海洋平台结构物损伤检测与模型修正方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台长期服役在恶劣的海洋环境中,并受到各种载荷的交互作用,结构容易产生各种形式的损伤,使结构的承载能力下降,严重的还会导致平台失效。发展有效的损伤检测技术对避免海洋平台灾难性事故的发生十分关键。海洋平台模型修正技术为动力分析、模态测试及损伤检测提供准确的有限元模型,也是一项非常关键的技术。
     海洋平台结构发生损伤会导致模态参数随之变化,基于模态参数变化的损伤检测方法是公认的最具发展潜力的方法之一。损伤检测与模型修正都需要依据模态测试获取模态参数。在海洋平台模态测试中,测试自由度有限、转动自由度和水下部位测试难度大、精度低、成本高等的因素导致了实测模态信息空间不完备问题。该问题给海洋平台损伤检测与模型修正提出了更为严峻的挑战。本文以海洋平台为研究对象,做了以下三点创新性工作:
     针对模态信息空间不完备问题,提出了基于CMCM和Guyan缩阶的迭代修正转换矩阵的方法。Guyan缩阶(静力缩阶)和SEREP转换矩阵分别作为模型缩阶和模态扩阶的转换矩阵,同时提出了转换矩阵迭代修正技术,用于获取更为准确的转换矩阵。通过1个简支梁结构和1个海洋平台结构的研究验证了基于CMCM和Guyan缩阶的迭代修正转换矩阵的方法,一定程度解决了模态空间自由度不完备情况下的损伤检测和模型修正,并获得理想的结果。
     针对模态信息空间不完备问题,提出了非基于模型缩阶/模态扩阶概念的新方法,称为实测模型从自由度修正法(MMSDU),进一步解决了实测模态信息空间不完备问题。通过一个5自由度质量弹簧系统展示新方法的具体应用过程;并通过一个海洋平台结构验证了该方法用于复杂结构损伤检测和模型修正的有效性和适用性。新方法的一个显著特点是可以做到在部分结点无主自由度的情况下,甚至在仅有实测频率条件下,做到对结构的模型修正和损伤检测。
     针对复杂结构构件众多,主要模型修正参数不易选取的问题,提出了一种敏感度分析指标。对我国某现役海洋平台进行了构件敏感度分析和核心矩阵的奇异值分解,优化了修正参数选取,并据此对平台进行了模型修正和损伤检测。
     本文将CMCM方法应用于海洋平台的模型修正与损伤检测,并通过两种不同途径:(i)CMCM结合Guyan缩阶迭代,(ii)实测模型从自由度修正法,不同程度地解决了CMCM方法的模态空间自由度不完备问题,还提出了一种有效的敏感度分析指标。主要研究结论有:(1) CMCM方法可以有效的利用有限的低阶模态参数,无需模态阶数配对和振型同比例要求,准确地修正海洋平台结构的刚度和质量,计算效率高,修正后模型保持了良好的物理意义;(2) CMCM方法在仅用有限的低阶模态条件下对海洋平台结构进行结构损伤检测,可以做到判断损伤是否存在,诊断损伤位置,评估损伤程度同时完成; (3)针对模态空间不完备问题,所提出的基于CMCM和Guyan缩阶的迭代修正转换矩阵的方法用于海洋平台结构的损伤检测和模型修正是有效的,适用的;(4)所提出的实测模型从自由度修正法(MMSDU),进一步解决了实测模态振型空间不完备问题。CMCM方法结合MMSDU方法可以做到部分结点无传感器,甚至在模态振型全不知的情况下,仅用模态频率信息,可以有效地、准确地进行模型修正和损伤检测;(5)通过一现役导管架海洋平台的敏感系数分析,可以优化选择模型修正参数,从而提高模型修正的效果。
Offshore structures continually accumulate damages as a result of the action ofvarious environmental forces during their service life. Clearly, the development ofrobust techniques for damage detection is crucial to avoid the possible occurrence ofa catastrophic structural failure. And model updating is of great importance since itprovides accurate Finite Element Model (FEM) for dynamic analysis, modal testingand damage detection, etc.
     Damages in offshore structures would induce the changing of modal parameters;and damage detection algorithms based on modal parameters alteration are commonlyrecognized to be one of most potential technologies. Damage detection and modelupdating require measured modal data from modal testing. In the modal testing ofoffshore structures, due to limited sensors, difficulty and inaccuracy in measuring ro-tational Degree-of-Freedoms (DOFs) and underwater DOFs, the number of measuredcoordinates are far less than the DOFs of the FEM, namely Spatially Incompleteness(SI) of the measured modal shapes. The SI issue proposes a more severe challengeto damage detection and model updating algorithms. And this thesis performed threeinnovative studies as followed.
     In dealing with Spatial Incompleteness (SI), CMCM in conjunction with Guyanscheme based transformation matrix iterative updating method is proposed. Specif-ically, either Guyan (static condensation) or SEREP (System Equivalent ReductionExpansion Process) transformation matrix, between the master and slave DOFs, isemployed in the model reduction or modal expansion process. One theoretical devel-opment is an iterative procedure to compute the transformation matrix associated withthe (unknown) damaged structure.
     Different from the concept of model reduction or modal expansion, an new it-erative mathematical approach, named as Measured Model Salve DOFs Updating(MMSDU) method, is proposed in dealing with the SI issue. A 5-DOFs mass-spring system is studied for verifying the accuracy and effectiveness of the proposedMMSDU method, also for demonstrating the detailed procedure; and a 3-D 72-DOFsoffshore jacket platform structural model to demonstrate the feasibility and capabil-ity of the MMSDU method for complex structures. One important improvement isthat the MMSDU method can update models and detect damages by employing onlyfrequency data.
     A new sensitivity analysis index for individual member of complex structures is proposed. And an exsiting offshore platform is taken as the example to carry out thesensitivity analysis of individual members, and Singular Value Decomposition (SVD)of the CMCM core matrix. The obtained results optimized the choice of the modelupdating parameters.
     The CMCM method was applied to the model updating and damage detectionin offshore structures, the proposed CMCM with Guyan reduction iterative updatingmethod and MMSDU method resolve the SI issue at different levels creatively. Mainconclusions are drawn: (1) the CMCM method can accurately update mass and stiff-ness of jacket structures, by employing a few lower-order spatial complete modes, noneed to pair or scale, and the updated model keeps its physical connection; (2) theCMCM method can diagnose the existence of damages, localize damages and esti-mate damage severities simultaneously by employing a few lower-order modes; (3)the proposed CMCM with Guyan reduction transformation matrix updating methodresolves the SI issue at a certain level; (4) the proposed MMSDU method resolvesthe SI issue further, and the MMSDU method can update models and detect damagesby using only frequency data; (5) Sensitivity analysis of individual member guidesthe choice of model updating parameters, and reasonable updating parameters choiceimproves the updating results.
引文
[1] Charles R. Farrar, Hoon Sohn. Francois M. Hemez, Mark C. Anderson, Matthew T. Be-ment, Phillip J. Corwell, Scott W. Doebling, John F. Schultze, Nick Lieven, Amy N.Robertson, Damage Prognosis: Current Status and Future Needs, Los Alamos NationalLaboratory Report LA-14051-MS, 2003.
    [2] Yang Hezhen,Li Huajun, Damage Localization of Offshore Platform under Ambient Exci-tation , China Ocean Engineering,2003, Vol.17, No.4;495-504 .
    [3] Huang, W. P, Jiang, J. T, and Li, H. J., Measurement of Excessive Vibration of a Jacket Plat-form. Proceedings of International Symposium On Safety Science and Technology, ISSST,Tai’an, China, 2002,3:502-506.
    [4]蒋济同,海洋平台的模态参数识别与损伤诊断研究,博士学位论文,中国海洋大学,2003.
    [5] Rytte,A.Vibration Based inspection of civil engineering struetures. Ph.D. Disseration.Denmark: Department of Building Technology and Strutural Engineering,1993
    [6] R.Ghanem,M.shinozuka. Struetural system identifieationl:theory[J]. Journal of Engineer-ing meehanics,ASCE,1995,121(2):255-264
    [7]马宏伟,杨桂通.结构损伤探测的基本方法和研究进展[J].力学进展,1999,29(4):513-527
    [8]唐小兵,2004.结构损伤识别及数值模拟,武汉理工大学博士学位论文。
    [9]李成,2004,基于结构模态参数损伤识别的数值方法研究.哈尔滨工程大学硕士学位论文.
    [10] Hajela P, and Soeiro F. J., Structural damage detection based on static and modal analysis,AIAA Journal, 1990,28(6):I110-I115.
    [11] Pandey A K, Biswas M, and Samman M M, Damage detection from changes in curvaturemodeshapes, Journal of Sound and Vibration, 1991,145(2):321-332.
    [12] Wu X, Ghaboussi J, and Garrett J H, Use of neural networks in detection of structuraldamage. Computers & Structures, 1992,42(4):649-659.
    [13] Tsou P, and Shen M H H, Structural damage detection and identification using neural net-works. AIAA Journal, 1994,32(1):176-183.
    [14] Worden K, Structural fault detection using a novelty measure, Journal of Sound and Vibra-tion,1997,201(1):85-101.
    [15] Thyagarajan S K, Schulz M J, Pai P F, and Chung J, Detecting structural damage usingfrequency response functions, Journal of Sound and Vibration, 1998,210(1):162-170.
    [16]廖锦翔,袁明武,张劲泉.小波变换在桥梁结构损伤识别中的应用.公路交通科技,2004(11):30-34.
    [17]郭建,孙炳楠.基于小波变换的桥梁健康监测多尺度分析.浙江大学学报,2005(l):114-118.
    [18]谢晓尧,2007.红枫湖大桥健康监测系统关键技术研究,武汉理工大学博士学位论文,2007.4.
    [19] P. Moyo, J. M. W. Brownjohn, Detection of anomalous structural behaviour using waveletanalysis, Mechanical Systemsand Signal Processing 16 (2-3) (2002):429-445.
    [20] Z.Sun, C.C.Chang, Structural damage assessment based on wavelet packet transform, Jour-nal of Structural Engineering-ASCE 128 (10) (2002)1354-1361.
    [21] Uk Jung, Bong-HwanKoh. Structural damage localization using wavelet-based silhouettestatistics. Journal of Sound and Vibration, 321 (2009) 590-604.
    [22] Norden E, Huang zhengsheng. The Empirieal Mode Decomposition and the Hilbert Spec-trum for Nonlinear and Non-stationary Time Series Analysis. Proc. Royal Soeiety of Lon-don Series, 1998,454:903-995.
    [23] Jann N Yang. Member ASCE,Damage Identification of Structures Using Hibert HuangSpectral analysis. Andrew Smyth Proeeedings of 15th ASCE Engineering Mechanics con-ferenee, NewYork, ASCE Pub,2002:76-77.
    [24] H.Li, X.Deng, H.Dai, Structural damage detection using the combination method of EMDand waveletanalysis, Mechanical Systems and Signal Processing 21 (2007)298-306.
    [25] Bijaya Jaishia, Wei-Xin Ren. Damage detection by finite element model updating usingmodal ?exibility residual. Journal of Sound and Vibration 290 (2006) 369-387
    [26] A.M. Yan, P. De Boe, J. C. Golinval, Structural damage location by combined analysisof measured ?exibility and stiffness, Progress in Structural Engineering, Mechanics andComputation, Zingoni, London, 2004, pp. 635-640.
    [27] S.W. Doebling, C.R. Farrar, Computation of structural ?exibility for bridge health moni-toring using ambient modal data, Proceedings of the 11th ASCE Engineering MechanicsConference, 1996, pp. 1114-1117.
    [28] A. Teughels, J. Maeck, G. De Roeck, Damage assessment by FE model updating usingdamage functions, Computers and Structures 80 (2002) 1869-1879.
    [29] L.T. Stutz, D.A. Castello, F.A. Rochinha, A ?exibility-based continuum damage identifi-cation approach, Journal of Sound and Vibration 279 (2005) 641-667
    [30] H. T. Banks, D. J. Inman, D.J. Leo, Y. Wang, An experimentally validated damage detectiontheory in smart structures, Journal of Sound and Vibration 191 (5) (1996) 859-880.
    [31] F.M. Hemez, S.W. Doebling, Review and assessment of model updating for non-linear,transient dynamics, Mechanical Systems and Signal Processing 15 (1) (2001) 45-74.
    [32] S.W. Doebling, L.D. Peterson, K.F. Alvin, Estimation of reciprocal residual ?exibility fromexperimental modal data, AIAA Journal 34 (8) (1996) 1678-1685.
    [33] H.M. Ngwangwa, P.S. Heyns, F. Van Tonder. Assessment of structural damage using oper-ational time responses and finite element simulation. Journal of Sound and Vibration 296(2006) 23-45
    [34] J.B. Bodeux, J.C. Golinval, Modal identification and damage detection using the data-driven stochastic subspace and ARMAV methods, Mechanical Systems and Signal Pro-cessing 17 (1) (2003) 83-89.
    [35] Hearnq and Testa R B, Modal analysis for damage detection in structures, Journal of Struc-tural Engineering, 1991,117(10):3042-3063.
    [36] Kim, J.-T., and N. Stubbs, Assessment of the Relative Impact of Model Uncertainty on theAccuracy of Global Nondestructive Damage Detection in Structures. Report prepared forNew Mexico State University,1993.
    [37] Ruotolo R, and Surace C, Damage assessment of multiple cracked beams: numerical resultsand experimental validation. Journal of Sound and Vibration, 1997,206(4):567-588.
    [38] Salawu O S, Detection of structural damage through changes in frequency: a review. Engi-neering Structures, 1997,19(9):718-723.
    [39] Contursi T, Mangialardi L M, and Messing A, Detection of structural faults by modal data,lower bounds and shadow sites, Journal of Sound and Vibration, 1998,210(2):267-278.
    [40] Messina A, Willianms E J, and Contursi T, Structural damage detection by a sensitivity andstatistical-based method, Journal of Sound and Vibration, 1998,216(S):791-808.
    [41] Lam H F, Ko J M, and Wong C W, Localization of damaged structural connectionsbased on experimental modal and sensitivity analysis, Journal of Sound and Vibration,1998,210(1):91-115.
    [42] H. Zhu, M. Wu, The characteristic receptance method for damage detection in large mono-coupled periodic structures, Journal of Sound and Vibration 251 (2002) 241-259.
    [43] W.L. Bayissa, N. Haritos. Structural damage identification in plates using spectral strainenergy analysis. Journal of Sound and Vibration 307 (2007) 226-249
    [44] Lang, Z.Q., Z.K. Peng. A novel approach for nonlinearity detection in vibrating systems.Journal of Sound and Vibration 314 (2008) 603-615.
    [45] Jinhee Lee (2009) Identification of multiple cracks ina beam using natural frequencies.Journal of Sound and Vibration 320 (2009):482-490.
    [46] P. Cawley, R.D. Adams, The location of defects in structures from measurements of naturalfrequencies, Journal of Strain Analysis for Engineering Design 14 (1979) 49-57.
    [47] Stubbs, N., Kim, J.T., and Farrar, C.R. (1995). Field verification of a non-destructive dam-age localization and severity estimation algorithm. Proc. of IMAC, Connecticut, USA, So-ciety of Experimental Mechanics, 210-218.
    [48] Yang Hezhen,Li Huajun, Damage Localization of Offshore Platform under Ambient Exci-tation, China Ocean Engineering,2003, Vol.17, No.4, 495-504.
    [49]杨和振,2004,环境激励下海洋平台结构模态参数识别与损伤诊断研究,中国海洋大学博士学位论文.
    [50]刁延松,2006,基于神经网络和小波分析的海洋平台结构损伤检测研究,中国海洋大学博士学位论文.
    [51] Friswell. M.I. and J.E.Mottershead. Finite Element Model Updating in Structural Dynam-ics [M]. Dordrecht/Boston/London: Kluwer Academic Publishers. 1995.
    [52] R.L. Fox, M.P. Kapoor, Rate of change of eigenvalues and eigenvectors, AIAA Journal 12(6) (1968) 2426-2429.
    [53]宋汉文,王丽炜,王文亮有限元模型修正中若干重要问题[J].振动与冲击, 2003, 22(4): 68-71.
    [54] G. Steenackers, P. Guillaume. Finite element model updating taking into account the un-certainty on the modal parameters estimates. Journal of Sound and vibration 296 (2006)919-934.
    [55]袁永新,戴华.用振动测量数据最优化修正质量矩阵[J].振动与冲击,2006,25(3):14-17.
    [56] J.R. Wu, Q.S. Li, Finite element model updating for a high-rise structure based on ambientvibration measurements, Engineering Structures 2004, 26:979-990.
    [57] J.F. Unger, A. Teughels, G. De Roeck, System identification and damage detection of aprestressed concrete beam, Journal of Structural Engineering, ASCE 2006, 132 (11):1691-1698.
    [58] Bakir P. G., E. Reynders and G. D. Roeck. Sensitivity-based finite element model updat-ing using constrained optimization with a trust region algorithm. Journal of Sound andvibration, 2007, 305:211-225.
    [59] Jaishi B., W. X. Ren Finite element model updating based on eigenvalue and strain energyresiduals using multiobjective optimisation technique. Mechanical Systems and Signal Pro-cessing 2007, 21 (2007) 2295-2317
    [60] A. Teughels, Inverse Modelling of Civil Engineering Structures Based on OperationalModal Data, PhD Thesis, K. U. Leuven, 2003.
    [61] S. Donders, J. Van de Peer, S. Dom, H. Van der Auweraer, D. Vandepitte, Parameter uncer-tainty and variability in the structural dynamics modeling process, Proceedings of the 22ndIMAC Conference, Dearborn, Michigan, 2004.
    [62] Kye-Si Kwona, Rong-Ming Lin. Robust finite element model updating using Taguchimethod. Journal of Sound and vibration 280 (2005) 77-99
    [63] C. Maresa, J.E. Mottersheadb, M.I. Friswell. Stochastic model updating: Part 1-theoryandsimulated example. Mechanical Systems and Signal Processing 20 (2006) 1674-1695
    [64] J.E. Mottersheada, C. Maresb, S. Jamesa, M.I. Friswel. Stochastic model updating: Part2-application to a set of physical structures. Mechanical Systems and Signal Processing 20(2006) 2171-2185.
    [65] Hu, S.-L.J., Li, H. and Wang, S. Cross-model cross-mode method for model updating.Mechanical Systems and Signal Processing, 2007, 21, 1690-1703.
    [66] Carvalho, J., Biswa N. Datta, Abhijit Gupta and Maitreya Lagadapati. A direct method formodel updating with incomplete measured data and without spurious modes. MechanicalSystems and Signal Processing,2007, 21(7): 2715-2731
    [67]王勖成,邵敏.有限单元法基本原理和数值方法(第二版),ISBN:730202421.清华大学出版社. 2003年5月
    [68] S. R. Ibrahim and E. C. Miku lcik, A Method for the Direct Identification of VibrationParameters from the Free Response, Sounds & Vibrations Bulletin, 1977, 183-198 .
    [69] Juang, J.N. and Pappa, R.S., An Eigensystem Realization Algorithm for Modal ParameterIdentification and Model Reduction, Journal of Guidance, Control and Dynamics, Sept.-Oct. 1985, Vol. 8, No. 5, 620-627.
    [70] E.G.Gilbert. Controllability and Observability in Multivariable Control Systems. SIAMJournal on Control. 1963, 1(2): 128-151.
    [71] R.E. Kalman. Mathematical Description of Linear Dynamical Systems, SIAM Journal oncontrol, 1963, 1(2): 152-192.
    [72] Kanazawa,K. and Matsui,T.. ARMAMA model for spectral analysis and modal identifica-tion(J). J. Struct. Constr. Eng.,2002,(554):71-78
    [73]刘爱霞,2006,导管架式海洋平台模型修正技术的研究,中国海洋大学硕士学位论文.
    [74] Guyan, R. J.,Reduction of Stiffness and Mass Matrices, AIAA Journal, 1965, 3(2), 380.
    [75] O’Callahan, J., A Processing for an Improved Reduced System (IRS) Model, Proceedingsof 7th International Modal Analysis Conference, 1989, 17-21.
    [76] O’Callahan, J., Avitabile, P. and Riemer, R., System Equivalent Reduction Expansion Pro-cess (SEREP), Proceedings of 7th International Modal Analysis Conference, 1989,29-37.
    [77] Gysin, H., Comparison of Expansion Methods for FE Modeling Error Localization, Pro-ceedings of 8th International Modal Analysis Conference, 1990,195-204.
    [78] Allemang, R.J. and Brown, D.L.. A Correclation Coefficient for Modal Vetor Analysis. 1stInternaitonal Modal Analysis Conference, Orlando, Florida. November 1982, 110-116.
    [79] D.J. Ewins, Model Testing: Theory, Practice and Application, second ed., Research StudiesPress, 2000.
    [80] S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz, Damage identification and healthmonitoring of structural and mechanical systems from changes in their vibration character-istics: a literature review, Los Alamos National Laboratory Report No. LA-13070- MS, LosAlamos, NM, 1996.
    [81] J.E. Mottershead, M.I. Friswell, Model updating in structural dynamics: a survey, Journalof Sound and vibration 167 (1993) 347-376.
    [82] Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W.. A Review of DamageIdentification Methods that Examine Changes in Dynamic Properties. Shock and VibrationDigest 30 (2), 1998, 91-105.
    [83] James G.H., T.G. Garne, J.P. Lauffer, 1995. The Natural Exciation Technique(NExt) forModal Parameter Extraction from Operating Structures. The International Journal of Ana-lytical and Experimental Modal Analysis, 10(4), 260-277.
    [84] Brincker, R., Zhang, L. M., and Andersen, P., 2001. Modal identification of output onlysystems using frequency domain decomposition. Smart Mater. Struct., 10, 441-445.
    [85] Maia, N., Silva, J., He, J., Lieven, N., Lin., R-M., Skingle, G., To, W., Urgueira, A., 1997.Theoretical and Experimental Modal Analysis. Research Studies Press Ltd.
    [86] Cawley, P., Adams, R.D., 1979. The location of defects in structures from measurement ofnatural frequencies. Journal of Strain Analysis 14 (2), 49-57.
    [87] A.K. Pandey, M. Biswas, M.M. Samman, Damage detection from changes in curvaturemode shapes, Journal of Sound and Vibration 145 (1991) 321-332.
    [88] A.K. Pandey, M. Biswas, Damage detection in structures using changes in ?exibility, Jour-nal of Sound and Vibration 169 (1994) 3-17.
    [89] Q. Lu, G. Ren, Y. Zhao, Multiple damage location with ?exibility curvature and relativefrequency change for beam structures, Journal of Sound and vibration 253 (2002) 1101-1114.
    [90] Z. Zhang, A.E. Aktan, Application of modal ?exibility and its derivatives in structuralidentification, Research in Nondestructive Evaluation 10 (1998) 43-61.
    [91] D.V. Jauregui, C.R. Farrar, Comparison of damage identification algorithms on experi-mental modal data from a bridge, Proceedings of the 14th International Modal AnalysisConference, Vol. 2, Dearborn, Michigan, 1996, pp. 1423-1429.
    [92] Kim, J.-T., and Stubbs, N. (2002). Improved damage identification method based on modalinformation. Journal of Sound and Vibration, 252(2), 223-238.
    [93] Ren, W.X., and De Roeck, G. (2002). Discussion of structural damage detection frommodal strain energy change. Journal of Engineering Mechanics ASCE, 128(3), 376-378.
    [94] Shi, Z.Y., Law, S.S., and Zhang, L.M. (1998). Structural damage localization from modalstrain energy change. Journal of Sound and Vibration, 218(5), 825-844.
    [95] Shi, Z.Y., Law, S.S., and Zhang, L.M. (2000). Structural damage detection from modalstrain energy change. Journal of Engineering Mechanics, ASCE, 126(12), 1216-1223.
    [96] P. Cornwell, S.W. Doebling, C.R. Farrar, Application of the strain energy damage detectionmethod to plate-like structures, Journal of Sound and vibration 224 (1999) 359-374.
    [97] H.Y. Hwang, C. Kim, Damage detection in structures using a few frequency response mea-surements, Journal of Sound and Vibration 270 (2004) 1-14.
    [98] R.P.C. Sampaio, N.M.M.Maia, J.M.M. Silva, Damage detection using the frequency re-sponse function curvature method, Journal of Sound and Vibration 226 (1999) 1029-1042.
    [99] T. Marwala, Fault identification using pseudomodal energies and modal properties, Journalof Aircraft 39 (2001) 1608-1617.
    [100] S. Liberatore, G.P. Carman, Power spectral density analysis for damage identification andlocation, Journal of Sound and Vibration 274 (2004) 761-776.
    [101] Kim, J.T., Stubbs, N., 1995. Damage detection in offshore jacket structures from limitedmodal information. Journal of Offshore and Polar Engineering 5(1), 58-66.
    [102] Mangal, L., Idichandy, V.G., Ganapathy, C. 1996. ART-based multiple neural networks formonitoring offshore platforms. Applied Ocean Research, 18, pp.137-143.
    [103] Surace, C., Worden, K. 1998. A novelty detection method to diagnose damage instructures:an application to an offshore platform. Proc. of the Eighth (1998) International OffshoreandPolar Engineering Conference, Vol. 4, pp.64-70
    [104] Li, H., Yang, H., Hu, S.-L.J. 2006. Modal strain energy decomposition method for damagelocalization in 3D framestructures. Journal of Engineering Mechanics, ASCE, 132(9), 941-951.
    [105] Li, H., Wang, J., Zhang, M., Hu, S.-L.J., 2006. Damage detection in offshore jacket struc-tures by cross-model cross-mode method. Proceedings of The Seventh International Con-ference on Hydrodynamics, Naples, Italy, Vol 1, 171-178.
    [106] Johnson E A, Lam H F, Katafygiotis L S and E T A L. 2000. A benchmark problemfor structural health monitoring and damage detection. Proceedings of the EngineeringMechanics Specialty Conference, Austin, Texas, May, 2000.
    [107] Chen, J.C., et, al.. Next Generationof Intelligent Structures. Proceedings of the SecondInternational Workshop on Structural Control, Hong Kong, December 18-21, 1996.
    [108] Black C J and Ventura C E. Blind test on damage detection of a steel frame structure. 16thInternational Modal Analysis Conference (IMAC-XVI), Santa Barbara, California, Febru-ary, 1998: 623-629.
    [109] Dyke.S.J., D. Bernal, J.L. Beck, and C. Ventura. An Experimental Benchmark Problem InStructural Health Monitoring. Third International Workshop on Structural Health Moni-toring, Stanford, CA, September 12-14, 2001.
    [110] Ni Y Q, Wang B S, Ko J M , Jiang S F. The artificial neural network methods for damagedetection of a benchmark structure, The Third International Workshop on Structural HealthMonitoring, Stanford, CA, Sep., 2001,Proceedings, 623-629.
    [111] Hera A and Hou Z K.,Wavelet-based approach for ASCE structural health monitoringBenchmark studies. Proceedings of 3rd International Workshop on Structural Health Mon-itoring, Standford, CA, September, 2001.
    [112] Au S K, Yuen K V and Beck J L. Two stage system identification results for Benchmarkstructure, Proceeding of the Engineering Mechanics Specialty Conference, Austin, Texas,May, 2000.
    [113] Bernal D and Gunes B. , Observe/Kalman and subspace identification of the UBC Bench-mark structural model, Proceedings of the Engineering Mechanics Specialty Conference,Austin, Texas, May, 2000.
    [114] Dyke S J, Caicedo J M and Johnson E A. , Monitoring of a Benchmark structure for damageidentification, Proceedings of the Engineering Mechanics Specialty Conference, Austin,Texas, May, 2000
    [115] Katafygiotis L S, Lam H F et al., Application of a statistical approach on Benchmark dam-age detection problem. Proceedings of the Engineering Mechanics Specialty Conference,Austin, Texas, May, 2000.
    [116]张德文,魏阜旋.再论约束最小二乘法.计算力学学报,17(4):398-404
    [117] Baruch M., 1982. Optimal correction of mass and stiffness matrices using measured modes,American Institute of Aeronautics and Astronautics Journal 20 (11) 1623-1626.
    [118] Berman A., E.J. Nagy. Improved of a large analytical model using test data, AmericanInstitute of Aeronautics and Astronautics Journal 21 (8) (1983) 1168-1173.
    [119] Link M., M. Weiland, J.M. Barragan. Direct physical matrix identification as comparedto phase resonance testing: Assessment based on practical application. Proceedings of thefifth IMAC, 1987, pp. 804-811.
    [120] Jung H. Structural dynamic model updating using eigensensitivity analysis, Ph.D. Thesis,Department of Mechanical Engineering, Imperial College, London, UK, 1992.
    [121] Gladwell, G. M. L. Inverse Problems in Vibration. Martinus- Nijhoff, Dordrecht, TheNetherlands, 1986.
    [122] Craig, R. J., Structural Dynamics: An Introduction to Computer Methods, Wiley, NewYork, 1981.
    [123] Lin R.M., M.K. Lim, H. Du. Improved inverse eigensensitivity method for structural ana-lytical model updating. Journal of Vibration and Acoustics 117 (2) (1995) 192-198.
    [124] Lin R.M. , J. Zhu. Model updating of damped structures using FRF data. MechanicalSystems and Signal Processing 20 (2006) 2200-2218
    [125] Hu, S.-L.J., Li, H. Simultaneous Mass, Damping, and Stiffness Updating for DynamicSystems AIAA JOURNAL 2007, 45:(10), 2529-2537
    [126] Li, H.J., Wang, J.R., Hu, S.-L.J. Using incomplete modal data for damage detection inoffshore jacket structures. Ocean Engineering 35(2008)1793-1799 45:(10)
    [127] J.-T. Kim, N. Stubbs, Improved Damage Identification Method Based on Modal Informa-tion, Journal of Sound and vibration , 2002, 252(2),223-238.
    [128] Barroso , L.R. and Rodriguez, R. Damage detection utilizing the damage index method to abenchmark structure. Journal of Engineering Mechanics , ASCE , 130(2), 142-151, 2004.