聚对苯二甲酸乙二酯/重晶石纳米复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基无机纳米复合材料是现代材料学研究的重点课题之一,其开发和应用具有重要意义。针对当前国内纤用聚酯生产能力过剩,聚对苯二甲酸乙二酯(PET)工程塑料生产能力低的现状,本文选用新型无机功能填料—纳米重晶石(barite),采用熔融共混的方法制备了PET/Barite纳米复合材料。系统地研究了纳米barite对PET结晶性能、动态力学性能和力学性能等的影响,以及马来酸酐接枝乙烯—辛烯共聚物(POE-g-MA)、乙烯—丙烯酸甲酯—甲基丙烯酸缩水甘油酯(E-EA-GMA)和微胶囊化红磷(MRP)的加入对PET/Barite纳米复合材料性能的影响,并对改性机理进行了探讨,以指导高性能PET工程塑料的制备。主要内容和研究结果如下:
     1.研究了纳米barite表面性质和含量对PET结晶性能、动态力学性能和力学性能等的影响。结果表明,纳米barite在PET结晶过程中起到了明显的异相成核作用,加快了结晶速率。在等量添加下,硬脂酸改性纳米重晶石(SABarite)比未改性纳米重晶石(UNBarite)具有更高的成核活性,PET结晶速率提高更快。WAXD分析表明,PET大分子链与SABarite纳米粒子之间的强界面作用导致晶面发生择优取向,倾向于生成PET的典型晶面衍射峰。无机纳米粒子自身的高刚性,并且加入的纳米barite与PET基体之间形成了一种刚性的界面层,提高了PET的储能模量E’和玻璃化转变温度Tg。SABarite纳米粒子表面的长烷基链与PET分子之间发生物理缠结,限制了PET分子链段的运动,随着SABarite含量的增加,PET的E’和Tg升高。纳米粒子的高异相成核活性,使纳米复合材料中非晶区的分子链具有更大的活性,导致相同含量下,PET/SABarite纳米复合材料的E’和Tg值比PET/UNBarite纳米复合材料要低。纳米barite促进PET结晶,从而对基体产生明显的增强作用。热变形温度的研究表明,纳米barite提高了纳米复合材料的热稳定性。SABarite纳米粒子表面包覆的有机小分子降低了纳米复合材料的热稳定性,但仍高于纯PET。
     2.研究了纯PET和PET/Barite纳米复合材料的等温结晶过程特征。结果表明等温结晶过程中,纯PET的二次结晶现象严重,加入纳米barite能减少PET的二次结晶,提高晶体的完善程度。纯PET的Avrami指数n大都大于4。纳米复合材料的n值在2~4之间,晶体以三维方式生长,伴随着从瞬时成核到散现成核的成核机理转变。加入两种无机纳米粒子均能降低成核能垒,从而降低等温结晶活化能ΔEa,其中又以SABarite效果更显著。
     3.研究了纯PET和PET/Barite纳米复合材料的非等温结晶过程,并用Jeziorny、Ozawa和Mo方法进行动力学分析。结果表明,Mo法能很好地分析纯PET和PET/Barite纳米复合材料的非等温结晶过程。动力学数据表明,加入纳米barite提高了PET的结晶速率,其中以SABarite纳米粒子促进结晶的效果更明显。引入纳米UNBarite,晶核的生成加快,PET结晶更易进行,非等温结晶活化能ΔE低于纯PET;而SABarite纳米粒子和PET分子链间的强界面作用,使链段重排受限,减慢了晶体的生长过程,导致纳米复合材料的ΔE大于纯PET,并且ΔE随着SABarite含量的增加而增加,但其成核作用仍占主导地位。
     4.研究了两种官能团化聚烯烃弹性体POE-g-MA和E-EA-GMA对PET/SABarite纳米复合材料进行增韧改性。结果表明在不同弹性体含量时,三元复合材料都发生脆韧转变,增韧效果显著。等量添加下,E-EA-GMA的增韧效果明显好于POE-g-MA。DSC分析表明,弹性体的加入,严重阻碍了PET分子链段的运动,减慢PET/SABarite结晶速率,降低PET晶体的完善程度。
     5.研究了纳米SABarite与MRP的复配阻燃PET。结果表明,MRP与较高含量的纳米SABarite之间有较好的协同阻燃效应;当PET/MRP/SABarite质量比为100/5/10时,复合材料的氧指数为32.7%,垂直燃烧可达UL94V-0级,此时复合材料力学性能较好,熔滴现象得到缓解。热重分析表明纳米粒子的存在提高了PET的热稳定性和促进成炭。将研究结果应用于高性能PET工程塑料制备,并与美国杜邦公司同类产品进行比较分析。结果表明,各项性能基本相当,完全可以替代。
Current domestic production of fiber-forming polyester is overcapacity, while the production status of poly(ethylene terephthalate) (PET) engineering plastics just the reverse. Used a novel functional nanoparticle—nano-barite as filler, PET/Barite nanocomposites were prepared by direct melt compounding. The effects of surface nature and contents of barite nanoparticles on the crystallization, dynamic mechanical and mechanical properties were investigated systematically. In order to improve the mechanical properties and flammability of PET/Barite nanocomposites, maleic anhydride grafted polyethylene octane copolymer (POE-g-MA), ethylene-ethylacrylate-glycidylmethacrylate copolymer (E-EA-GMA) and microencapsulated red phosphorus (MRP) were employed to modify them, and to prepare PET engineering plastics with high performance. Furthermore, the modification mechanism was also discussed. The main content and results were as follows:
     1. The effects of surface nature and contents of barite nanoparticles on the crystallization behaviors and mechanical properties of PET were studied. The results showed that a small amount of UNBarite or SABarite added into PET matrix can act as efficient nucleating agents and improve the crystallization rate of PET but SABarite shows higher efficiency. SABarite nanoparticles induce preferential lamellae orientation because of the strong interfacial interaction between PET chains and SABarite nanoparticles, which is not the case in UNBarite filled PET as determined by WAXD. The rigid inorganic nanoparticles possess high rigidity and induce an increase in the interfacial stiffness, thus PET/Barite nanocomposites have the higher value of storage modulus (E') and glass transition temperature (Tg) than pure PET, which would increase with increasing SABarite content. SABarite nanoparticles have excellent interfacial interaction with PET through physical entanglement of alkyl chains at the interface. The increased interfacial interaction constrains motion of PET molecular chain segments, leading to an increase of Tg·Surprisingly, both E' and Tg of PET nanocomposites filled with SABarite were a little lower than that of unmodified UNBarite at the same concentration, which could be attributed to the higher heterogeneous nucleating activity of SABarite than that of UNBarite, therefore resulting in an increase of crystallization rate, i.e. polymer molecular chains in amorphous region exhibit higher mobility and thus reduce the E' and Tg·Barite nanoparticles can facilitate the crystallization process and thus clearly reinforce the PET matrix. Compared with pure PET, the maximum tensile strength and flexural modulus of PET/SABarite nanocomposites increase by 18.5 and 21.7 at 0.5 and 3.0 wt% and that of PET/UNBarite nanocomposites increase by 9.4 and 21.9 both at 3.0 wt%, respectively. The thermal stability of the nanocomposites is enhanced by addition of barite nanoparticles. The incorporation of organic small molecule group on the surface of modified nanoparticles reduce the thermal stability of the nanocomposites, but still higher than that of pure PET.
     2. Isothermal crystallization process of pure PET and PET/Barite nanocomposites were analyzed. In the isothermal crystallization process, pure PET demonstrate stronger secondary crystallization process than that of PET nanocomposites, in which more homogeneously sized spherulites formed from barite nucleation. The crystalline phase in PET/Barite nanocomposites is more perfect than that of pure PET. The strong nucleation activity of the SABarite nanoparticles could further increase the crystal perfection. The Avrami exponent n for pure PET is more than 4 by and large. For PET nanocomposites, the n ranges between 2 and 4, the spherulites are thought to be grown in a 3D morphology from heterogeneous nuclei, accompanied by the change in nucleation mechanism from instantaneous nucleation to sporadic nucleation. The addition of barite nanoparticles decreases the isothermal crystallization activation energy. The enhanced interfacial interaction reduces the crystallization free energy barrier for nucleus formation.
     3. The nonisothermal melt crystallization kinetics of pure PET and PET/Barite nanocomposites was also studied, where a kinetic analysis was made by Jeziorny, Ozawa and Mo methods. The results demonstrated that Mo method is successful in describing the nonisothermal crystallization kinetics of pure PET and its nanocomposites. Analysis of the crystallization process shows that the crystallization rate increases with adding barite nanoparticles. UNBarite nanoparticles promote the overall crystallization process of PET matrix by improving the nucleation process, so the occurrence of crystallization is more easily than that of pure PET due to the lower△E. However, SABarite nanoparticles retard the rearrangement of PET chain segments to some extent due to the strong interfacial interaction between two phases, thereby decreasing the crystallization ability, but the nucleation effect is still dominant role on the crystallization of PET matrix.
     4. Two types of functional polyolefin elastomers were employed to toughen the PET/SABarite nanocomposites. At the appropriate elastomer content, brittle-to-ductile transition of ternary compositions takes place, indicating that both elastomers have a significant toughening effect on PET. Found that, at the same content, E-EA-GMA is more effective in toughening PET/SABarite nanocomposites than POE-g-MA, which resulted from its better compatibility with PET. Differential scanning calorimetry analysis showed that the addition of elastomers restrict the mobility of PET molecular segments, lower the crystallization rate and reduce the crystal perfection of PET/SABarite nanocomposites.
     5. The flame retardancy, mechanical and thermal behaviors of PET filled with complex flame retardant composed of SABarite and MRP have been studied. Combination of MRP and SABarite shows effective synergistic effect. Limited oxygen index (LOI) value decreases and subsequently increases with the addition of nanoparticles as the content of MRP is designated at 5 wt%. When the mass proportion of PET, MRP and SABarite is 100/5/10, the LOI is 32.7%, UL94 rating is V-0. Meanwhile, flame-retardant nanocomposites exhibit good mechanical properties and antidropping behavior. TGA analysis shows that the introduction of nanoparticles can greatly enhance the thermal stabilities and charring abilities of PET. Glass fiber reinforced and/or halogen-free flame-retardant PET engineering plastics prepared in present thesis can be used as a substitute for similar products provided by Dupont.
引文
[1]邓如生.共混改性工程塑料[M].北京:化学工业出版社,2003.
    [2]赵耀明.非纤维用热塑性聚酯工艺与应用[M].北京:化学工业出版社,2002.
    [3]陈俊,刘正英,黄锐,殷茜,唐绎.PET改性研究进展[J].中国塑料2003,17(6):20-25.
    [4]程红原.聚对苯二甲酸乙二醇酯(PET)结晶及增强、增韧复合材料的研究[D].北京化工大学博士学位论文,2008.
    [5]杨慧,丁鹏,施利毅,葛春华,王春明.PET工程塑料用无卤阻燃剂研究进展[J].上海塑料2008,(1):1-4.
    [6]李占远.我国重晶石资源分布与开发前景[J].中国非金属矿工业导刊.2004,5:86-88.
    [7]Wakelyn N.T. Observations from an X-ray diffraction study of poly(ethylene terephthalate) film and fiber [J]. J Appl Polym Sci 1983,28(11):3599-3602.
    [8]Wang B., Wang Z.F., Zhang M., Liu W.H., Wang S.J. Effect of temperature on the freevolume in glassy poly(ethylene terephthalate) [J]. Macromolecules 2002,35(10): 3993-3996.
    [9]Zhao J., Wang J.J., Li C.X., Fan Q.R. Study of the amorphous phase in semicrystalline poly(ethylene terephthalate) via physical aging [J]. Macromolecules 2002,35(8):3097-3103.
    [10]Mahendrasingam A., Martin C., Fuller W., Blundell D.J., Oldman R.J., MacKerron D.H., Harvie J.L., Riekel C. Observation of a transient structure prior to strain-induced crystallization in poly(ethylene terephthalate) [J]. Polymer 2000,41(3): 1217-1221.
    [11]Keum J.K., Kim J., Lee S.M., Song H.H., Son Y.K., Choi J.I., Im S.S. Crystallization and transient mesophase structure in cold-drawn PET fibers [J]. Macromolecules 2003,36(26):9873-9878.
    [12]Ivanov D.A., Pop T., Yoon D.Y., Jonas A.M. Direct observation of crystal-amorphous interphase in lamellar semicrystalline poly(ethylene terephthalate) [J]. Macromolecules 2002,35(26):9813-9818.
    [13]Sauer T.H., Wendorff J.H., Zimmermann H.J. Thermotropic rigid-chain copolymers:X-ray investigations of the structure [J]. J Polym Sci Part B:Polym Phys 1987,25(12):2471-2485.
    [14]Sun T., Zhang A., Li F.M., Porter R.S. Crystal lattice deformation and the mesophase in poly(ethylene terephthalate) uniaxially drawn by solid-state coextrusion [J]. Polymer 1988,29(12):2115-2120.
    [15]Asano T., Balta Calleji F.J., Flores A., Tanigaki M., Mina M.F., Sawatari C., Itagaki H., Takahashi H., Hatta Ⅰ. Crystallization of oriented amorphous poly(ethylene terephthalate) as revealed by X-ray diffraction and microhardness [J]. Polymer 1999, 40(23):6475-6484.
    [16]Blundell D.J., Mahendrasingam A., Martin C., Fuller W., MacKerron D.H., Harvie J.L., Oldman R.J., Riekel C. Orientation prior to crystallization during drawing of poly(ethylene terephthalate) [J]. Polymer 2000,41(21):7793-7802.
    [17]Mahendrasingam A., Blundell D.J., Martin C., Fuller W., MacKerron D.H., Harvie J.L., Oldman R.J., Riekel C. Influence of temperature and chain orientation on the crystallization of poly(ethylene terephthalate) during fast drawing [J]. Polymer 2000,41(21):7803-7814.
    [18]Zhang Y, Zhang J.M., Lu Y.L., Duan Y.X., Yan S.K., Shen D.Y Glass transition temperature determination of poly(ethylene terephthalate) thin films using reflection-absorption FTIR [J]. Macromolecules 2004,37(7):2532-2537.
    [19]Zaroulis J.S., Boyce M.C. Temperature, strain rate, and strain rate dependence of the evolution in mechanical behaviour and structure of poly(ethylene terephthalate) with finite strain deformation [J]. Polymer 1997,38(6):1303-1315.
    [20]Kint D.P.R., Guerra S.M., Modification of the thermal properties and crystallization behaviour of poly(ethylene terephthalate) by copolymerization [J]. Polym Int 2003,52(3):321-336.
    [21]Atkinson J.R., Biddleston F., Hay J.N. An investigation of glass formation and physical ageing in poly(ethylene terephthalate) by FT-IR spectroscopy [J]. Polymer 2000,41(18):6965-6968.
    [22]Ivanov D.A., Amalou Z., Magonov S.N. Real-time evolution of the lamellar organization of poly(ethylene terephthalate) during crystallization from the melt: high-temperature atomic force microscopy study [J]. Macromolecules 2001,34(7): 8944-8952.
    [23]Welsh L., Blundell D.J., Windle A.H. A transient liquid crystalline phase as a precursor for crystallization in random co-polyester fibers [J]. Macromolecules 1998, 31(21):7562-7565.
    [24]Shaofeng R., Wang Z., Burger C., Chu B., Hsiao S.B. Mesophase as the precursor for strain-induced crystallization in amorphous poly(ethylene terephthalate) film [J]. Macromolecules 2002,35(27):10102-10107.
    [25]Ward I.M., Hadley D.W. An introduction to the mechanical properties of solid polymers [M] John Wiley & Sons, New York 1993:219-258.
    [26]Aharoni S.M., Sharma R.K., Szobota J.S., Vernick D.A. Nucleation of PET crystallization by metal hydroxides [J]. J Appl Polym Sci 1984,29(3):853-865.
    [27]Koutsky J.A., Walton A.G., Baer E. Epitaxial crystallization of homopolymers on single crystals of alkali halides [J]. J Polym Sci 1966,4(4):611-629.
    [28]John S., Timothy E. L.现代聚酯[M].北京:化学工业出版社,2007.
    [29]刘伯林,杨明.聚对苯二甲酸乙二醇酯结晶成核剂[J].精细石油化工1999,11(6):37-40.
    [30]Iida H., Kometani K., Yanagi M. Polyethylene terephthalate moulding composites [P].1981,US4284540.
    [31]杨光福,柯扬船,刘维康.PET/SiO2纳米复合材料的光学性能和结晶成核行为[J].高分子材料科学与工程2007,23(4):94-97.
    [32]Ke Y.C., Wu T.B., Xia Y.F. The nucleation, crystallization and dispersion behavior of PET-monodisperse SiO2 composites [J]. Polymer 2007,48(11):3324-3336.
    [33]Yang H.C., Bhimaraj P., Yang L., Siegel R.W., Schadler L. S., Crystal growth in alumina/poly(ethylene terephthalate) nanocomposite films [J]. J. Polym Sci Part B: Polym Phys 2007,45(7):747-757.
    [34]DI Lorenzo M.L., Errico M.E., Avella M. Thermal and morphological characterization of poly(ethylene terephthalate)/calcium carbonate nanocomposites [J]. J. Mater Sci 2002,37:2351-2358.
    [35]Ke Y.C., Long C.F., Qi Z.N. Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites [J]. J Appl Polym Sci 1999,71(7): 1139-1146.
    [36]Lee W.D., Im S.S., Lim H.-M., Kim K.-J. Preparation and properties of layered double hydroxide/poly(ethylene terephthalate) nanocomposites by direct melt compounding [J]. Polymer 2006,47(4):1364-1371.
    [37]Lee W.D., Im S.S. Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization [J]. J. Polym Sci Part B:Polym Phys 2007,45(1):28-40.
    [38]Hu G.J., Feng X.Y., Zhang S.M., Yang M.S. Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites [J]. J Appl Polym Sci 2008,108(6):4080-4089.
    [39]Gao Y, Wang Y, Shi J., Bai H.W., Song B. Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly(ethylene terephthalate) [J]. Polym Test 2008,27(2):179-188.
    [40]Han K.Q., Yu M.H. Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation [J]. J Appl Polym Sci 2006,100(2):1588-1593.
    [41]Tanrattanakul V., Hiltner A., Baer E., Perkins W.G, Massey F.L., Moet A. Effect of elastomer functionality on toughened PET [J]. Polymer 1997,38(16):4117-4125.
    [42]Tanrattanakul V, Hiltner A., Baer E., Perkins W. G, Massey F. L., Moet A. Toughening PET by blending with a functionalized SEBS block copolymer [J]. Polymer 1997,38(9):2191-2200.
    [43]Sanchez solis A. On the properties and processing poly(ethylene terephthalate)/styrene butadiene rubber blend [J]. Polym Eng Sci 2000,40(5): 1216-1225.
    [44]陈俊,宋波,袁绍彦,魏刚,黄锐.PET/POE-g-MAH的性能研究[J].中国塑料2004,18(3):20-22.
    [45]Chaudhari K.P., Kale D.D. Impact modification of waste PET by polyolefinic elastomer [J]. Polym Int 2003,52(2):291-298.
    [46]孙东成,王志,何慧,沈家瑞,王小波,刘锐,桥.PET/mPE-g-GMA共混体系 的形态与力学性能[J].中国塑料2001,15(5):39-41.
    [47]Penco M., Pastorino M. A., Occhiello E., Garbassi F., Braglia R., Giannotta G. High-impact poly(ethylene terephthalate) blends [J]. J. Appl Polym Sci 1995,57(3): 329-334.
    [48]李建勋,彭少贤,郦华兴.反应性增韧和增容技术在PET回收料及其共混物PET/PC中的应用[J].塑料1998,27(2):33-36.
    [49]Phinyocheep P., Saelao J., Buzare J.Y. Mechanical properties, morphology and molecular characteristics of poly(ethylene terephthalate) toughened by natural rubber [J]. Polymer 2007,48(19):5702-5712.
    [50]Akkapeddi M.K., Van Buskirk B., Mason C.D., Chung S.S., Swamikannu X. Performance blends based on recycled polymers [J]. Polym Eng Sci 1995,35(1): 72-78.
    [51]胡圣飞.纳米级CaCO3粒子对PVC增韧增强研究[J].中国塑料1999,13(6):25-29.
    [52]胡圣飞,彭少贤,应继儒,杜志云.高强度聚氯乙烯共混材料研制[J].工程塑料应用2000,28(2):1-2.
    [53]胡圣飞,杜志云.纳米级CaCO3填充PVC/CPE复合材料研究[J].塑料工业2000,28(1):14-15.
    [54]徐妍,吴卫生,杨斌PVC/MBS/纳米BaSO4复合材料的制备及其性能[J].功能高分子学报2008,21(1):55-59.
    [55]陈俊,杨伟,黄锐.纳米CaCO3对PET/M-POE体系力学性能的影响[J].中国塑料2005,19(2):16-21.
    [56]Abu-Isa I.A., Jaynes C.B., Ogara J. F. High-Impact-Strength Poly(ethylene terephthalate) (PET) from Virgin and Recycled Resins [J]. J Appl Polym Sci 1996, 59(13):1957-1971.
    [57]Fung K.L., Li R.K.Y. A study on the fracture characteristics of rubber toughened poly(ethylene terephthalate) blends [J]. Polym Test 2005,24(7):863-872.
    [58]Fung K.L., Li R.K.Y. Mechanical properties of short glass fibre reinforced and functionalized rubber-toughened PET blends [J]. Polym Test 2006,25(7):923-931.
    [59]Cheng H.Y., Tian M., Zhang L.Q. Toughening of recycled poly(ethylene terephthalate)/glass fiber blends with ethylene-butyl acrylate-glycidyl methacrylate copolymer and maleic anhydride grafted polyethylene-octene rubber [J]. J Appl Polym Sci 2008,109(5):2795-2801.
    [60]祝学城.增强PET玻璃纤维无捻粗纱及短切纤维的研制[J].玻璃纤维1999,1:6-8.
    [61]张师军.高性能纤维及其增强热塑性工程塑料的发展[J].化工新型材料1999,27(11):25-29.
    [62]Muzzy John D., Holty David W. Fiber-reinforced recycled thermoplastic composite and method [P].2001:US2001018118A1
    [63]Gauthier C., Chauchard J., Chabert B., Trotignon J. P. Characterization of thermoplastic poly(ethylene terephthalate)-glass fibre composites,2. Mechanical behaviour [J]. Angew Makromol Chem 1994,221(1):137-153.
    [64]Gauthier C., Chauchard J., Chabert B., Saktoun M., Alain B. Characterization of thermoplastic poly(ethylene terephthalate)-glass fibre composites,1. Crystallization study [J]. Angew Makromol Chem 1993,212 (1):19-33.
    [65]Imai Y., Satoshi N., Abe E., Tateyama H., Abiko A., Yamaguchi A., Aoyama T., Taguchi H. High-modulus polyethylene terephthalate/expandable fluorine mica nanocomposites with a novel reactive compatibilizer [J]. Chem Mater 2002,14: 477-479.
    [66]Ronkay F., Czigany T. Development of composites with recycled PET matrix [J]. Polym Adv Technol 2006,17:830-834.
    [67]Bergeret A., Bozec M. P., Quantin J.C., Crespy A., Gasca J.P., Arpin M. Study of interphase in glass fiber reinforced poly(butylene terephthalate) composites [J]. Polym Compos 2004,25(1):12-25.
    [68]Liang E.W., Stokes V.K., Mechanical properties of injection-molded short-fiber thermoplastic composites. Part 1:The elastic moduli and strengths of glass-filled poly(butylene terephthalate) [J]. Polym Compos 2005,26(4):428-447.
    [69]Xie X. L., Tjong S. C., Li R. K. Y. Study on in situ reinforcing and toughening of a semiflexible thermotropic copolyesteramide in PBT/PA66 blends [J]. J. Appl Polym Sci 2000,77(9):1975-1988.
    [70]Laura D.M., Keskkula H., Barlow J.W., Paul D.R. Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6 [J]. Polymer 2002,43:4673-4687.
    [71]安军,刘佑习.玻璃纤维增强工程塑料性能及界面研究[J].高分子材料科学与工程1996,12(5):83-87.
    [72]项士新.成核剂对结晶行为的影响及玻纤增强工程塑料的研究[D].西北工业大学硕士学位论文2005,72-74.
    [73]Kracalik M., Pospisil L., Slouf M., Mikesova J., Sikora A., Simonik J., Fortelny Ⅰ. Recycled poly(ethylene terephthalate) reinforced with basalt fibres:Rheology, structure, and utility properties [J]. Polym Compos 2008,29(4):437-442.
    [74]Jin S.H., Park Y.B., Yoon K.H. Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composites [J]. Compos Sci Technol 2007,67:3434-3441.
    [75]Laoutid F., Lopez-Cuesta J.M., Crespy A. Red phosphorus/aluminium oxide compositions as flame retardants in recycled poly(ethylene terephthalate) [J]. Polym Degrad Stab 2003,82(2):357-363.
    [76]Laoutid F., Ferry L., Lopez-Cuesta J.M. Flame-retardant action of red phosphorus/magnesium oxide and red phosphorus/iron oxide compositions in recycled PET [J]. Fire Mater 2006,30(5):343-358.
    [77]Day M., Suprunchuk T., Wiles D.M. In behavior of polymeric materials in fire [C]. ASTM Symposium, Toronto 1983:67-77.
    [78]Wang C.S., Shieh J.Y., Sun Y.M. Phosphorus containing PET and PEN by direct esterification [J]. Eur Polym J 1999,35(8):1465-1472.
    [79]Deng Y. Wang Y.Z., Ban D.M. Liu X.H., Zhou Q. Burning behavior and pyrolysis products of flame-retardant PET containing sulfur-containing aryl polyphosphonate [J]. J Anal Appl Pyrolysis 2006,76:198-202.
    [80]Huang L., Gerber M., Lu J., Tonelli A.E. Formation of a flame retardant-cyclodextrin inclusion compound and its application as a flame retardant for poly(ethylene terephthalate) [J]. Polym Degrad Stab 2001,71(2):279-284.
    [81]Weil E. Proceedings of the conference on recent advances in flame retardancy of polymeric materials [C]. Stamford, USA 1994,93-196.
    [82]黄宝晟,李峰,张慧,矫庆泽,段雪.纳米双羟基复合金属氧化物的阻燃性能[J].应用化学,2002,19(1):71-75.
    [83]Du L.C., Qu B.J., Zhang M. Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation [J]. Polym Degrad Stab 2007,92(3):497-502.
    [84]Costantino U., Gallipoli A., Nocchetti M., Camino G, Bellucci F., Frache A. New nanocomposites constituted of polyethylene and organically modified ZnAl-hydrotalcites [J]. Polym Degrad Stab 2005,90(3):586-590.
    [85]Zammarano M., Franceschi M., Bellayer S., Gilman J. W., Meriani S. Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides [J]. Polymer 2005,46(22): 9314-9328.
    [86]Ge X.G., Wang D.Y., Wang C., Qu M.H., Wang J.S., Zhao C.S., Jing X.K., Wang Y.Z. A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy [J]. Eur Polym J 2007,43(7): 2882-2890.
    [87]Qu M.H., Wang Y.Z., Liu Y., Ge X.G., Wang D.Y., Wang C. Flammability and thermal degradation behaviors of phosphorus-containing copolyester/BaSO4 nanocomposites [J]. J Appl Polym Sci 2006,102(1):564-570.
    [88]葛春华,丁鹏,施利毅,杨慧.汽车用PET工程塑料的研究现状与发展趋势[J].汽车工艺与材料2008,(7):63-65.
    [89]王斌,戴芳,张振英.汽车用塑料的研究进展[J].2006(3):76-80.
    [90]张师民.聚酯的生产及应用[M].北京:中国石化出版社,1997.
    [91]Dekkers T.A.M., et al. Polymer mixture comprising polyester, glass fibres, flame-retardant and filler [P].1992, US5147920.
    [92]中浦爽铃等.防静电性阻燃聚酯类树脂组合物[P].1997,CN 97191378.
    [93]拜尔材料科技大中华区传播部.车用塑料的开发应用—拜尔塑料新材料在汽车上的应用[J].塑料制造2006,(7):25-28..
    [94]胡佩伟,杨华明,胡岳华,霍成立.重晶石矿物材料的制备技术与应用进展[J].材料导报2008,22:191-194.
    [95]Unsworth, J.; Lunn, B.A.; Innis, P.C. X-ray attenuation properties of electrically insulating barytes/epoxy composites[J]. J Mater Sci Lett 1993,12(3):132-134.
    [96]杭建忠,施利毅,娄燕燕,钟庆东,张剑平.纳米重晶石环氧复合钢板涂层材料机械及耐腐蚀性能的研究[J].功能材料2003,37(12):2003-2006.
    [97]王威,欧阳兆辉.重晶石矿粉表面改性研究与应用[J].中国非金属矿工业导刊2005,6:37-39.
    [98]施利毅等.掺加纳米重晶石粉体改进橡胶耐磨性的方法[P].2007,CN1896130A.
    [99]Wang K., Wu J.S., Zeng H.M. Crystallization and melting behaviour of polypropylene/barium sulfate composites [J]. Polym Int 2004,53(7):838-843.
    [100]Wang K., Wu J.S., Zeng H.M. Radial growth rate of spherulites in polypropylene/barium sulfate composites [J]. Eur Polym J 2003,39(8):1647-1652.
    [101]Wang K., Wu J.S., Ye L., Zeng H.M. Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites [J]. Composites:Part A: Appl Sci Manuf 2003,34(12):1199-1205.
    [102]孟丽萍,孙路,王德禧.硫酸钡填充聚丙烯复合材料研究[J].工程塑料应用1998,26(2):7-9.
    [103]Hammer C.O., Maurer F.H.J., Molnar S., Pukanszky B. Control of the structure and properties of barium sulphate-filled blends of polypropylene and ethylene propylene copolymers [J]. J Mater Sci 1999,34(23):5911-5918.
    [104]Molnar Sz. Pukanszky B., Hammer C.O., Maurer F.H.J. Impact fracture study of multicomponent polypropylene composites [J]. Polymer 2000,41(4): 1529-1539.
    [105]Li Z., Guo S.Y., Song W.T., Yan Y Effect of the interfacial interaction on the phase structure and rheological behavior of polypropylene/ethylene-octene copolymer/BaSO4 ternary composites [J]. J Polym Sci Part B:Polym Phys 2002, 40(17):1804-1812.
    [106]Francesca B., Andrea L., Mariano P., Arianna D'A., Giorgio L. Physical-mechanical and thermal properties of polyethylene toughened with submicron BaSO4 particles [J]. Macromol Symp 2004,218(1):191-200.
    [107]陈向荣,姜文军.硫酸钡填充聚四氟乙烯复合材料的摩擦磨损性能研究[J].工程塑料应用2003,31(3):46-48.
    [108]Kim S.J., Cho M.H., Basch R.H., Fash J.W., Jang H. Tribological properties of polymer composites containing barite or potassium titanate [J]. Tribol Lett 2004, 17(3):655-661.
    [109]刘法谦,刘保成,李荣勋,陈桂兰,刘光烨.耐候聚丙烯老化性能的研究[J].中国塑料2002,16(5):47-51.
    [110]冯嘉春,陈鸣才,张秀菊.ABS/BaSO4体系老化性能的研究[J].工程塑料应用2000,28(10):33-35.
    [111]徐妍,张小哲,周持兴,吴卫生,施利毅,杨斌.PVC/重晶石纳米复合材料力学性能与形态研究[J].高分子材料科学与工程2007,23(5):144-147.
    [1]Turturro G., Brown G. R., St-Pierre L.E. Effect of silica nucleants on the rates of crystallization of poly(ethylene terephthalate) [J]. Polymer 1984,25(5):659-663.
    [2]Calcagno, C.I.W., Mariani, C.M., Teixeira, S.R., Mauler, R.S. The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites [J]. Polymer 2007,48(4):966-974.
    [3]Taniguchi A., Cakmak M. The suppression of strain induced crystallization in PET through sub micron TiO2 particle incorporation [J]. Polymer 2004,45(19): 6647-6654.
    [4]Ou C. F., Ho M. T., Lin J. R. Synthesis and Characterization of poly (ethylene terephthalate) nanocomposites with Organoclay [J]. J Appl Polym Sci 2004,91(1): 140-145.
    [5]Lee W.D., Im S.S. Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization [J]. J Polym Sci Part B:Polym Phys 2007,45(1):28-40.
    [6]Wang Y., Deng J.N., Wang K., Zhang Q., Fu Q. Morphology, crystallization, and mechanical properties of poly(ethylene terephthalate)/Multiwall carbon nanotube nanocomposites via in situ polymerization with very low content of multiwall carbon nanotubes [J]. J Appl Polym Sci 2007,104(6):3695-3701.
    [7]Reinsch, V.E; Rebenfeld, L. The influence of fibers on the crystallization of poly(ethylene terephthalate) as related to processing of composites [J]. Polym Compos 1992,13(5):353-360.
    [8]Qiu G., Tang Z.L., Huang N.X., Gerking L. Dual melting endotherms in the thermal analysis of poly(ethylene terephthalate) [J]. J Appl Polym Sci 1998,69(4): 729-742.
    [9]谢安建,朱雪梅,沈玉华,桂霞.硬脂酸修饰的纳米硫酸钡的制备[J].安徽大学学报2006,30(4):70-74.
    [10]Wu Z.G, Zhou C.X., Zhu N. The nucleating effect of montmorillonite on crystallization of nylon 1212/montmorillonite nanocomposites [J]. Polym Test 2002, 21(4):479-483.
    [11]Chen X.L., Li C.Z., Shao W. He J.Q. Preparation and properties of poly(ethylene terephthalate)/ATO nanocomposites [J]. J Appl Polym Sci 2007,105(5):2783-2790.
    [12]Lu X.F., Hay J.N., Isothermal crystallization kinetics and melting behaviour of poly (ethylene terephthalate) [J]. Polymer 2001,42(23):9423-9431.
    [13]Yang H.C., Bhimaraj P., Yang L., Siegel W.R., Schadler S.L. Crystal growth in alumina/poly(ethylene terephthalate) nanocomposite films [J]. J Polym Sci Part B: Polym Phys 2007,45(7):747-757.
    [14]Holger S., Robert M.W., Curtis W.F. Nucleation and crystallization of low-crystallinity polypropylene followed in situ by hot stage atomic force microscopy [J]. Macromolecules 2003,36(7):2412-2418.
    [15]Stern T., Wachtel E., Marom G. Epitaxy and lamellar twisting in transcrystalline polyethylene [J]. J Polym Sci Part B:Polym Phys 1997,35(15):2429-2433.
    [16]Mather P., Romo-uribe A., Rheological and mechanical relaxation behavior of a thermally crosslinkedable poly(ethylene terephthalate) [J]. Polym Eng Sci 1998,38(7): 1174-1184.
    [17]Xie Y.C., Yu D.M., Kong J., Fan X.D., Qiao W.Q. Study on morphology, crystallization behaviors of highly filled maleated polyethylene-layered silicate nanocomposites [J]. J Appl Polym Sci 2006,100(12):4004-4011.
    [18]Gao X., Mao L.X., Jin R.G., Zhang L.Q., Tian M. Preparation and characterization of polycarbonate/poly(propylene)/attapulgite ternary nanocomposites with the morphology of encapsulation [J]. Macromol Mater Eng 2005,290(7): 899-905.
    [19]Priya L., Jog J.P., Intercalated poly(vinylidene fluoride)/clay nanocomposites: structure and properties [J]. J Polym Sci Part B:Polym Phys 2003,41(12):31-38.
    [20]Diez-Gutierrez S., Rodriguez-perez M.A., De Saja J.A., Velasco J.I. Dynamic mechanical analysis of injection-moulded discs of polypropylene and untreated and silane-treated talc-filled polypropylene composites [J]. Polymer 1999,40(19): 5345-5353.
    [21]Sun S.S, Li C.Z., Zhang L., Du H.L., Burnell-Gray J.S. Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly (vinyl chloride) composites [J]. Eur Polym J 2006,42(7):1643-1652.
    [22]IO.C.利帕托夫主编,谢缅诺维奇,赫拉莫娃(本卷)编.聚合物物理化学手册,第三卷,聚合物的红外光谱和核磁共振谱[M].北京:中国石化出版社,1995.
    [23]张振涛,沈春银,刘学习,陈焰.PET/纳米硫酸钡复合材料性能研究[J].工程塑料应用,2008,36(2):8-11.
    [1]Ray, S. S.; Okamoto, M. Polymer/layered silicate nanocomposites:a review from preparation to processing [J]. Prog Polym Sci 2003,28(11):1539-1641.
    [2]Di Lorenzo M.L., Silvestre C. Non-isothermal crystallization of polymers [J]. Prog Polym Sci 1999,24(6):917-950.
    [3]Przygocki W., Wlockowicz A. Effect of nucleating agents upon the kinetics of poly (ethylene terephthalate) crystallization [J]. J Appl Polym Sci 1975,19(10): 2683-2697.
    [4]Bian J., Ye S.R., Feng L.X. Heterogeneous nucleation on the crystallization poly (ethylene terephthalate) [J]. J Polym Sci Part B:Polym Phys 2003,41(18): 2135-2144.
    [5]Ou C.F., Ho M.T., Lin J.R. Synthesis and characterization of poly(ethylene terephthalate) nanocomposites with organoclay [J]. J Appl Polym Sci 2004,91(2): 140-145.
    [6]Liu W.T., Tian X.Y., Cui P., Li Y, Zheng K., Yang Y. Preparation and characterization of PET/silica nanocomposites [J]. J Appl Polym Sci 2004,91(12): 1229-1232.
    [7]Cebe P. Hong S.D. Crystallization behaviour of poly(ether-ether-ketone) [J]. Polymer 1986,27(8):1183-1192.
    [8]Avrami, M. Kinetics of phase change Ⅱ:Transformation-time relations for random distribution of nuclei [J]. J Chem Phys 1940,8(5):212-214.
    [9]Wunderlich, B. Macromolecular Physics; Academic Press:New York,1976, p 146.
    [10]Liu J. P., Mo Z. S. Crystallization kinetics of polymer[J]. Chin Polym Bull 1991, 4,199-207.
    [11]Khanna P., Taylor T. Comments and recommendation on the use of the avrami equation for physico-chemical kinetics [J]. Polym Eng Sci 1988,28(16):1042-1045.
    [12]徐锦龙,李伯耿,李乃祥,巢平.PET/有机蒙脱土纳米复合材料等温结晶动力学过程研究[J].高分子材料科学与工程2002,18(6):149-152.
    [13]Bian J. The Crystallization Behavior of PET and its Copolyesters. Ph.D. Thesis, University of Zhejiang, Hangzhou, China, Dec.2001.
    [14]Avalos F., Lopez-Manchado M. A., Arroyo M. Crystallization kinetics of polypropylene:1. Effect of small addition of low density polyethylene [J]. Polymer 1996,37(25):5681-5688.
    [15]Zhou Z. Y., Cui L. M., Zhang Y., Zhang Y. X., Yin N. W. Isothermal crystallization kinetics of polypropylene/POSS composites [J]. J Polym Sci Part B: Polym Phys 2008,46(17):1762-1772.
    [16]Lin C.C. The rate of crystallization of poly(ethylene terephthalate) by differential scanning calorimetry [J]. Polym Eng Sci 1983,23(3):113-116.
    [17]Kim S.H., Park S.W., Gil E.S. Crystallization kinetics of poly(ethylene terephthalate) with thermotropic liquid crystalline polymer blends [J]. J Appl Polym Sci 1998,67(8):1383-1392.
    [18]Aharoni S.M. Nucleation of PET crystallization by metal hydroxides [J]. J Appl Polym Sci 1984,29(3):853-865.
    [19]Kawakami D., Hsiao B.S., Ran S.F., Burger C., Fu B., Sics I., Chu B., Kikutani T. Structural formation of amorphous poly(ethylene terelphthalate) during uniaxial deformation above glass temperature [J]. Polymer 2004,45(3):905-918.
    [20]Beck H.N. Heterogeneous nucleating agents for crystallization of vinylidence chloride-vinyl chloride copolymers [J]. J Appl Polym Sci 1975,19(2):371-373.
    [21]Groeninekx G., Reynaers H., Dielectric spectroscopy and calorimetry in the glass transition region of semi-crystalline poly(ethylene terelphthalate) [J]. J Appl Polym Sci 2001,80(5):1267-1273.
    [22]Li J., Organ S.J., Hobbs J.K., Terry A.E., Barham P.J., Seebach D. Crystallization of hydroxybutyrate oligomers:1. morphology and folding. [J]. Polymer 2004,45(26): 8913-8923.
    [23]Kong Y., Hay J. N. Multiple melting behaviour of poly(ethylene terelphthalate) [J]. Polymer,2003,44(3):623-633.
    [24]Alfonso G.C., Pedemonte E., Ponzetti L. Mechanism of densification and crystal perfection of poly(ethylene terelphthalate) [J]. Polymer,1979,20(1):104-112.
    [25]Hoffman J.D., Weeks J. Rate of spherulitiz crystallization with chain folds in polychlorotrifluoroethylene [J]. J Chem Phys 1962,37,1723-1741.
    [1]莫志深.一种研究聚合物非等温结晶动力学的方法[J].高分子学报2008,(7):755-760.
    [2]Wu M., Yang G.Z., Wang M., Wang W.Z., Zhang W.D., Feng J. C., Liu T.X. Nonisothermal crystallization kinetics of ZnO nanorod filled polyamide 11 composites [J]. Mater Chem Phys 2008,109(2-3):547-555.
    [3]Kim J.Y., Park H.S., Kim S. H. Unique nucleation of multi-walled carbon nanotube and poly(ethylene 2,6-naphthalate) nanocomposites during non-isothermal crystallization [J]. Polymer 2006,47(4):1379-1389.
    [4]Xu W., Ge M., He P. Nonisothermal crystallization kinetics of polypropylene/ montmorillonite nanocomposites [J]. J Polym Sci Part B:Polym Phys 2002,40(5): 408-414.
    [5]庞键,王少会,周正发,任风梅,徐卫兵.氧化锆对聚丙烯非等温结晶动力学的影响[J].高分子材料科学与工程2008,24(4):70-73.
    [6]Wang K., Wu J.S., Zeng H.M. Crystallization and melting behaviour of polypropylene/barium sulfate composites [J]. Polym Int 2004,53(7):838-843.
    [7]Wunderlich B. Equilibrium melting of flexible linear macromolecules [J]. Polym Eng Sci 1978,18,431-431.
    [8]Cebe P., Hong S.D. Crystallization behaviour of poly(ether-ether-ketone) [J]. Polymer 1986,27(8):1183-1192.
    [9]Supaphol P., Dangseeyun N., Srimoaon P. Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylenes terephthalate) blends [J]. Polym Test 2004,23(2):175-185.
    [10]Huang J. W., Hung H. C., Tseng K. S., Kang C. C. Nonisothermal crystallization of poly(ethylene-co-glycidylmethacrylate)/clay nanocomposites [J]. J Appl Polym Sci 2006,100(2):1335-1343.
    [11]Avrami M. Kinetics of phase change Ⅱ:Transformation-time relations for random distribution of nuclei [J]. J Chem Phys 1940,8(5):212-224.
    [12]Jeziorny A. Parameters charactering the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. [J]. Polymer 1978, 19(10):1142-1144.
    [13]Wu H.D., Wu I.D., Chang F.C. Characterization of crystallization in syndiotactic polystyrene thin film samples [J]. Macromolecules 2000,33(24):8915-8917.
    [14]Kellar E.J.C., Evans A.M., Knowles J., Galiotis C., Andrews E.H. Raman vibrational studies of syndiotactic polystyrene.2. Use of the fundamental v1 vibrational mode as a quantitative measure of crystallinity within isotropic material [J]. Macromolecules 1997,30(8):2400-2307.
    [15]Evans U.R. The law of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals [J]. Trans Faraday Soc 1945,41: 365-374.
    [16]Ozawa T. Kinetics of non-isothermal crystallization [J]. Polymer 1971,12(3): 150-158.
    [17]Supaphol P., Thanomkiat P., Junkasem J., Dangtungee R. Non-isothermal melt-crystallization and mechanical properties of titanium (Ⅳ) oxide nanoparticle-filled isotactic polypropylene [J]. Polym Test 2007,26(1):20-37.
    [18]Yuan Q., Awate S., Misra R. D.K. Nonisothermal crystallization behavior of polypropylene-clay nanocomposites [J]. Eur Polym J 2006,42(9):1994-2003.
    [19]Ardanuy M., Velasco J.I., Realinho V., Arencon D., Martinez A.B. Non-isothermal crystallization kinetics and activity of filler in polypropylene/Mg-Al layered double hydroxide nanocomposites [J]. Thermochim Acta 2008,479(1-2): 45-52.
    [20]Kuo M.C., Huang J.C., Chen M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone) [J] Mater Chem Phys 2006, 99(2-3):258-268.
    [21]Joshi M., Butola B.S. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites [J]. Polymer 2004,45(14):4953-4968.
    [22]Wu M., Yang G.Z., Wang M., Wang W.Z., Zhang W.D., Feng J. C., Liu T.X. Nonisothermal crystallization kinetics of ZnO nanorod filled polyamide 11 composites [J]. Mater Chem Phys 2008,109(2-3):547-555.
    [23]Xu GY, Du L.C., Wang H., Xia R., Meng X.C., Zhu Q.R. Nonisothermal crystallization kinetics and thermomechanical properties of multiwalled carbon nanotube-reinforced poly(ε-caprolactone) composites [J]. Polym Int 2008,57(9): 1052-1066.
    [24]Shangguan Y.G., Song Y.H., Zheng Q. A query on crystallization temperature-dependent cooling function under nonisothermal condition [J]. J Polym Sci. Part B:Polym Phys 2006,44(5):795-800.
    [25]Liu T. X., Mo Z. S., Wang S. E., Zhang H. F. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) [J]. Polym Eng Sci 1997,37(3):568-575.
    [26]Kissinger, H. E., Brimhall J.L., Mastel B. Physical characterization of molybdenum single crystals for irradiation experiments [J]. Mater Res Bull 1967,2(4): 437-448.
    [27]Takhor, R. L. Advance in Nucleation and Crystallization of Glasses; American Ceramics Society:Columbus,1971, pp166-172.
    [28]Augis, J. A.; Bennett, J. E. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method [J]. J Therm Anal 1978,13:283-292.
    [1]Yu Z.Z., Yang M.S., Dai S.C., Mai Y.W. Toughening of recycled poly(ethylene terephthalate) with a maleic anhydride grafted SEBS triblock copolymer [J]. J Appl Polym Sci 2004,93(2):1462-145.
    [2]徐东东,王晓光,张洪生,吴驰飞,郭卫红.PET/LLDPE-g-MA反应共混体系的研究[J].塑料工业2008,36(2):11-14.
    [3]Loyens W., Groeninckx G. Ultimate mechanical properties of rubber toughened semicrystalline PET at room temperature [J]. Polymer 2002,43(21):5679-5691.
    [4]Gartner C., Suarez M., Lopez L.B. Grafting of maleic anhydride on polypropylene and its effect on blending with poly(ethylene terephthalate) [J]. Polym Eng Sci 2008,48(10):1910-1916.
    [5]陈俊,宋波,袁绍彦,魏刚,黄锐PET/POE-g-MAH的性能研究[J].中国塑料2004,18(3):20-22.
    [6]周琦,王勇,邱桂学.POE在塑料增韧改性中的应用进展[J].弹性体2007,17(1):66-70.
    [7]Tanrattanakul V., Hiltner A., Baer E., Perkins W.G., Massey F.L., Moet A. Effect of elastomer functionality on toughened PET [J]. Polymer 1997,38(16):4117-4125.
    [8]周琦,王勇,邱桂学.POE和EPDM对聚丙烯增韧改性研究[J].弹性体2007,17(4):44-47.
    [9]唐毓萍,应敏,张发饶.POE熔融接枝GMA的制备及其与PBT共混增韧[J].塑料2007,36(4):27-31.
    [10]Sun S.L., Tan Z.Y., Zhang M.Y., Yang H.D., Zhang H.X. Influence of the degree of grafting on the morphology and mechanical properties of blends of poly(butylene terephthalate) and glycidyl methacrylate grafted poly(ethylene-co-propylene) (EPR) [J]. Polym Int 2006,55(8):834-842.
    [11]Tao Y.J., Mai K.C. Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends [J]. Eur Polym J 2007,43(8):3538-3549.
    [1]蔡挺松,郭奋,陈建峰.纳米改性氢氧化铝与包覆红磷协效阻燃PBT的研究[J].高分子材料科学与工程2006,22(6):205-208.
    [2]Morgan A. B. Flame retarded polymer layered silicate nanocomposites:a review of commercial and open literature systems [J]. Polym Adv Technol 2006,17(4): 206-217.
    [3]Wang Q. F., Shi W.F. kinetics study of thermal decomposition of epoxy resins containing flame retardant components [J]. Polym Degrad Stab 2006,91:1747-1754.
    [4]Laoutid F., Lopez-Cuesta J.M., Crespy A. Red phosphorus/aluminium oxide compositions as flame retardants in recycled poly(ethylene terephthalate) [J]. Polym Degrad Stab 2003,82(2):357-363.
    [5]曲铭海.侧基含磷阻燃共聚酯/无机纳米复合材料的研究[D].四川大学博士学位论文2005.
    [6]裴运同,杨军忠,李德文,陈灵文.增强阻燃PET工程塑料的研究[J].中国塑料2003,17(1):58-62.