无线通信系统中的高性能小型化无源元件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对无线通信系统中的高性能小型化无源元件进行了研究,提出了多种无源元件高性能、小型化设计方案,并基于这些方案设计了多种新型无源元件。本论文的研究成果在无线通信系统电路设计中具有重要的应用价值。
     本论文第一章首先对无线通信系统中的高性能小型化无源元件的研究现状进行了回顾。目前,高性能、小型化无源元件研究主要从新型封装技术、小型化谐振器技术、慢波加载技术三个方面考虑,这三个方面的研究工作仍然处于起步阶段,还有许多问题待解决。
     第二章介绍了和本文研究内容相关的无源元件的微波网络理论。介绍了与第三章滤波器相对应的二端口网络基本理论;与第四章耦合器相对应的四端口网络基本理论;与第五章滤波天线相对应的单端口网络基本理论。
     第三章运用传输线理论进一步分析了阶梯阻抗谐振器的谐振特性。利用该谐振器的小型化特点,设计出了小型化低通滤波器、带通滤波器。利用阶梯阻抗谐振器的通带可调特性,设计出了可应用于无线局域网通信系统的双通带滤波器,给出了设计的理论,该滤波器具有小型化、高性能、结构简单的优点。
     第四章运用奇偶模法分析了耦合器的工作原理。对无源元件的传统设计形式进行了介绍,指出了传统设计方法在小型化设计方面所存在的局限性。基于耦合器小型化的研究现状,提出了一种新型的渐变阶梯阻抗慢波加载结构,并且结合传输线理论、微波网络理论、等效电路理论对该新型加载结构进行了准确的建模分析。利用所提出的慢波加载结构设计出了高性能、小型化的环形鼠笼式耦合器、分支线耦合器、以及双模滤波器。当中心工作频率在1.44GHz时,本文所设计的鼠笼式环形耦合器的面积只有传统设计形式下的8%,在平面印刷电路工艺下是目前国际上小型化效果最好的。当中心工作频率在2.0GHz时,本文所设计的分支线耦合器的面积只有传统设计形式下的28%,还具有很好的二次谐波抑制特性。所设计的双模滤波器与目前国际上小型化程度最好的双模滤波器相比较,能够在相同尺寸的情况下做到更好的工作性能。
     第五章通过在天线的设计中利用微带谐振器,给出了二次以及三次谐波抑制滤波天线的设计原理。利用终端开路微带谐振器设计出了能够有效抑制二次谐波的滤波天线。将终端开路微带谐振器与阶梯阻抗谐振器相结合应用到微带天线设计中,设计出了能够同时抑制二次、三次谐波的滤波天线。
     第六章总结了本论文的主要工作,展望了无线通信系统中高性能、小型化无源元件未来的一些研究方向。
Research on high performance and compact passive components in wireless communication system has been done in this dissertation. Several schemes for high performance and compact passive component design are presented. Based on these schemes, some types of new passive components are designed. The work in this dissertation has an important value for the application of circuit design in wireless communication system.
     In Chapter 1, advances in the study of high performance and compact passive components in wireless communication system are introduced. At present, research on high performance and compact passive components is mainly developed from three aspects, i.e., new package technology, miniaturized resonator, and slow wave loading method. The research work in the three aspects is still at its beginning. There are many problems needed to be explored.
     In Chapter 2, microwave network theory related to the research in this dissertation is introduced. Two-port network theory corresponding to the filter design in Chapter 3, four-port network theory corresponding to the coupler design in Chapter 4, and one-port network theory corresponding to the filter antenna design in Chapter 5 are introduced.
     In Chapter 3, resonance property of stepped-impedance resonator is further analyzed with transmission line theory. Compact lowpass and bandpass filters are designed with the miniaturization property of stepped-impedance resonator. Tunable passband property of the stepped-impedance resonator is used for the design of dual-band bandpass filters that can be applied to wireless local network area communication system. Design theory for this type of filter is also presented. The proposed dual-band bandpass filter has the advantages of compact size, high performance, and simple structure.
     In Chapter 4, principle of coupler is analyzed by the even-odd-mode method. Circuit patterns designed by conventional method are introduced. The limitation of conventional design method is also illustrated. Based on the research progress of miniaturized coupler design, a novel tapered stepped-impedance slow-wave loading structure is proposed in this dissertation. With the combination of transmission line theory, microwave network theory, and equivalent circuit theory, an accurate equivalent circuit model is proposed and analyzed. High performance and miniaturized rat-race ring coupler, branch-line coupler, and dual-mode bandpass filter are designed with the proposed slow-wave loading structure. The proposed rat-race ring coupler's size is only 8% of conventional design at 1.44 GHz, and this is the best result reported up till now with printed circuit board manufacturing process. The proposed branch-line coupler not only effectively reduces the occupied area to 28% of the conventional branch-line coupler but also has high second harmonic suppression performance at 2.0 GHz. When the circuit area is kept the same, the proposed dual-mode filter has a better performance than the reported one, which has the smallest size in the literature.
     In Chapter 5, design theory for filter antenna with the second order and third order harmonic suppression is presented using the concept of microstrip resonator. Based on the concept of open end microstrip resonator, filter antenna with the suppression of the second order harmonic is designed. Filter antenna with the second and third harmonic suppression is designed by the use of both stepped-impedance resonator and open end microstrip resonator.
     In Chapter 6, the research work of this dissertation is summarized and potential research directions for high performance and compact passive components in wireless communication system are predicted.
引文
[1]Lee C H,Sutono A,Han S,et al.A compact LTCC-based Ku-band transmitter module.IEEE Trans.Microw.Theory Tech.,2002,25(3):374-384
    [2]Seki T,Honma N,Nishikawa K,et al.A 60-GHz multilayer parasitic microstrip array antenna on LTCC substrate for system-on-package.IEEE Microw.Wireless Compon.Lett.,2005,15(5):339-341
    [3]Tang C W,You S F.Design methodologies of LTCC bandpass filters,diplexer,and triplexer with transmission zeros.IEEE Trans.Microw.Theory Tech.,2006,54(2):717-723
    [4]Guo Y X,Ong L C,Chia M Y W,et al.Dual-band bandpass filter in LTCC.2005 IEEE MTT-S,2005.2219-2222
    [5]Rong Y,Zaki K A,Hageman M,et al.Low temperature cofired ceramic(LTCC) waveguide bandpass filters.1999 IEEE MTT-S,1999.1147-1150
    [6]Kuo T N,Lin Y S,Wang C H,et al.A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line.IEEE Microw.Wireless Compon.Lett.,2006,16(2):90-92
    [7]Makimoto M,Yamashita S.Bandpass filters using parallel coupled stripline stepped impedance resonators.IEEE Trans.Microw.Theory Tech.,1980,28(12):1413-1417
    [8]Makimoto M,Yamashita S.Compact bandpass filters using stepped impedance resonators.Proceedings of the IEEE,1979.67(1):16-19
    [9]Hsieh L H,Chang K.Compact elliptic-function low-pass filter using microstrip stepped-impedance hairpin resonators.IEEE Trans.Microw.Theory Tech.,2003,51(1):193-199
    [10]Li J L,Chen J X,Wang J P,et al.Miniaturized microstrip bandpass filter using stepped impedance ring resonators.Electronics Letters,2004,40(22):1420-1421
    [11]Zhang H,Chen K J.A tri-section stepped-impedance resonator for cross-coupled bandpass filter.IEEE Microw.Wireless Compon.Lett.,2005,15(6):401-403
    [12]Wang J,Guo Y,Wang B Z,et al.High selective dual-band stepped-impedance bandpass filter.Electronics Letters,2006,42(9):538-540
    [13] Chang S F, Jeng Y H, Chen J L. Dual-band step-impedance bandpass filter for multimode wireless LANs. Electronics Letters, 2004, 40(1):38-39
    [14] Sun S, Zhu L. Compact dual-band microstrip bandpass filter without external feeds. IEEE Microw. Wireless Compon. Lett., 2005, 15(10):644-646
    [15] Kuo J T, Yeh T H, Yeh C C. Design of microstrip bandpass filters with a dual-passband response. IEEE Trans. Microw. Theory Tech., 2005, 53(4): 1331-1337
    [16] Lee H M, Chen C R, Tsai C C, et al. Dual-band coupling and feed structure for microstrip filter design. 2004 IEEE MTT-S, 2004.1971-1974
    [17] Zhang Y P, Sun M. Dual-band microstrip bandpass filters using stepped-impedance resonators with new coupling schemes. IEEE Trans. Microw. Theory Tech., 2006, 54(10):3779-3785
    [18] Wang Y Z, Her M L. Compact microstrip bandstop filters using stepped-impedance resonator (SIR) and spur-line sections. 2006 Proc. Inst. Elect. Eng., 2006, 153(5):435-440
    [19] Avrillon S, Pele I, Chousseaud A, et al. Dual-band power divider based on semiloop stepped-impedance resonators. IEEE Trans. Microw. TheoryTech., 2003, 51(4):1269-1273
    [20] Hsu C L, Chang C W, Kuo J T. Design of dual-band microstrip rat race coupler with circuit miniaturization. 2007 IEEE MTT-S, 2007.177-180
    [21] Kuo J T, Shih E. Microstrip impedance resonator bandpass filter with an extended optimal rejection bandwidth. IEEE Trans. Microw. Theory Tech., 2003, 51(5):1554-1559
    [22] Kuo J T, Tsai C Y. Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics. IEEE Trans. Microw. Theory Tech., 2006, 54(3): 1107-1112
    [23] Fries M K, Vahldierk R. Small microstrip patch antenna using slow-wave structure. 2000 IEEE AP-S, 2000.770-773
    [24] Volakis J L, Sertel K. Slow wave structures for miniature antennas. 2007 IEEE ACSI, 2007. 5-8
    [25] Mao S G, Chen C M, Chang D C. Modeling of slow-wave EBG structure for printed-bowtie antenna array. IEEE Antenna and Wireless Propagation Lett., 2002, 1(1): 124-127
    [26] Hsieh L H, Chang K. Slow-wave bandpass filters using ring or stepped-impedance hairpin resonators. IEEE Trans. Microw. Theory Tech., 2002, 50(7): 1795-1800
    [27] Hong J S, Lancaster M J. Theory and experimental of novel microstrip slow-wave open-loop resonator filters. IEEE Trans. Microw. Theory Tech., 1997, 45(12):2358-2365
    [28]Pistono E,Robert M,Duvillaret M,et al.Compact fixed and tune-all bandpass filters based on coupled slow-wave resonators.IEEE Trans.Microw.Theory Tech.,2006,54(6):2790-2799
    [29]Hong J S,Lancaster M J.Microstrip slow-wave open-loop resonator filter.1997 IEEE MTT-S,1997.713-716
    [30]G(o|¨)r(u|¨)r A,Karpuz C.Miniature dual-mode microstrip filters.IEEE Microw.Wireless Compon.Lett.,2007,17(1):37-39
    [31]Sun K K,Tam K W.A novel compact dual-mode bandpass filter with meander open-loop arms.2004 IEEE MTT-S,2004.1479-1482
    [32]G(o|¨)r(u|¨)r A,Karpuz C,Akpinar M.A Reduced-Size Dual-Mode Bandpass Filter with Capacitively Loaded Open-Loop Arms.IEEE Microw.Wireless Compon.Lett.,2003,13(9):385-387
    [33]Tu W H,Chang K.Compact microstrip low-pass filter with sharp rejection.IEEE Microw.Wireless Compon.Lett.,2005,15(6):404-406
    [34]Ahn D,Park J S,Kim C S,et al.A design of low-pass filter using novel microstrip defected ground structure.IEEE Trans.Microw.Theory Tech.,2001,49(1):86-93
    [35]Lim J S,Kim C S,Ahn D,et al.Design of low-pass filter using defected ground structure.IEEE Trans.Microw.Theory Tech.,2005,53(8):2539-2545
    [36]Hong J S,Lancaster M J.Microstrip Filters for RF/Microwave Applications.New York:Wiley,2001,235-270
    [37]Kim C S,Lim J S,Ahn D,et al.A novel 1-D periodic defected ground structure for planar circuits.IEEE Microwave and Guided Wave Letters,2000,10(4):131-133
    [38]Liu H,Li Z,Sun X.Compact defected ground structure in microstrip technology.Electronics Letters,2005,41(3):132-134
    [39]Chen J X,Li J L,Wan K C,et al.Compact quasi-elliptic function filter based on defected ground structure.IEE Proceedings,Microwave,Antenna and Propagation,2006,153(4):320-324
    [40]Ogawa H,Itoh T.Slow-wave power divider.Electronics letters,1986,22(13):692-693
    [41]Sung Y J,Ahn C S,Kim Y S.Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure.IEEE Microw.Wireless Compon.Lett.,2004,14(1):7-9
    [42]Tong W,Hu Z R,Hong S C,et al.Left-handed Metamaterial Coplanar Waveguide Components and Circuits in GaAs MMIC Technology.IEEE Trans.Microw.Theory Tech.,2007,55(8):1794-1800
    [43]Meng F Y,Wu Q,Wu J,et al.Analysis and calculation of effective permittivity for a left-handed metamaterial.2005 IEEE APMC,2005.4-7
    [44]Tong W,Hu Z R,Curtis P,et al.Compact and Broadband Coplanar Waveguide Left-Handed Metamaterial Transmission Line for RF/ MICC Application.2006 IEEE ICSICT,2006.1565-1567
    [45]Chiang Y C,Chen C Y.Design of a wide-band lumped-element 3-dB quadrature coupler.IEEE Trans.Microw.Theory Tech.,2001,49(3):476-479
    [46]Vogel R W.Analysis and design of lumped- and lumped-distributed-element directional couplers for MIC and MMIC application.IEEE Trans.Microw.Theory Tech.,2003,40(2):253-262
    [47]Settaluri R K,Sundberg G,Weisshaar A,et al.Compact folded line rat-race hybrid couplers.IEEE Microw.Wireless Compon.Lett.,2000,10(2):61-63
    [48]Ghali H,Moselhy T A.Design of fractal rat-race coupler.2004 IEEE MTT-S,2004.323-326
    [49]Ghali H,Moselhy T A.Miniaturized fractal rat-race,branch-line,and coupled-line hybrids.IEEE Trans.Microw.Theory Tech.,2004.52(11):2513-2520
    [50]Sun K O,Ho S J,Yen C C,et al.A compact branch-line coupler using discontinuous microstrip lines.IEEE Microw.Wireless Compon.Lett.,2005,15(8):519-520
    [51]Eccleston K W,Ong S H M.Compact planar microstripline branch-line and rat-race couplers.IEEE Trans.Microw.Theory Tech.,2003,51(10):2119-2125
    [52]Nesic D.Slow-wave EBG microstrip rat-race hybrid ring.Electronics letters,2005,41(21):1181-1183
    [53]Liao S S,Sun P T,Chin N C,et al.A novel compact-sized branch-line coupler.IEEE Microw.Wireless Comport.Lett.,2005,15(9):588-590
    [54]Gu J,Sun X.Miniaturization and harmonic suppression of branch-line and rat-race hybrid coupler using compensating spiral compact microstrip resonant cell.2005 IEEE MTT-S,2005.1211-1214
    [55]Liao S S,Peng J T.Compact planar microstrip branch-line couplers using the quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped structure.IEEE Trans.Microw.Theory Tech.,2006,54(9):3508-3514
    [56]吴万春,梁昌洪.微波网络及其应用.北京:国防工业出版社,1980,11-33
    [57]Pozar D M.Microwave Engineering,3rd ed.,New York:Wiley,2005,340-357
    [58]赫崇骏,韩永宁,袁乃昌,等.微波电路.长沙:国防科技大学出版社,1999,58-63
    [59]Makimoto M,Yamashita S.Microwave resonators and filters for wireless communications:Theory,design and application.Berlin,Germany:Springer,2001,238-241
    [60]Rhodes J D.Theory of electrical filters.New York:Wiley,1976,55-60
    [61]Hsieh L H,Chang K.Compact lowpass filter using stepped impedance hairpin resonator.Electronics letters,2001,37(14):899-900
    [62]Jokela K T.Narrow-band stripline or microstrip filters with transmission zeros at real or imaginary frequencies.IEEE Trans.Microw.Theory Tech.,1980.28(6):542-547
    [63]Matthael G L.Narrow-band,fixed-tuned and tunable bandpass filters with zig-zig hairpin-comb resonators.IEEE Trans.Microw.Theory Tech.,2003.51(4):1214-1219
    [64]Hong J S,Lancaster M J.Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies.IEEE Trans.Microw.Theory Tech.,2000,48(7):1098-1107
    [65]Kuo J T,Maa M J,Lu P H.A microstrip elliptic function filter with compact miniaturized hairpin resonators.IEEE Microwave and Guided Wave Letters,2000,10(3):94-95
    [66]Lee S Y,Tsai C M.New cross-coupled filter design using improved hairpin resonators.IEEE Trans.Microw.Theory Tech.,2000,48(12):2482-2490
    [67]Packiaraj D,Ramesh M,Kalghatgi A T.Design of a tri-section folded SIR filter.IEEE Microw.Wireless Comport.Lett.,2006,16(5):317-319
    [68]Hong J S,Lancaster M J.Microstrip Filters for RF/Microwave Applications.New York:Wiley,2001,89-100
    [69]Sohn Y S,Lee J C,Park H J,et al.Empirical equations on electrical parameters of coupled microstrip lines with one side exposed to air.1999 IEEE MTT-S,1999,69-72
    [70]Wheeler H A.Transmission line properties of parallel strips separated by a dielectric sheet.IEEE Trans.Microw.Theory Tech.,1965,13(2):172-185
    [71]Wheeler H A.Transmission line properties of a strip on a dielectric sheet on a plane.IEEE Trans.Microw.Theory Tech.,1977,25(8):631-647
    [72]G(o|¨)r(u|¨)r A.Description of coupling between degenerate modes of a dual-mode microstrip.IEEE Trans.Microw.Theory Tech.,2004,40(2):253-262
    [73] Montusclat S, Gianesello F, Gloria D. Silicon full integrated LNA, filter and antenna system beyond 40 GHz for MMW wireless communication links in advanced CMOS technologies. 2006 IEEE RFIC-S, 2006.11-13
    [74] Kwon S, Lee B M, Yoon Y J, et al. A harmonic suppression antenna for an active integrated antenna. IEEE Microw. Wireless Compon. Lett., 2003, 13(2):54-56
    [75] Horii Y, Tsutsumi M. Harmonic control by photonic bandgap on microstrip patch antenna. IEEE Microwave and Guided Wave Letters, 1999, 1 (1): 13-15
    [76] Sung Y, Kim M, Kim Y. Harmonics reduction with defected ground structure for a microstrip patch antenna. IEEE Antenna and Wireless Propagation Lett., 2003, 2(8): 111-113
    [77] Dehbashi R, Atlasbaf Z, Forooraghi K. New compact size microstrip antennas with harmonic rejection. IEEE Antenna and Wireless Propagation Lett., 2006, 5(5):395-398
    [78] Liu H, Li Z, Sun X, et al. Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna. IEEE Microw. Wireless Compon. Lett., 2005, 15(2): 55-56