133]赵磊,单渊达.基于轨迹信息的发电机暂态稳定指标分析方法[J].电网技术,2002,26(8):25-28.
    [134]宋方方,毕天妹,杨奇逊.基于广域测量系统的电力系统多摆稳定性评估方法[J].中国电机工程学报,2006,26(16):38-45.
    [135]秦晓辉,毕天姝,杨奇逊,等.基于WAMS动态轨迹电力系统功角失稳判据[J].电力系统自动化,2008,32(23):18-22.
    [136]Liu, Chih-Wen, Thorp, James S.. Thorp. New methods for computing power system dynamics response for real-time transient stability prediction [J]. IEEE Transactions on circuits and systems.2000,37(3):32-37.
    [137]彭疆南,孙元章,王海风.基于广域量测数据和导纳参数在线辨识的受扰轨迹预测[J].电力系统自动化,2003,27(22):6-11.
    [138]周念成,钟岷秀,徐国禹,等.基于电压相量的电力系统电压稳定指标[J].中国电机工程学报,1997,17(6):425-428.
    [139]刘道伟,谢小荣,穆刚,等.基于同步相量测量的电力系统在线电压稳定指标[J].中国电机工程学报,2005,25(1):13-17.
    [140]段俊东,孙彦楷,尹秀刚.广域测量系统用于电压稳定在线预测[J].高电压技术,2009,35(7):1748-1752.
    [141]马世英,刘道伟,汤涌,等.基于多响应信息源的电压稳定全态势量化评估与辅助决策系统[J].电网技术,2013,37(8):2151-2156.
    [142]常乃超,郭志忠.基于广域量测的全局非线性励磁控制[J].中国电机工程学报,2004,24(2):43-48.
    [143]于广亮,张保会,谢欢,等.基于广域信息的非线性全局综合控制器[J].中国电机工程学报,2007,27(4):26-32.
    [144]白晓民,张伯明.大型互联电网运行可靠性评估、预警和决策支持系统[M].清华大学出版社,2010,北京.
    [145]方勇杰.电力系统的自适应解列控制[J].电力系统自动化,2007,31(20):41-44.
    [146]李莉,刘玉田.一种基于WAMS的电力系统失步解列的自适应复合判据[C].2008全国博士生学术论坛电气工程论文集,2008,11月7-10日,成都.
    [147]Sun Kai, Hur Kyeon, Zhang Pei. A new unified scheme for controlled power system separation using synchronized phasor measurements [J]. IEEE Transactions on Powr Systems,2011, 26(3):1544-1553.
    [148]Lin Zhenzhi, Xia Tao, Ye Yanzhu, et al. Application of wide area measurement systems to islanding detection of bulk power systems [J]. IEEE Transactions on power systems,2013, 28(2):2006-2015.
    [149]Huang Lei, Sun Yuanzhang, Xu Jian, et al. Optimal PMU placement considering controlled islanding of power system [J]. IEEE Transactions on power systems,2014,29(2):742-755.
    [150]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.清华大学出版社,2002,北京.
    [151]Chow, J. H., Time-scale modeling of dynamic network with application to power systems, New York:Springer Verlag,1982, vol.46.
    [152]Chow, J. H.., Kokotovic P. Time scale modeling of sparse dynamic networks. IEEE Transactions on Automatical Control,1985, AC-30(8):714-722.
    [153]You H., Vittal V., Yang Z. Self-healing in power systems:an approach using islanding and rate of frequency decline based load shedding [J]. IEEE Transactions on power systems,2003, 18(1):174-181.
    [154]Ranjit A D, Chow J H. Aggregation properties of linearized two-time-scale power networks [J]. IEEE Transactions on Circuits and System,1991,38(7):720-730.
    [155]戴晨松,薛峰,薛禹胜.受扰轨迹的分群研究[J].电力系统自动化,2000,24(1):13-16.
    [156]Hoe H. Chow, Ricardo Galarza, Pierre Accari, et al. Inertial and slow coherency aggregation algorithm for power system dynamic model reduction [J]. IEEE Transactions on Power Systems, 1995,10(2):680-685.
    [157]欧阳森,王建华,宋政湘,等.基于数学形态学的电力系统采样数据处理方法[J].电网技术,2003,27(9):61-65.
    [158]滕林,刘万顺,李贵存,等.一种基于摇摆曲线的电力系统同调机群识别新方法[J].电力自动化设备,2002,22(4):18-20.
    [159]Ariff,, M.A.M., Pal, B.C., Coherency identification in interconnected power system-an independent component analysis approach [J]. IEEE Transactions on Power Systems,2013, 28(2):1747-1755.
    [160]文俊,刘天琪,李兴源,等.在线识别同调机群的优化支持向量机算法[J].中国电机工程学报,2008,28(25):80-85.
    [161]秦晓辉,毕天姝,杨奇逊,等.基于WAMS动态轨迹的电力统功角失稳判据[J].电力系统自动化,2008,32(23):18-22.
    [162]刘广健,卢继平.基于功角特性曲线的发电机运行状况实时分析[J].电网技术,2006,30(S1):41-45.
    [163]赵凌潇.基于流形的半监督分类方法研究.浙江大学博士论文,2009.
    [164]Sprekeler H. On the relation of slow feature analysis and laplacian eigenmaps [J]. Neural Computation,2011,23(12):3287-3302.
    [165]Tu Shangtan, Chen Jiayu, Yang Wen, et al. Laplacian eigenmaps-based polarimetric dimensionality reduction for SAR image classification [J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(1):170-179.
    [166]周梅,刘秉瀚.基于拉普拉斯特征映射的分类器设计[J].计算机工程,2009,35(16):178-182.
    [167]张亮,杜子平,张俊,等.基于拉普拉斯特征映射的仿射传播聚类[J].计算机工程,2011,37(9):216-220.
    [168]Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation,2003,15(6):1373-1396.
    [169]Tenenbaum J.B.m., Silva V.D., Langford J.C. A global geometric framework for nonlinear dimensionality reduction [J]. Science,2000,290(5500):2319-2323.
    [170]潘炜,刘文颖.杨以涵.采用受扰轨迹和独立分量分析技术识别同调机群的方法[J].中国电机工程学报,2008,28(25):86-92.
    [171]张剑云,孙元章,程林,等.严重受扰系统的能控性和能观性及失稳模式分析[J].电力系统自动化,006,30(18):1-7.
    [172]Kundur P. Power system stability and control[M]. 北京:中国电力出版社,2001:699-822.
    [173]蔡国伟,杨德友,张俊丰,等.基于实测信号的电力系统低频振荡模态辨识[J].电网技术,2011,35(1):59-65.
    [174]Senroy, Nilanjan. Generator coherency using the Hilbert-Huang transform [J]. IEEE Transactions on Power Systems,2008,23(4):1701-1708.
    [175]谢家安,李天云,贺建伟,等.HHT在铁磁谐振过电压辨识中应用[J].电力自动化设备,2009,(1):75-78.
    [176]Ford JJ, Bevrani H, Ledwich G Adaptive load shedding and regional protection [J]. Internaitonal Journal of Electrical Power & Energy Systems,2009; 31(10):611-618.
    [177]Fu Xu, Wang Xifan. Determination of load shedding to provide voltage stability [J]. Internaitonal Journal of Electrical Power & Energy Systems,2011; 33(3):515-521.
    [178]Mladenovic N, Hansen P. Variable neighborhood search [J]. Computers & Operations Research,1997,24(11):1097-1100.
    [179]董红宇,黄敬,王兴伟,郑秉霖.变邻域搜索算法综述[J].控制工程,2009,16(S1):1-5
    [180]Parreno, F., Alvarez-Valdes, R.. Oliveira, J. F., et al. Neighborhood structures for the container loading problem:a VNS implementation [J]. Journal of heuristics 2010; 16(1):1-22.
    [181]孙凯.大型电网灾变下基于OBDD的搜索解列策略的三阶段方法[博士学位论文].北京:清华大学,2004.
    [182]张伯明,陈寿孙,严正.高等电力网络分析.北京:清华大学出版社,2007.
    [183]戴彦,倪以信,文福栓,等.基于潮流组成分析及成本分摊的无功功率电价[J].电力系统自动化,2000,24(18):13-17.
    [184]赵书强,常伯涛,马燕峰,等.基于潮流跟踪的最小负荷削减费用计算[J].电力系统及其自动化学报,2008,20(6):107-110.