差应力对岩石部分熔融的影响及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
差应力一直是地学的一个研究热点,那么差应力对岩石的部分熔融有什么影响,并且这些影响又表现在哪些方面呢?为了探讨和解决这些科学问题,本文通过高温高压的实验手段对差应力对岩石部分熔融的影响及其作用机制进行讨论与分析。
     实验主要分为静态熔融实验和动态熔融实验两种类型。实验后首先对熔体含量进行统计以及对实验重要参数进行确定,然后分别描述了动、静态熔融实验后样品的显微特征,研究主要包括三部分内容:差应力对岩石熔融程度的影响;熔体的静、动态实验分布特征;熔体成分的迁移与分异。
     第一部分内容包括的实验有黑云母斜长片麻岩的静、动态实验,角闪变粒岩的静、动态实验,辉长岩的静、动态实验,然后通过找出同样的熔融程度所对应的差应力和温度之间的关系,最后得出差应力对岩石熔融程度的影响。第二部分,通过对比描述了细粒闪长岩静、动态实验中熔体的分布特征,试图找出差应力在熔体的迁移过程中所扮演的角色。第三部分中,进行了细粒闪长岩静、动态实验,辉长岩的动态实验,浅粒岩的静态实验,细粒花岗岩的静、动态实验,对实验后样品进行电子探针测试,对主量元素进行分析,并主要通过对SiO_2含量的变化进行对比,讨论熔体成分的迁移及其分异特征。
     通过对比研究笔者得出结论:(1).在酸性岩、中性岩和基性岩中,岩石的熔融程度均会随着温度和差应力的升高而增大;(2).差应力的参与作用可以使岩石熔点降低;(3).在黑云母斜长片麻岩中:以800℃为基准,差应力每增加5MPa其带来的影响与温度升高20℃的效果相当,在角闪变粒岩中以700℃为基准差应力每增加5MPa其带来的影响与温度升高40℃的效果相当,辉长岩中以700℃为基准差应力每增加5MPa其带来的影响与温度升高50℃的效果相当。可见,基性岩石的熔融对差应力的敏感程度最高,中性岩次之,酸性岩石最不敏感。(4).通过对细粒闪长岩静、动态结果中熔体的分布对比可知,细粒闪长岩在动、静态实验中熔体的分布规律与相关研究成果(如辉长岩动态实验及黑云斜长片麻岩静态实验)的熔体分布规律比较一致,说明在中性岩石中,构造差应力仍然作为熔体的迁移和形成连通的三维网络结构的主要驱动力。(5).差应力大大提高了熔体迁移的速率,并且在以含水矿物为主的岩石中的速率要远大于在其他岩石中的速率。(6).在细粒闪长岩的部分熔融实验中,在差应力的作用影响下,角闪石作为含水矿物首先发生脱水熔融,而斜长石等矿物后熔,所以,差应力间接的控制了熔体成分由基性向酸性转化。(7).在辉长岩的动态熔融实验中,由于熔体成分在差应力的作用下不断分异与富集,可形成成分较辉石更为基性的橄榄石;并且Fe的富集形成了磁铁矿雏晶,说明差应力促使岩石发生成分的分异,为岩石成分的分异提供了有利条件。
Differential stresses is always a research hotspot on geology,and what’s theinfluences about the differential stresses for rocks’ partial melting and which aspects itmanifest?In order to discuss and resolve these scientific problems this paperinvestigate and analysis the effects and mechnisms of differential stresses on rocks’partial melting by the method of HTHP.
     It mainly contains two kinds of types which are static and dynamic meltingexperiments. After the experiments we firstly count the melt content and make sureimportant experimental parameters, secondly we respectively depict the micrographiccharacteristics of static and dynamic experiments. Researches mainly contain threeparts:the effects of differential stresses on rocks melting;distribution characteristics ofmelt in static and dynamic experiments;melt component’s migration anddifferentiation.
     The first part static and dynamic experiments are made up of samples ofbiotite-plagioclase gneiss,hornblende granulite and gabbro.We can gain the effects ofdifferential stresses on rocks melting by contrasting the same melting degreecorresponding to differential stresses and tem-perature.In part two,we try to find whatrole the differential stresses will play in the process of melt migration throughdescribing and contrasting melt characteristics of fine-grain diorite in static anddynamic experiments.In part three,we have finished static and dynamic experimentsof fine-grain diorite and granite and dynamic experiments of gabbro and static experiments of leptite,I do some electron probe tests and mainly analyze majorelements and contrast the variation of SiO_2contents to explore migration anddifferentiation of melt components.
     Finally, we obtain some conclusions:(1).In acid and neutral rocks their meltingdegrees both show positive correlation with differential stresses andtemperatures.(2).Different stresses can decline the melting points.(3).The effect of20℃is equal to5MPa to biotite plagioclase gneiss and the effect of40℃is equal to5MPa to hornblende granulite and the effect of50℃is equal to5MPa togabbro.Basic rock is the most sensitive to different stresses,mesite is less and acidrock is the least.(4).The distribution characteristics of fine-grain diorites’ static anddynamic experiments suggest it is accordance with other results such ascharacteristics of gabbro dynamic and biotite plagioclase gneiss static meltingexperiments which show that in medium rock differential stresses also are regarded asthe main driven-stress for migration of melt and forming joined3D networktexture.(5).The differential stresses greatly increase the rate of melt migration and therates in rocks mainly composed by hydrous minerals are much faster thanothers.(6).In the fine-grain diorite partial melting experiments hornblende as hydrousminerals firstly begin to melt under the effect of differential stresses but plagioclasesmelt later,so differential stresses control the melt components changing from basalticrock to andesite.(7).In the gabbro’s dynamic melting experiments because of meltcomponents continuously assembling it will form olivine whose component is morebasaltic,also magnetite crystalline nucleus can be formed which suggest thatdifferential stresses promote rocks’ composition differentiation and provide favorableconditions for separation of rocks’ composition.
引文
[1] Arzi A A. Critical phenomena in the rheology of partially melted rocks [J].Tectonophysics,1978,44:173-184.
    [2] Audren, C., Triboulet, C., P–T–t-deformation paths recorded by Kinzigitesduring diapirism in the western Variscan Belt (Golfe du Morbihan, southern Brittany,France). J. Metamorph.Geol.1993.11:337–357.
    [3] Bagdasserov N,Dorfman A.Granite rheology:magma flow and melt migration[J].Journal of the Geological Society London,1998,155:863-872.
    [4] Barton, C.C. Hsieh, P.A.,1989. Physical and hydrologic-flow properties offractures. American Geophysical Union,28th International Geological Congress FieldTrip Guidebook. T385.
    [5] Baschek, G., and W. Johannes, The estimation of NaSi-CaA1interdiffusionr atesin peristeriteb y homogenizatioenx periments, Eur. d. Mineral,7,295-307,1995.
    [6] Bascou J, Barruol G, Vauchez A, et al., EBSD-measured lattice-preferredorientations and seismic properties of eclogites[J].Tectonophysics,2001,342:61-80.
    [7] Ahrens T J. Mineral Physics and Crystallography: A handbook of physicalconstants[C]. Washington: American Geophysical Union,1995:45-63.
    [8] Bauer P, Rosenberg C, Handy M R.“See-through”deformation experiments onbrittle-viscous noncamphor at controlled temperature, strain rate and appliedconfining pressure [J]. Journal of Structural Geology,2000,22:281-289.
    [9] Behrens, H., Structural, kinetic and thermodynamic properties of hydrogen infeldspars, in Processes in Minerals and Ceramics:ProceedingsE SF Workshopo nCation Ordering,p p.1-7, Eur.Sci.Found., Cambridge, England,1994.
    [10]Bernard-Griffiths, J., Peucat, J.-J., Sheppard, S., Vidal, P., Petrogenesis ofHercynian leucogranites from the southern ArmoricanMassif:contribution of REE andisotopic (Sr, Nd, Pb, and O) geochemical data to the study of source rockcharacteristics and ages. Earth Planet. Sci. Lett.1985.74:235–250.
    [11]Bernston, G.M., Stoll, P., Correcting for finite spatial scales of self-similaritywhen calculating the fractal dimensions of realworld structures. Proc. R. Soc. Lond.1997,264:1531–1537.
    [12]Bhagat S, Bass J D, Smyth, J. Single-crystal elastic properties of omphacite-C2/cby Brillouin spectroscopy[J]. J·Geophy·Res·,1992,97:6843-6848.
    [13]Birch F. The velocity of compressional waves in rocks to10kilobar, Part1[J]. J.Geophy. Res.,1960,65:1083-1102.
    [14]Boland J N, T E Tullis. Deformation behavior of wet and dry clinopyroxenite inthe brittle to ductile transition region. In: B E Hobbs, H C Heard, eds. Mineral andRock Deformation Laboratory
    [15]Bretheau T, Castaing J, Rabier J, et al. Dislocationmotion and high temperatureplasticity of binary and ternary oxides. Adv. Phys.,1979,28:829-1014.
    [16]Brown M, Rushmer T.The role of deformation in the movement of granitic melt:views from the laboratory and the field [M]. Holness M B. Deformation enhancedfluid transport in the Earth s crust and mantle. The Mineralogical Society Series,1997,8:111-144.
    [17]Brown M, Solar G.Shear-zone systems and melts: feedback relations andself-organization in orogenic belts [J]. Journal of Structural Geology,1998,20:211-227.
    [18]Bulau J R, Waff H S and Tyburczy J A. Mechanical and thermodynamicconstraints on fluid distribution in partial melts. Jour. Geophys. Res.,1979,84:6102-6108.
    [19]Burlini L, Arbaret L, Zeilinger G, Burg J P. High-temperature and pressureseismic properties of a lower crustal prograde shear zone from the Kohistan ArcPakistan. Geological Society,2005,245:187-202
    [20]Chai M, Brown J M, Slutsky L J. The elastic constants of pyropegrossuar-almandine garnet to20GPa[J]. Geophy. Res. Lett.,1997,24:523-526.
    [21]Chopra P N, Paterson M S. The role of water in the deformation of dunite. J.Geophys. Res.,1984,89:7861-7876
    [22]Christensen N I, Mooney W D. Seismic velocity structure and composition of thecontinental crust: A global view [J]. J·Geophy·Res,1995,100:9761-9788·
    [23]Christensen N I. Seismic velocities. Carmichael R.S. Practical Handbook ofPhysical Properties of Rocks and Minerals[C].Boca Raton, Florida, America: CRCPress Inc.1989:429-546.
    [24]Connolly JAD, Podladchikov YY. Compaction-driven fluid flow in viscoelasticrock. Geodin. Acta.1998,11:55-84
    [25]Connolly JAD, Podladchikov YY. Decompaction weakening and channelinginstability in ductile porous media: Implications for asthenospheric melt segregation. J.Geophys. Res.2007,112: B10205
    [26]Cooper R F, D L Kohlstedt.Solution2precipitation enhanced diffusional creep ofpartially molten olivine2basalt aggregates during hot-pressing. Tectonophysics,1984,107:207-233
    [27]Cooper R F. Differential stress-induced melt migration: an experimentalapproach. J. Geophys. Res.,1990,95(B5):6979-6992
    [28]Crosson R S,Lin J W.Voigt and Reuss prediction of anisotropic elasticity ofdunite [J]. J·Geophy·Res,1971,76:570-578.
    [29]Daines M, Kohlstedt D L. Influence of deformation on melt topology inperidotites [J]. J.Geophys.Res.,1997,102(B5):10257-10271.
    [30]David L. KOHLSTEDT, Mark E. Zimmerman and Stephen J. Mackwell.Stress-driven Melt Segregation in Partially Molten Feldspathic Rocks [J]. Journal ofPetrology,2007,12(48):2379-2406.
    [31]Davidson C, Hollister L S. Role of melt in the formation of a deep-crustalcompressive shear zone: the Maclaren Glacier metamorphic belt, South CentralAlaska [J]. Tectonics,1994,6:133-142
    [32]Davidson C, Hollister L S.Role of melt in the formation of a deep-crustalcompressive shear zone: the Maclaren Glacier metamorphic belt, South CentralAlaska [J]. Tectonics,1992,11:348-359.
    [33]Dell angelo L N, J Tullis, R A Yund. Transition from dislocation creep tomelt2enhanced diffusion creep in fine2grained granitic aggreagates. Tectonophysics,1987,139:325-332
    [34]Dell angelo L N, J Tullis. Experimental deformation of partially melted graniticaggregates. J. Metamorphic. Geol.,1988,6:495-515
    [35]Dimanov A, Dresen G and Wirth R. High-temperature creep of partially moltenplagioclase aggregates. Jour. Geophys. Res.,1998.103(B5):9651-9664.
    [36]Dupas-Bruzek C, Tingle T, Green H W, et al. The rheology of olivine and spinelmagnesiumgermanate (Mg2GeO4): TEM study of the defect microstructures. Phys.Chem.Min.,1998,25:501-514.
    [37]Faul U H. Permeability of partially molten upper mantle rocks from experimentand percolation theory [J]. J.Geophy.Res.,1997,102(B5):10299-10311.
    [38]Ferri F,Burlini L,Cesare B,Sassi R.Seismic properties of lower crustal xenolithsfrom El Hoyazo (SE Spain): Experimental evidence up to partial melting[J].EarthPlanet·Sci·Lett.,2007,253:239-253.
    [39]Fowler AC. A mathematical model of magma transport in the asthenosphere.Geophys. Astrophys. Fluid Dynam.1985,33:63-96
    [40]Gao S, Kern H, Liu Y, et al., Measured and calculated seismic velocitiesanddensities for granulites from xenolith occurrences and adjacent exposed lowercrustal sections: a comparative study from the North China craton [J]. J·Geophy Res.,2000,105:18965-18976.
    [41]Gleason G C, Bruce V, Green H W.Experimental investigation of melt topologyin partially molten quartzo-feldspathic aggregates under hydrostatic andnon-hydrostatic stress [J].Journal of Metamorphic Geology,1999,17:705-722.
    [42]Green HW, Burnley PC. A new self-organizing mechanism for deep-focusearthquakes. Nature,1989,341:733-737.
    [43]Hashin Z. Analysis of composite Materials-A survey [J]. J·Appl·Mechan,1983,50:481-505.
    [44]Hearmon R F S. The elastic constants of crystals and other anisotropic materials.Hellwege K H,Hellwege A M.LandoltOBornstein Tables,III/18[C]. Berlin: Spr-ingerOverlag,1984:1-154.
    [45]Herweg M, Handy M R.The evolution of high-temperature myloniticmicrofabrics: evidence from simple shearing of a quartz analogue (noncamphor)[J].Journal of Structural Geology,1996,18:689-710.
    [46]Hippert J, Rocha A, Lana C, et al.Quartz plastic segregation and ribbondevelopment in high-grade striped gneisses [J]. Journal of Structural Geology,2001,23:67-80.
    [47]Hirth G, D L Kohlstedt. Experimental constraints on the dynamics of the partiallymolten upper mantle,2: Deformation in the dislocation creep regime. J. Geophys.Res.,1995,100:15441-15450
    [48] Hirth G, D L Kohlstedt. Experimental constraints on the dynamics of thepartially molten upper mantle,1: Deformation in the diffusion creep regime. J.Geophys. Res.,1995,100:1981-2001
    [49]Ji S C, Saruwatari K, Mainprice D, et al., Microstructures, petrofabrics andseismic properties of ultrahigh pressure eclogites from the Sulu region, China:Implications for rheology of subducted continental crust and origin of mantlereflections [J]. Tectonophysics,2003,370:49-76.
    [50]Ji S C, Wang Q, Xia B. Handbook of seismic properties of minerals,rocks andores [M]. Montreal: Polytechnic International Press,2002:630.
    [51]Ji S C, Wang Q, Xia B.POwave velocities of polymineralic rocks: comparison oftheory and experiment and test of elastic mixture rules[J].Tectonophysics,2003,366:165-185.
    [52]Ji S C,Wang Q,Xia B,Marcotte D.Mechanical properties of multiphase materialsand rocks:A phenomenological approach using generalized means [J]. J. Struc. Geol.,2004,26:1377-1390.
    [53]Jin Z M, Green H W,Broch R S.Microstructures of olivine and stresses in theupper mantle[J]. Tectonophysics,1989,169:23-50.
    [54]Jin Z M, Green H W,Zhou Y.Melt topology in partial molten mantle peridotiteduring ductile deformation[J]. Nature,1994,372:164-166.
    [55]Johannes W.What controls partial melting in migmatites[J]?Journal of Meta-morphic Geology,1988,6:451-465.
    [56]Johannes W.What controls partial melting in migmatites[J]Journal ofMetamorphic Geology,1988,6:451-465.
    [57]Johnson KTM, Dick HJB, Shimizu N. Melting in the oceanic upper mantle: anion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res.1990,95:2661–2678
    [58]Karato S I.Plasticity-crystal structure systematics in dense oxides and itsimplications for the creep strength of the Earth’s deep interior: a preliminary result.Phys. Earth. Planet. Int.,1989,55:234-240.
    [59]Karato S, Wang Z, Liu B, et al. Plastic deformation of garnets:systematics andimplications for the rheology of the mantle transition zone. Earth Planet. Sci.Lett.,1995,130:13-30.
    [60]Kelemen PB, Dick HJB. Focused melt flow and localized deformation in theupper mantle: Juxtaposition of replacive dunite and ductile shear zones in theJosephine Peridotite, SW Oregon. J. Geophys. Res.1995,100:423-438
    [61]Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB. A review of meltmigration processes in the adiabatically upwelling mantle beneath oceanic spreadingridges. Philos. Trans. R. Soc. London Ser. A.1997,355:283-318
    [62]Kern H, Gao S, Jin Z, et al., Petrophysical studies on rocks from the DabieultrahighOpressure (UHP) metamorphic belt, central China:Implications for thecomposition and delamination of the lower crust[J].Tectonophysics,1999,301:191-215.
    [63]Kern H,Jin Z,Gao S,Popp T,Xu Z Q.Physical properties of ultrahighpressuremetamorphic rocks from the Sulu terrain,eastern central China:Implications for theseismic structure at the Donghai (CCSD) drilling site[J].Tectonophysics,2002,354:315-330.
    [64]Kern H. ElasticOwave velocity in crustal and mantle rocks at high pressure andtemperature: The role of the high-low quartz transition and of dehydration reactions[J].Physics of the Earth and Planetary Interiors,1982,29:12-23.
    [65]Lawlis J D, Zhao Y-H, Karato S. High-temperature creep in Ni2GeO4: acontribution to creep systematics in spinel.Phys.Chem. Min.,2001,28:557-571
    [66]Liu F L,Xu Z Q,Katayama I,Yang J S,Maruyama Sh,Liou J G. Mineral inclusionsin Zircons of para-and orthogneiss from prepilot drillhole CCSDOPP1,ChineseContinental Scientific Drilling project[J]. Lithos,2001,59:199-215.
    [67]Liu J G, Zhang R Y,Ernst W G,Rumble D,Shigenori M.HighOpressure mineralsfrom deeply subducted metamorphic rocks[J]. Rev·Miner.,1998,37:33-96.
    [68]Mainprice D, Humbert M. Methods of calculating petrophysical properties fromlattice preferred orientation data [J]. Surveys in Geophysics,1994,15:575-592.
    [69]Mainprice D.A Fortran program to calculate seismic anisotropy from the latticepreferred orientation of minerals [J].Computers and Geosciences,1990,6:385-393.
    [70]Manghnani M H,Ramananantoandro R,Clark S P. Compressional and shear wavevelocities in granulite facies rocks and eclogites to10kilobars[J].J·Geophy·Res,1974,79:5427-5445.
    [71]Mauler A,Burlini L,Kunze K,Philippot P,Burg J P. PO wave anisotropy ineclogites and relationship to the omphacite crystallographic fabric[J].Phy·Chem·Earth,2000, A25:119-126.
    [72]McKenzie D. The generation and compaction of partially molten rock. J. Petrol.1984,25:713-65
    [73]Mitchell T,Hwang L,Heuer A.Deformation in Spinel.J.Mat. Sci.,1976,11:264-272.
    [74]Nabarro FRN.Steady-state diffusional creep.Phil.Mag.,1967,16:231-237.
    [75]Navrotsky A, Hughes L Jr..Thermodynamic relations among olivine, spinel,andphenacite structures in silicates and germanates. V. The system MgO-FeO-GeO2.J.Solid State Chem.,1976,16:185-188.
    [76]Navrotsky A.Thermodynamic relations among olivine,spinel and phenacitestructures in silicates and germanates: I.Volume relations and the systemsNiO-MgO-GeO2and CoO-MgO-GeO2. J.Solid State Chem.,1973,6:21-41.
    [77]Nicolas A. A melt extraction model based on structural studies in mantleperidotites. J. Petrol.1986,27:999-1022
    [78]Nicolas P W, Paul D B, Cees W P. Deformation of meltbearing systems-insightfrom in situ grain-scale analogue experiments [J].Journal of Structural Geology,2005,27:1666-1679.
    [79]Nicolas P W,Paul D B,Cees W P.Deformation of meltbearing systems-insightfrom in situ grain-scale analogue experiments[J].Journal of Structural Geology,2005,27:1666-1679.
    [80]Nishikawa T, Okamoto Y,Nakagawa T, et al.Dislocation climb-controlled creep ofpolycrystalline Mn-Zn ferrite.Yogyo Kyokai-Shi.,1980,88:538-546.
    [81]Nye J F. Physical Properties of Crystals:Their Representation by Tensors andMatrices[M].London: Oxford University Press, Amen House,1957:82-92.
    [82]Paquet J, P Francois. Experimental deformation of partial melted granitic rocksat600-900℃and250MPa confining pressure.Tectonophysics,1980,68:131-146
    [83]Park J, Levin V. Seismic anisotropy: tracing plate dynamics in the mantle [J].Science,2002,296:485-489.
    [84]Paterson M S. A granular flow theory for the deformation of partially molten rock[J].Tectonophysics,2001,335:51-61.
    [85]Paterson MS. Rock deformation experimentation. In:The Brittle-DuctileTransition in Rocks,AGU Geophysical Monograph56,1990.187-194.
    [86]Peterson J W, Newton R C.CO2enhanced melting of biotitebearing rocks at deep-crustal pressure-temperature conditions [J]. Nature,1988,331:159-160.
    [87]Philpotts A R, Carroll M.Physical properties of partly melted tholeiitic basalt [J].Geology,1996,24:1029-1032.
    [88]Ribe NM. Melt segregation driven by dynamic forcing. Geophys. Res. Lett.1986,13:1462-1165
    [89]Richter FM, McKenzie D. Dynamical models for melt segregation from adeformable rock matrix. J. Geol.1984,92:729-740
    [90]Ricoult DL, Kohlstedt DL. Creep of Fe2SiO4and Co2SiO4single crystals incontrolled thermodynamic environments.Phil.Mag.A,1985,51:79-93.
    [91]Ringwood AE, Phase treansformations and the constitution of the mantle. Phys,Earth Planet Int.,1970,3:109-155.
    [92]Rudnick R L, Fountain D M. Nature and composition of the continental crust: Alower crustal perspective [J]. Rev.Geophy.,1995,33:267-309.
    [93]Rushmer T. An experimental deformation study of partially molten amphibolite:application to low melt fraction segregation [J]. Journal of Geophysical Research,1995,100(B8):15681-15695.
    [94]Rutter E H, Neumannd H K. Experimental deformation of partially moltenwesterly granite under fluid-absent conditions, with implications for the extraction ofgranitic magmas[J]. Journal of Geophysics Research,1995,100(B8):15697-15715.
    [95]Sawyer E W.Criteria for the recognition of partial melting[J].Phys ChemEarth(A),1999,24(3):269-279.
    [96]Scott DR, Stevenson DJ, Whitehead JA Jr. Observations of solitary waves in aviscously deformable pipe. Nature,1986,319:759-761
    [97]Scott DR, Stevenson DJ. Magma solitons. Geophys. Res. Lett.1984,11:1161-1164
    [98]Scott T, Kohlstedt DL. The effect of large melt fraction on the deformationbehavior of peridotite. Earth Planet. Sci. Lett,2006,246:177-187
    [99]Shankland TJ, RJ O Connell, H S Waff. Geophysical constraints on partial meltin the upper mantle. Rev. Geophys.,1981,19:394-404
    [100] Simon H.Shear zone reactivation at granulite facies: the importance ofplutons in the localization of viscous flow [J]. Journal of the Geological Society,1997,154:111-116.
    [101] Sleep NH. Tapping of melt by veins and dykes. J. Geophys. Res.,1988,93:1025-10272
    [102] Spence DA, Sharp P, Turcotte DL. Buoyancy-driven crack propagation: amechanism for magma migration. J. Fluid Mech.1987,174:135–153
    [103] Spence DA, Turcotte DL. Magma-driven propagation of cracks. J. Geophys.Res.1985,90:575-580
    [104] Spiegelman M, Kenyon P. The requirements for chemical disequilibriumduring magma migration. Earth Planet. Sci. Lett.1992,109:611-620
    [105] Spiegelman M. Flow in deformable porous media. Part2. Numerical analysis.The relationship between shock waves and solitary waves. J. Fluid Mech.1993,247:39-63
    [106] Stevenson DJ. On the role of surface tension in the migration of melts andfluids. Geophys. Res. Lett.1986,13:1149-1152
    [107] Stevenson DJ. Spontaneous small-scale melt segregation in partial meltsundergoing deformation. Geophys. Res. Lett.1989,16:1067-1170
    [108] Vaughan P, Coe R.Creep mechanism in Mg2GeO4:effect of a phasetransition.J. Geophys. Res.,1981,86:389-404.
    [109] Vigneresse J L,Barbey P, Cuney M.Rheologicall transitions during partialmelting and crystallization with application to felsic magma segregation andtransfer[J]. Journal of Petrology,1996,37:1579-1600.
    [110] Vigneresse J L,Barbey P,Cuney M.Rheologicall transitions during partialmelting and crystallization with application to felsic magma segregation andtransfer[J]. Journal of Petrology,1996,37:1579-1600.
    [111] Waff H, Faul U. Effects of crystalline anisotropy on fluid distribution inultramafic partial melts [J]. J.Geophys.Res.,1992,97:9003-9014.
    [112] Wang Q, Ji S C, Salisbury M, et al., Shear wave properties and Poisson'sratios of ultrahighpressure metamorphic rocks from the DabieOSulu orogenic belt,China: Implications for the crustal composition [J]. J·Geophy.Res,2005,110:B08208
    [113] Wang Q,Ji S C,Salisbury M,Pan M,Xia B,Xu Z Q.Pressure dependence andanisotropy of POwave velocities in ultrahigh-pressure metamorphic rocks from theDabie-Sulu orogenic belt (China):Implications for seismic properties of subductedslabs and origin of mantle reflections[J].Tectonophysics,2005,398:67-99.
    [114] Waters D J.Partial melting and the formation of granulite facies assemblagesin Namaqualand, South Africa[J].Journal of Metamorphic Geology,1988,6:451-465.
    [115] Weertman J. Theory of water-filled crevasses in glaciers applied to verticalmagma transport beneath oceanic ridges. J. Geophys. Res.1971,76:1171-1183
    [116] Weertman J.Dislocation climb theory of steady-state creep.Trans ASM,1968,61:681-694.
    [117] Whitehead JA. A laboratory demonstration of solitons using a vertical wateryconduit in syrup. Am. J.Phys.1987,55:998-1003
    [118] Xu S T,Okay A I,Ji S,et al., Diamond from the Dabie Shan metamorphicrocks and its implication for tectonic setting [J].Science,1992,256:80-82.
    [119] Xu Z Q,Wang Q,Ji S C,Chen J,Zeng L S,Yang J S,Chen F Y,Liang F H,WenkH R. Petrofabrics and seismic properties of garnet peridotite from the UHP Suluterrane (China): Implications for olivine deformation mechanism in a cold and drysubducting continental slab [J].Tectonophysics,2006,421:111-127.
    [120] Zhao Y-H, Lawlis J D,Karato S.The Rheology of Olivine-Spinel PhaseTransformation in (Mgx, Nil-x)2GeO4. EOS,1999,80(17): S347.
    [121] Zhao Y-H, Lawlis J D,Lee KH, et al., Deformation of (Mg, Ni)2GeO4: theEffects of the Olivine-Spinel Transformation. EOS,1999,80(45): F1027-1028.
    [122] Zhao Y-H,Lawlis J D, McDaris J, et al., Synthesis and deformation ofgermanate spinel. EOS,1998,79(45): F884.
    [123] Zhou Y S, He C R, Sang Z N,et al.The melt character of partial moltengabbro during plastic deformation process[J].Chinese Journal of Geophysics,2003,46(4):694-701.
    [124] ZHOU Yongsheng, HE Changrong, SANG Zunan. High2temperaturedeformation and flow laws of Panzhihua gabbro, Iaga-iaspei Joint Scientific Assembly,Hanoi, Vietnam.2001,380
    [125] Zimmerman M, Kohlstedt D L. Influence of deformation mechanism on melttopology in partially molten peridotites[J]. EOS Trans AGU(Suppl),1999,80: S236.
    [126]董春艳,马瑞,迟效国,等.差应力与岩石熔融性状关系的实验研究[J].吉林大学学报:地球科学版,2006,36(2):177-182.
    [127]何昌荣,周永胜,桑祖南.攀枝花辉长岩半脆性—塑性流变的实验研究.中国科学,2002,32(9):717-726
    [128]何文渊,李江海,钱祥麟.部分熔融状态下岩石的流变行为及变形机制[J].地质科技情报,1998,17(3):39-44.
    [129]金巍,李树勋,刘喜山.内蒙古大青山地区早前寒武纪高级变质岩系特征和变质动力学[J].岩石学报,1992,8(3):281-289.
    [130]金巍,李树勋.内蒙古大青山地区早元古宙造山带的岩石组成及特征[M]钱祥麟,王仁民主编.华北北部麻粒岩带地质演化.北京:地震出版社,1994:32-42.
    [131]李树勋,孙德育,于海峰,等.内蒙古中西部早前寒武纪变质岩系中韧性剪切带分布规律及成矿预测[M].长春:吉林科学技术出版社,1996:20-71.
    [132]李树勋,徐学纯,刘喜山.内蒙古乌拉山区早前寒武纪地质[M].北京:地质出版社,1994.
    [133]刘瑞,吕古贤.影响地下应力状态的构造作用[J].地球学报,2002,23(2):103-106.
    [134]刘正宏,徐仲元,杨振升,等.变质构造岩类型及其特征[J].吉林大学学报:地球科学版,2007,37(1):24-30.
    [135]卢良兆,徐学纯,刘福来.中国北方早前寒武纪孔兹岩系[M].长春:长春出版社,1996:16-118.
    [136]马瑞,刘正宏,吕古贤,等.差应力状态对岩石熔融程度的影响—以黑云母片麻岩的动、静态熔融对比实验为例.地质学报,2005,79:338-342
    [137]马瑞,田海民,张刚.差应力与石英组构关系的实验研究[J].吉林大学学报:地球科学版,2009,39(1):89-92.
    [138]桑祖南,周永胜,何昌荣,等.辉长岩部分熔融实验及地质学意义[J].地质科学,2002,37(4):385-392.
    [139]沙茜,马瑞.温度与差应力对岩石熔融程度的等效关系:以角闪变粒岩为例[J].吉林大学学报:地球科学版,2011,41(1):106-110.
    [140]王岳军,韩吟文,林轲.等.辉长岩的高压部分熔融实验研究.岩石学报,1998,14(1):71-81
    [141]吴福元.花岗岩熔融的局部体系及熔融序列[M].长春:吉林科学技术出版社,1993.
    [142]吴珍汉,白加启.当今测量的岩石圈应力及其空间分布规律探讨[J].地质科技情报,1997,16(3):27-32.
    [143]徐仲元,刘正宏,杨振升.内蒙古大青山地区孔兹岩系的地层结构[J].吉林大学学报:地球科学版,2002,32(4):209-218.
    [144]徐仲元,刘正宏,杨振升.内蒙古大青山地区早前寒武纪变质地层的组成及特征[J].世界地质,2001,20(3):209-218.
    [145]徐仲元,刘正宏,杨振生.内蒙古大青山枣儿沟角度不整合的发现与美岱召岩群的建立[J].地质通报,2003,22(7):480-485.
    [146]许志琴,王勤,陈方远,等.榴辉岩组构运动学与大陆深俯冲———中国大陆科学钻探主孔榴辉岩的EBSD研究[J].岩石学报,2006,22:1799-1809.
    [147]杨振升,徐仲元,刘正宏,等.内蒙古中部大青山—乌拉山地区早前寒武系研究的重要进展及对高级变质区开展地层工作的几点建议[J].地质通报,2006,25(4):427-433.
    [148]杨振升,徐仲元,刘正宏.高级变质区岩石地层系统建立的思考与实践—以内蒙古大青山—乌拉山地区为例[M].中国地质,2003,30(4):343-351.
    [149]杨振升,徐仲元,刘正宏.孔兹岩系事件与太古宙地壳构造演化[J].前寒武纪研究进展,2000,23(4):211-260.
    [150]岳石,马瑞.实验岩石变形与构造成岩成矿[M].长春:吉林大学出版社,1990.
    [151]曾令森,李海兵,许志琴.混合岩中浅色体的有限迁移及其对变形分解的影响[J].地质学报,2004,78(6):752-757.
    [152]赵海玲,邓晋福,贺怀宇,等.造山带陆壳增厚的一个岩石学记录—以济南辉长岩及其包体研究为例[J].地学前缘,1998,5(4):251-256.
    [153]周永胜,何昌荣,桑祖南,等.在塑性变形过程中辉长岩部分熔融的熔体特征[J].地球物理学报,2003,46(4):482-487.
    [154]周永胜,桑祖南,何昌荣.在差应力条件下辉长岩部分熔融过程中铁的富集方式.见:中国地球物理学会编.中国地球物理学会年刊.昆明:云南科技出版社,2001,271.