流水线模数转换器伪随机序列注入后台快速数字校准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SoC时代,随着CMOS工艺演进,系统芯片集成的强烈需求给模数转换器的设计带来诸多挑战。器件按比例缩小和电源电压降低等因素带来了模拟电路的非理想效应显著、动态范围降低、功耗增加、带宽受限、稳定性变差及技术革新成本提高等问题。本论文研究高性能ADC的数字辅助设计技术,借助数字信号处理知识体系的完备性,利用大规模数字电路在工艺、面积和功耗上的优势,减轻高性能ADC存在于架构、工艺、性能、面积、功耗等多方面的设计约束,用附加的数字辅助电路换取模拟电路系统的性能提升。
     首先,系统地归纳了采用数字信号处理知识体系的数字辅助设计技术的普适体系架构、一般性设计原理和设计流程,并以伪随机序列注入后台数字校准技术作为数字辅助设计技术的代表性研究实例展开探讨。文中研究伪随机序列注入校准技术的系统架构、基础理论和算法优化,解决系统到电路各个层次的一系列关键技术问题,使伪随机序列注入校准技术能够消除电容失配、运放有限开环增益等主要非理想效应,具备实时连续校准功能以及对外界干扰和输入信号不敏感等特性。
     其次,针对伪随机序列注入后台数字校准技术校准速度缓慢的问题,在频率域定量分析校准算法,建立相关算法与功率谱的数学关系,提出了改善校准速度的有效方法是减小相关去干扰电压幅度的观点。以频率域分析的结论为理论依据,基于ADSC调制结构,提出了数字高有效位削减技术和可配置双转换技术,不同程度地降低相关去干扰电压的幅度,从而提高级间增益估计值的收敛速度,改善伪随机序列注入校准技术校准速度缓慢的问题。
     最后,研究并设计了采用数字辅助设计技术的流水线ADC关键电路,包括14位、100Msps的采样保持放大电路、带溢出检测的3.5位/级余量增益放大器、考虑伪随机序列注入的子模数转换器等。
In SoC era, with the development of the CMOS process, the design of data convertersintegrated in the system chips is faced with unprecedented challenges brought in by scalingtheory and lower supply voltage, which result in more obvious nonideal effect, decreasedsignal dynamic range, increased power consumption, restricted signal bandwidth, instabilityand increased cost, etc. The thesis researches digitally assisted design technique for highperformance ADC. It can reduce design constraints of the high performance ADC existed inarchitecture, process, performance, area and power consumption with the aid of thecompleteness of digital signal processing knowledge and the advantage of large scaleintegrated digital circuits in the process, area and power, and then improve the performance ofanalog circuits.
     At first, this thesis summarizes the universal system architectures, general designprinciples and the design process of digitally assisted design technique adopting digital signalprocessing knowledge. Taking the pseudo-random sequence injected background digitalcalibration techniques as an example, thorough studies are put forward, including the basictheories and optimum algorithms of the digital calibration techniques and a series of importanttechnical problem from system level to circuit level. The digital calibration technique cancalibrate errors and eliminate non-ideal effects in a continuous way, and is not sensitive to theoutside interferences and the input signals.
     Secondly, aiming at the problem of slow calibration speed of the pseudo-randomsequence injected calibration techniques, the thesis then makes frequency domain analysis andbuilds the mathematics relationships between the correlation algorithm and the powerspectrum. The conclusion is drawn that the effective method improving the calibration speedis to decrease the amplitude of the correlated interference voltage. In order to quicken thecalibration speed, two fast calibration techniques of ADSC-modulation architectures areproposed on the basis of the frequency domain analysis, which are digital MSBs clippingtechnique and configurable double convsersion technique. Different techniques have differenteffect of reducing the amplitude of the correlated interference voltages and improving theconvergence speed of interstage gain.
     At last, the key circuits of the pipeline ADC with digitally assisted design technique aredesigned, including14bits100Msps sample-and-hold amplifer,3.5bits/stage MDAC withBi-direction overflow detection, sub-ADC with pseudo-random sequence injection, etc.
引文
[1]吴兴斌.高速A/D转换器的研究进展及发展趋势[J].微电子学,2009,139(3):420-423.
    [2] Arthur H.M. van Roermund, Herman Casier, Michiel Steyaert. Analog Circuit Design-Smart Data Converters, Filters on Chip, Multimode Transmitters[M], Springer,2009.
    [3] http://focus.ti.com.cn/cn/tihome/docs/homepage.tsp.
    [4] http://www.analog.com/zh/analog-to-digital-converters/ad-converters/products/index.html.
    [5] http://www.maxim-ic.com.cn/products/data_converters/adcs.
    [6] http://www.national.com/analog/adc.
    [7] Brunsilius. Janet, Siragusa. Eric, Kosic. Steve, etc. A16b80MS/s100mW77.6dB SNRCMOS pipeline ADC[A]. IEEE International Solid-State Circuits Conference[C].2011, pp.186-188.
    [8] S.Devarajan, L.Singer, D.Kelly, S.Decker, A.Kamath, P.Wilkins. A16b125MS/s385mW78.7dB SNR CMOS Pipeline ADC[A]. IEEE International Solid-State CircuitsConference[C].2009, pp.86-87.
    [9] Doris. Kostas, Janssen. Erwin, Nani. Claudio, etc. A480mW2.6GS/s10b65nm CMOStime-interleaved ADC with48.5dB SNDR up to Nyquist[A]. IEEE International Solid-StateCircuits Conference[C].2011, pp.180-182.
    [10] J. Mulder, F. M. van der Goes, D. Vecchi, etc., An800MS/s dual-Residue pipeline adc in40nm CMOS[A]. IEEE International Solid-State Circuits Conference[C].2011, pp.184-186.
    [11] Wenbo Liu, Pingli Huang, Yun Chiu. A12b22.5/45MS/s3.0mW0.059mm2CMOS SARADC achieving over90dB SFDR[A]. IEEE International Solid-State Circuits Conference[C].2010, pp.380-381.
    [12] C.P. Hurrell, C. Lyden, D. Laing, D. Hummerston, Vickery, M. An18b12.5MHz ADC with93dB SNR[A]. IEEE International Solid-State Circuits Conference[C].2010, pp.378-379.
    [13] B. P. Hershberg, S. T. Weaver, U-K. Moon. A1.4V signal swing hybrid CLS-opamp/ZCBCpipelined ADC using a300mV output swing opamp[A]. IEEE International Solid-StateCircuits Conference[C].2010, pp.302-304.
    [14] A. Panigada, I. Galton. A130mW100MS/s Pipelined ADC with69dB SNDR Enabled byDigital Harmonic Distortion Correction[A]. IEEE International Solid-State CircuitsConference[C].2009, pp.162-163.
    [15] Lane Brooks, Hae-Seung Lee. A12b50MS/s Fully Differential Zero-Crossing-Based ADCWithout CMFB[A]. IEEE International Solid-State Circuits Conference[C].2009, pp.166-167.
    [16] K-W. Hsueh, Y-K. Chou, Y-H. Tu, Y-F. Chen, Y-L. Yang, H-S. Li. A1V11b200MS/sPipelined ADC with Digital Background Calibration in65nm CMOS[A]. IEEE InternationalSolid-State Circuits Conference[C].2008, pp.546-634.
    [17] M. Hesener, T. Eichler, A. Hanneberg, D. Herbison, F. Kuttner, H. Wenske. A14b40MS/sRedundant SAR ADC with480MHz Clock in0.13μm CMOS[A]. IEEE InternationalSolid-State Circuits Conference[C].2007, pp.248-250.
    [18] Young-Deuk Jeon, Seung-Chul Lee, Kwi-Dong Kim, Jong-Kee Kwon, Jongdae Kim. A4.7mW0.32mm210b30MS/s Pipelined ADC Without a Front-End S/H in90nm CMOS[A].IEEE International Solid-State Circuits Conference[C].2007, pp.456-458.
    [19] Seung-Chul Lee, Young-Deuk Jeon, Kwi-Dong Kim, Jong-Kee Kwon, Jongdae Kim,Jeong-Woong Moon, Wooyol Lee. A10b205MS/s1.0mm290nm CMOS Pipeline ADC forFlat Panel Display Applications[A]. IEEE International Solid-State Circuits Conference[C].2007, pp.458-460.
    [20] B. Hernes, J. Bjornsen, T.N. Andersen, A. Vinje, H. Korsvoll, F. Telsto, A. Briskemyr, C.Holdo, O. Moldsvor. A92.5mW205MS/s10b Pipeline IF ADC Implemented in1.2V/3.3V0.13μm CMOS[A]. IEEE International Solid-State Circuits Conference[C].2007, pp.462-615.
    [21] Cheng-Chung Hsu, Fong-Ching Huang, Chih-Yung Shih, Chen-Chih Huang, Ying-Hsi Lin,Chao-Cheng Lee, B. Razavi. An11-Bit800-MS/s Time-Interleaved ADC with DigitalBackground Calibration[A]. IEEE International Solid-State Circuits Conference[C].2007,pp.464-615.
    [22] R.H. Walden. Analog-to-digital converter survey and analysis[J]. IEEE Journal on SelectedAreas in Communications,1999,17(4):539-550.
    [23] Bin Le, Thomas W. Rondeau, Jeffrey H. Reed, and Charles W. Bostian. Analog-to-digitalconverter[M]. IEEE Signal Processing Magazine,2005.
    [24] Hae-Seung Lee, and Charles G. Sodini. Analog-to-Digital Converters: Digitizing theAnalogWorld[J]. Proceedings of the IEEE,2008,96(2):323-334.
    [25] M.Bohr. A30Year Retrospective on Dennard's MOSFET Scaling Paper[R]. IEEESolid-State Circuits Newsletter,2007,12(1):11-13.
    [26]拉扎维.模拟CMOS集成电路设计[M].西安交通大学出版社,2004.
    [27] B. Murmann, B. E. Boser. Digitally Assisted Pipeline ADCs Theory and Implementation[M],Springer;2004.
    [28] Simon Haykin.自适应滤波器原理(第4版)[M].郑宝玉等译.电子工业出版社,2003.
    [29] Y. Chiu. Inherently linear capacitor error-averaging techniques for pipelined A/Dconversion[J]. IEEE Transactions on Circuits and Systems II,2000,47(3):229-232.
    [30] Karanicolas, A. N., H.-S. Lee, and K. Bacrania. A15b1Ms/s Digitally Self-CalibratedPipeline ADC[J]. IEEE Journal of Solid-State Circuits,1993,28(12):1207-1215.
    [31] Carl R. Grace, Paul J. Hurst, Stephen H. Lewis. A12-bit80-MSample/s Pipelined ADCWith Bootstrapped Digital Calibration[J]. IEEE Journal of Solid-State Circuits,2005,40(5):1038-1046.
    [32] Mutsuo Daito, Hirofumi Matsui, Masaya Ueda, Kunihiko Iizuka. A14-bit20-MS/sPipelined ADC With Digital Distortion Calibration[J]. IEEE Journal of Solid-State Circuits,2006,41(11):2417-2423.
    [33] D. Y. Chang, J. li, and U. Moon. Radix-based digital calibration techniques for multi-stagerecycling pipelined ADCs[J]. IEEE Transactions on Circuits and Systems I,2004,51(11):2133-2140.
    [34] C. R. Grace, P. J. Hurst, and S. H. Lewis. A12b80MS/s pipelined ADC with bootstrappeddigital calibration[A]. IEEE International Solid-State Circuits Conference[C].2004, pp.460-539.
    [35] Un-Ku Moon, Bang-Sup Song. Background Digital Calibration Techniques for PipelinedADC’s[J]. IEEE Transactions on Circuits and Systems II,1997,44(2):102-109.
    [36] O. E. Erdo gan, P. J. Hurst, and S. H. Lewis. A12-b Digital-Background-CalibratedAlgorithmic ADC with90dB THD[J]. IEEE Journal of Solid-State Circuits,1999,34(12):316-317.
    [37] X. Wang, P. J. Hurst, S. H. Lewis. A12-bit20-MS/s pipelined ADC with nested digitalbackground calibration[J]. IEEE Journal of Solid-State Circuits,2004,39(11):1799-1808.
    [38] Yun Chiu, Cheongyuen W. Tsang, Paul R. Gray. Least mean square adaptive digitalbackground calibration of pipelined analog-to-digital converters[J]. IEEE Transactions onCircuits and Systems I,2004,51(1):38-45.
    [39] Cheongyuen Tsang, Yun Chiu, J. Vanderhaegen, S. Hoyos, C. Chen, R. Brodersen, B.Nikolic. Background ADC calibration in digital domain[A]. IEEE Custom IntegratedCircuits Conference[C].2008, pp.301-304.
    [40] Haoyue Wang, Xiaoyue Wang, Paul J. Hurst, Stephen H. Lewis. Nested Digital BackgroundCalibration of a12-bit Pipelined ADC Without an Input SHA[J]. IEEE Journal ofSolid-State Circuits,2009,44(10):2780-2789.
    [41] Antonio J. Ginés, Eduardo J. Peralías and Adoración Rueda, A Survey on DigitalBackground Calibration of ADCs[A]. European Conference on Circuit Theory andDesign[C].2009, pp.101-104.
    [42] Daihong Fu, Kenneth C. Dyer, Stephen H. Lewis, Paul J. Hurst. A Digital BackgroundCalibration Technique for Time-Interleaved Analog-to-Digital Converters[J]. IEEE Journalof Solid-State Circuits,1998,33(12):1904-1911.
    [43] Boris Murmann et al. A12-bit75-MS/s pipelined ADC using open-loop residueamplification[J]. IEEE Journal of Solid-State Circuits,2003,38(12):2040-2050.
    [44] Echere Iroaga, Boris Murmann. A12-Bit75-MS/s Pipelined ADC Using IncompleteSettling[J]. IEEE Journal of Solid-State Circuits,2007,42(4):748-756.
    [45] J. Li and U.-K. Moon. Background calibration techniques for multistage pipelined ADC'swith digital redundancy[J]. IEEE Transactions on Circuits and Systems II,2003,50(9):531-538.
    [46] Kamal El-Sankary, Mohamad Sawan. A background calibration technique for multibit/stagepipelined and time-interleaved ADCs[J]. IEEE Transactions on Circuits and Systems II,2006,53(6):448-452.
    [47] Jen-Lin Fan, Chung-Yi Wang, Jieh-Tsorng Wu. A robust and fast digital backgroundcalibration technique for pipelined ADCs[J]. IEEE Transactions on Circuits and Systems I,2007,54(6):1213-1223.
    [48] Yun-Shiang Shu, Bang-Sup Song. A15-bit Linear20-MS/s Pipelined ADC DigitallyCalibrated With Signal-Dependent Dithering[J]. IEEE Journal of Solid-State Circuits,2008,43(2):342-350.
    [49] Mohammad Taherzadeh-Sani, Anas A. Hamoui. Digital Background Calibration ofCapacitor-Mismatch Errors in Pipelined ADCs[J]. IEEE Transactions on Circuits andSystems II,2006,53(9):966-970.
    [50] Nan Sun, Hae-Seung Lee, Donhee Ham. Digital Background Calibration in Pipelined ADCsUsing Commutated Feedback Capacitor Switching[J]. IEEE Transactions on Circuits andSystems II,2008,55(9):877-881.
    [51] John McNeill, Michael C. W. Coln, Brian J. Larivee.“Split ADC” Architecture forDeterministic Digital Background Calibration of a16-bit1-MS/s ADC[J]. IEEE Journal ofSolid-State Circuits,2005,40(12):2437-2445.
    [52] John A. McNeill, Michael C. W. Coln, D. Richard Brown, Brian J. Larivee. DigitalBackground-Calibration Algorithm for “Split ADC” Architecture[J]. IEEE Transactions onCircuits and Systems I,2009,56(2):294-306.
    [53] Imran Ahmed, David A. Johns. An11-Bit45MS/s Pipelined ADC With Rapid Calibrationof DAC Errors in a Multibit Pipeline Stage[J]. IEEE Journal of Solid-State Circuits,2008,43(7):1626-1637.
    [54] Roberto G. Massolini, Giovanni Cesura, Rinaldo Castello. A fully digital fast convergencealgorithm for nonlinearity correction in multistage ADC[J]. IEEE Transactions on Circuitsand Systems II,2006,53(5):389-393.
    [55] J. Li, G-C. Ahn, D. Y. Chang, U-K. Moon. A0.9V12mW5-MSPS algorithmic ADC with77-dB SFDR[J]. IEEE Journal of Solid-State Circuits,2005,40(4):960-969.
    [56] Jalili, A. Sayedi, S.M. Dehghani, R. Farshidi, E. A frequency based digital backgroundcalibration technique for pipelined ADCs[A].15th IEEE International Conference onElectronicsCircuits and Systems[C].2008, pp.1209-1212.
    [57] F Centurelli, P Monsurrò, A Trifiletti. A simple technique for fast digital backgroundcalibration of A/D converters[J]. EURASIP Journal on Advances in Signal Processing,2008.
    [58] J. Arias, V. Boccuzzi, L. Quintanilla, L. Enriquez, D. Bisbal, M. Banu, J. Barbolla.Low-power pipeline ADC for wireless LANs[J]. IEEE Journal of Solid-State Circuits,2004,39(8):1338-1340.
    [59] S. M. Jamal. Digital Background Calibration of Time-Interleaved Analog-to-DigitalConverters[D]. Davis: University of California,2001.
    [60] C. S. G. Conroy. A High-Speed Parallel Pipeline A/D Converter Technique in CMOS[D].California: University of California, Berleley,1994.
    [61] Stephen H. Lewis, H. Scott Fetterman, George F. Gross, R. Ramach, T. R. Viswanathan,Senior Member. A10-b20-Msample/s analog-to-digital converter[J]. IEEE Journal ofSolid-State Circuits,1992,27(3):351-358.
    [62] K.Hadidi, G.C.Temes. Error analysis in pipeline A/D converters and its applications[J].IEEE Transactions on Circuits and Systems II,1992,39(8):506-515.
    [63] Thomas B. Cho. Low-Power Low-Voltage Analog-to-Digital Conversion Techniques UsingPipelined Architectures[D]. California: University of California, Berkeley,1995.
    [64] David W. Cline. Noise, Speed, and Power Tradeoffs in Pipelined Analog-to-DigitalConverters[D]. California:University of California, Berkeley,1995.
    [65] J. Sevenhans and Z.-Y. Chang. A/D and D/A conversion for telecommunication[R]. IEEECircuits and Devices Magazine,1998,14(1):32-42.
    [66] L. Lin. Design Techniques for Parallel Pipelined ADC[D]. California: University ofCalifornia,1996.
    [67] M. Taherzadeh-Sani, A.A.Hamoui. Power Optimization of Pipelined ADCs with High-OrderDigital Gain Calibration[A]. IEEE International Conference on Electronics, Circuits andSystems[C].2007, pp.661-664.
    [68] John P. Keane, Paul J. Hurst, and Stephen H. Lewis. Background Interstage Gain CalibrationTechnique for Pipelined ADCs[J]. IEEE Transactions on Circuits and Systems I,2005,52(1):32-43.
    [69]盛骤,谢式千,潘承毅.概率论与数理统计(第2版)[M].高等教育出版社,2003.
    [70]丘维声.高等代数(第2版)[M].高等教育出版社,2002.
    [71]徐士良.数值分析与算法[M].机械工业出版社,2003.
    [72] Nan S, Donhee H. Digital acceleration of correlation-based digital background calibration inpipelined ADCs[R]. http://people.seas.harvard.edu/~donhee/digia.pdf,2008.
    [73]应启珩,郑君里,杨为理著.信号与系统(第2版)[M].高等教育出版社,2004.
    [74]莱昂斯.数字信号处理[M].机械工业出版社,2006.
    [75] LIANG Shangquan, YIN Yongsheng, DENG Honghui, et al. A Research on the FastCorrelation-Based Background Calibration Techniques for the Pipeline ADCs[A]. IEEEInternational Conference on Solid-State and Integrated Circuit Technology[C].2010, pp.430-432.
    [76] R.J.贝克.CMOS:混合信号电路设计[M].科学出版社,2005.
    [77] Iuri Mehr, Larry Singer. A55mW10bit40-Msample/s Nyquist-Rate CMOS ADC[J]. IEEEJournal of Solid-State Circuits,2000,35(3):318-325.
    [78] Jian Li, Xiaoyang Zeng, Lei Xie Jun Chen, Jianyun Zhang, and Yawei Guo. A1.8-V22-mW10-bit30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications[J]. IEEEJournal of Solid-State Circuits,2008,43(2):321-329.
    [79] Byung-Geun Lee, Byung-Moo Min, Gabriele Manganaro, and Jonathan W. Valvano. A14-b100-MS/s Pipelined ADC With a Merged SHA and First MDAC[J]. IEEE Journal ofSolid-State Circuits,2008,43(12):2613-2619.
    [80] Wenhua Yang, Dan Kelly, Iuri Mehr, Mark T. Sayuk, and Larry Singer. A3-V340-mW14-b75-Msamples CMOS ADC with85-dB SFDR at Nyquist input[J]. IEEE Journal ofSolid-State Circuits,2001,6(12):1931-1936.
    [81] Byung-Moo Min, Peter Kim, Frederick W. Bowman, David M. Boisvert, and Arlo J. Aude.A69-mW10-bit80-MSample/s Pipelined CMOS ADC[J]. IEEE Journal of Solid-StateCircuits,2003,38(12):2031-2039.
    [82] Mikko Waltari. Circuit Techniques for Low-Voltage and High-Speed A/D Converters[D].Helsinki University of Technology,2002.
    [83] Mikko Waltari, Kari Halonen. A220-MSample/s CMOS Sample-and-Hold Circuit UsingDouble-Sampling[J]. Analog Integrated Circuits and Signal Processing,1999,18(1):21-31.
    [84] Mingliang Liu. Demystifying Switched-Capacitor Circuits[M]. Newnes,2006.
    [85]王照钢,陈诚,任俊彦,许俊.一种低电压高精度125MHz采样/保持电路[J].微电子学,2004,34(3):306-309.
    [86]艾伦等.CMOS模拟集成电路设计(第2版)[M].电子工业出版社,2005.
    [87]谭珺,唐长文,闵昊.一种100MHz采样频率CMOS采样/保持电路[J].微电子学,2006,36(1):90-93.
    [88] Rui Zhang, Yong-Sheng Yin, Shang-Quan Liang, Ming-Lun Gao. A High-PerformanceSample-and-Hold Circuit for14-bit125MS/s Pipelined ADC[A]. IEEE InternationalConference on Solid-State and Integrated Circuit Technology[C].2010, pp.424-426.
    [89] K.Bult, G.J.Geelen. A fast-settling CMOS op amp for SC circuits with90-dB DC gain[J].IEEE Journal of Solid-State Circuits,1990,25(6):1379-1384.
    [90] Yun Chiu, Paul R.Gray, Borivoje Nikolic. A14-b12-MS/s CMOS Pipeline ADC With Over100-dB SFDR[J]. IEEE Journal of Solid-State Circuits,2004,39(12):2139-2151.
    [91] Dong-Yong Chang. Design Techniques for a Pipelined ADC Without Using a Front-EndSample-and-Hold Amplifier[J]. IEEE Transactions on Circuits and Systems I,2004,51(11):2123-2132.
    [92] Rui Zhang, Yong-Sheng Yin, Shang-Quan Liang, Ming-Lun Gao. A multi-bit multiplyingdigital-to-analog converter with bi-directional overflow detection[A]. IEEE InternationalConference on Solid-State and Integrated Circuit Technology[C].2010, pp.427-429.
    [93] T. B. Cho and P. R. Gray. A10b,20Msample/s,35mW pipeline A/D converter[J]. IEEEJournal of Solid-State Circuits,1995,30(3):166-172.
    [94] M. Waltary and K.A.I. Halonen.1-V9-Bit Pipelined Switched-Opamp ADC[J]. IEEEJournal of Solid-State Circuits,2001,36(1):129-134.
    [95] R.J.贝克.CMOS电路设计、布局与仿真[M].机械工业出版社,2006.
    [96]塞因特.集成电路掩模设计-基础版图技术[M].周润德等译.清华大学出版社,2006.
    [97]张志刚.FPGA与SOPC设计教程:DE2实践[M].西安电子科技大学出版社,2007.