750kV变电构架结构型式优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了得到750kV变电构架不同结构型式下的最优方案,本文在对750kV变电构架采用普通钢、高强钢和钢管混凝土等结构型式进行计算分析的基础上,比较了不同结构型式构架之间的力学性能指标、钢材用量之间的关系,以及同一结构型式采用不同材料之间的力学性能指标、钢材用量之间的关系。分析研究的变电构架型式主要包括:普通钢格构式构架、普通钢人字柱构架、高强钢格构式构架、高强钢人字柱构架以及钢管混凝土人字柱构架。其中,普通钢人字柱构架包括进出线柱根开尺寸为6m、7m、8m及9m等四种不同方案;高强钢主要采用Q420、Q460、Q500及Q550等四种强度等级分别对格构式构架和7m根开尺寸的人字柱构架进行计算分析;而钢管混凝土构架主要对6m、7m及8m根开人字柱构架进行计算分析。在各型式变电构架满足承载能力极限状态和正常使用极限状态条件下,统计其材料用量,发现与格构式构架相比,人字柱构架具有传力途径明确、用钢量少的优点;变电构架采用人字柱型式时,8m根开方案用钢量最省。
     在满足承载能力极限状态和正常使用极限状态条件下,各结构型式变电构架在大风工况以及设计地震作用下均处于弹性工作状态。为了了解变电构架在罕遇地震作用下的动力特性,本文分析了8m根开普通钢人字柱构架在罕遇地震作用下的振型、周期、最大应力和位移。最后,采用pushover方法对8m根开普通钢人字柱构架进行弹塑性分析,了解其弹塑性工作特性以及塑性铰的发展过程,得到出现塑性铰时相应监测点的位移,以判断罕遇地震作用下构架的工作状态。
To get optimal scheme of different types of750kV substation truss structures, the mechanical properties and the amount of steel of different types and mechanical properties and the amount of steel of a same type have been analyzed and compared. The types of substation truss structure mainly include ordinary steel lattice truss structure, ordinary steel herringbone column truss structure, high-strength steel lattice truss structure, high-strength steel herringbone column truss structure and concrete filled steel tube herringbone column truss structure. Ordinary steel herringbone column truss structure include6m-root size,7m-root size,8m-root size and9m-root size. Lattice truss structure and7m-root size herringbone column truss structure have been calculated and analyzed by Q420, Q460, Q500and Q55O.6m-root size,7m-root size and8m-root size concrete filled steel tube herringbone column truss structure have been calculated and analyzed. On the premise of meeting the bearing capacity limit state and the serviceability limit state. The amount of steel of different types of substation truss structures has been counted to find out the saving types. Compared with lattice truss structure, less steel is consumed in herringbone column truss structures. The steel consumed in8m-root size herringbone column truss structure consumes is less than those in6m-root size herringbone column truss structure and7m-root size herringbone column truss structure.
     In the condition of two limit states, substation truss structures were in the linear elastic work status under the wind condition and the design earthquake condition. In order to study the mechanical property under strong earthquake, the vibration mode, period, maximum stress and displacement of8m-root size ordinary steel herringbone column truss structure has been analyzed. Finally,8m-root size ordinary steel herringbone column truss structure has been analyzed by pushover to study its elastic-plastic characteristics and the process of development of plastic hinges. Then the elastic limit displacement of the monitoring point corresponding to the first plastic hinge appears has also been determined to study its working condition.
引文
[1]中南电力设计院.变电构架设计手册[M].武汉:湖北科学技术出版社,2006.
    [2]彭奕亮,万红,杨光,等.变电构架高架柱与人字柱连接节点受力性能试验研究[J].西安建筑科技大学学报,2011,43(4):486-492.
    [3]高湛,彭少民,刘宗辉,等.变电构架中刚性法兰有限元分析[J].工业建筑,2005,35:294-298.
    [4]卢海陆,刘广鹏,张津荣,等.变电构架中高架柱与人字柱的节点优化[J].低温建筑,2011,(3):65-67.
    [5]朱爱珠,郭耀杰,程超,等.变电构架柱的节点实验研究与有限元分析[J].土木工程学报,2007,40(11):9-15.
    [6]余欢,高湛,胡小龙,等.变电构架中无加劲肋法兰节点有限元分析[J].武汉大学学报(工学版),2007,40(增刊):204-208.
    [7]朱爱珠,朱宏平,郭耀杰.变电构架柱螺栓连接柱顶节点优化分析[J].武汉大学学报(工学版),2008,41(3):91-96.
    [8]刘广鹏.变电构架中高架柱与人字柱连接节点受力性能有限元分析[硕士论文].西安:西安建筑科技大学,2011.
    [9]高湛,余欢,李华.500kV变电构架中刚、柔性法兰的有限元分析[J].电力建设,2008,29(2):32-36.
    [10]向洋,苏明周,杨俊芬,等.法兰盘厚度对刚性法兰连接节点刚度影响的有限元分析[J].水利与建筑工程学报,2012,10(6):69-73.
    [11]朱爱珠,郭耀杰,程超,等.螺栓连接变电构架柱结构分析[J].重庆建筑大学学报,2008,30(1):72-76.
    [12]朱朝阳,靳振宇.变电构架的空间分析[J].武汉大学学报(工学版),2010,43(增刊):110-112.
    [13]王惠平,张猛等.变电构架承载能力对于结构参数的灵敏性分析[J].河南科学,2008,26(9):1097-1100.
    [14]张凯,邓长根.大型变电构架可靠性评价的模糊综合评判法[J].世界地震工程,2007,23(2):85-90.
    [15]孙增寿,张哲.基于损伤的高型布置变电构架体系可靠性分析[J].华中科技大学学报(城市科学版)[J].2004,21(4):26-29.
    [16]韩文庆,刘建秋,商文念.500kV全联合构架风荷载影响分析[J].低温建筑技术,2011,(9):54-56.
    [17]潘峰,童建国,盛晓红,等.1000kV大型薄壁钢管变电构架风致振动响应研究[J].工程力学,2009,26(10):203-210.
    [18]杨明,王尉,王磊.1000kV全联合变电构架风荷载效应研究[J].武汉大学学报(工学版),2010,43(增刊):100-104.
    [19]Gani F, Legeron F, Ashby M. Dynamic Wind Analyses of Transmission Line Structures[C]//Electrical Transmission and Substation Structures 2009@ Technology for the Next Generation. ASCE,2009:1-12.
    [20]Bazan-Zurita E, Bielak J, DiGioia A M, et al. Seismic design of substation structures[C]//Electrical Transmission and Substation Structures 2009@ Technology for the Next Generation. ASCE,2009:1-12.
    [21]丁建智.750kV超长变电构架风振响应和风振系数研究[硕士论文].西安:西安建筑科技大学,2012.
    [22]王秀丽,何子奇.寒冷地区750kV联合构架有限元分析[J].低温建筑技术,2010,(7):19-21.
    [23]刘建秋,商文念,韩文庆.超长变电构架结构温度效应分析研究[J].工业建筑,2011,41(增刊):290-292.
    [24]张哲,李天,李光.大召营高型变电构架的动力特性分析[J].世界地震工程,2004,20(3):141-145.
    [25]Nunez E, Fouad F H, Harry Durden P E. Evaluation of Concrete Pole-Type Substation Structures Subjected to Shock Loads[C]. ASCE,2004.
    [26]陈海波,邢海军,李振福.750kV输变电钢管塔架结构承载力及构造的试验研究[J].中国电力,2005,38(12):20-23.
    [27]余少锋,钟善桐.220kV离心钢管混凝土变电构架真形实验研究[J].上海铁道大学学报,1998,19(10):55-58.
    [28]万红,彭奕亮,李洪波,等.变电构架中Q235-Q420牌号角钢和钢管适用性分析[J].四川建筑科学研究,2011,37(6):303-306.
    [29]王秀丽,李志利.特钢330kV变电站联合构架最大应力分析[J].兰州理工大学学报,2010,36(4):102-106.
    [30]陈影.人字柱变电构架计算[J].电力勘察设计,2008,(4):62-65.
    [31]GB50009-2001.建筑结构荷载规范[S].
    [32]沈祖炎,陈扬骥,陈以一.钢结构基本原理[M].北京:中国建筑工业出版社,2007.
    [33]GB50017-2003.钢结构设计规范[S].
    [34]DL/T5457-2012.变电站建筑结构设计技术规程[S].
    [35]郭日彩,何长华,李喜来,等.输电线路铁塔采用高强钢的应用研究[J].电网技术,2006,30(23):21-25.
    [36]Richard Horton P E, Edward Power P E, Van Ooyen K, et al. High performance steel cost comparison study[C]. ASCE,2001.
    [37]Ing R B D. New design method for composite columns including high strength steel[C]. ASCE,2006.
    [38]缪巍.配筋圆钢管混凝土短柱轴压试验研究[硕士论文].南京:东南大学,2010.
    [39]Choi K K, Xiao Y. Analytical studies of concrete-filled circular steel tubes under axial compression[J]. Journal of structural engineering,2009,136(5):565-573.
    [40]陈洪利,宋晓燕.钢管混凝土与钢管结构形式的对比[C].//2011年全国钢结构学术年会论文集.2011:129-137.
    [41]北京金土木软件技术有限公司.SAP2000中文版使用指南[M].北京:人民交通出版社,2012.
    [42]岳焱超.钢框架结构的pushover分析及模态pushover研究[硕士论文].上海:同济大学,2008.
    [43]工小兵.方钢管混凝土柱-钢梁框架结构的pushover分析[J].中国西部科技,2009, 08(35):31-33.
    [44]崔烨.静力弹塑性pushover分析方法的研究和改进[硕士论文].西安:西安建筑科技大学,2004.
    [45]GB50011-2010.建筑抗震设计规范[S].
    [46]陈昌宏.SAP2000结构工程案例分析[M].北京:冶金工业出版社,2010.
    [47]CECS28-2012.钢管混凝土结构技术规程[S].
    [48]北京金土木软件技术有限公司pushover分析在建筑工程抗震设计中的应用[M].北京:中国建筑工业出版社,2010.
    [49]GB50010-2010.混凝土结构设计规范[S].