钢筋混凝土梁、柱构件抗震性能试验及其基于变形性能的参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土梁、柱构件均为框架结构中特别重要的抗震构件,构件的变形是反映构件的抗震性能好坏的一种重要表征参数。本文在总结有关钢筋混凝土梁、柱构件和钢筋混凝土框架结构的大量文献资料的基础上,采用试验研究和非线性有限元分析相结合的方法对钢筋混凝土梁、柱构件的变形性能进行了研究和分析,得出梁、柱构件在不同地震水平下的变形限值,以期为今后既有的、新建的框架结构中的梁、柱构件性能评估提供定量参考指标。论文的主要工作和结论如下:
     1)本文设计了18根梁和32根柱进行低周反复加载试验,对50个梁、柱试件的试验过程、破坏形态、变形性能等进行了详尽的分析。通过试验得出梁和柱试件的荷载-位移滞回曲线、荷载-位移骨架曲线、开裂荷载、屈服荷载、峰值荷载、极限荷载,这为研究梁、柱构件的承载能力和变形限值提供了依据。本文还对比了配置小直径的CRB550级钢筋为箍筋的混凝土试件(梁和柱试件)与配置HPB235、HRB335级钢筋为箍筋的混凝土试件(梁和柱试件)在承载力和变形性能上的差异,分析对比后发现,它们的承载力和变形性能很接近,这表明在纵向配筋相同的情况下,完全可以采用比现今规范限值更小直径的CRB550级钢筋(如6.25mm、7.75mm、9.25mm)取代通常使用的直径为8mm、10mm、12mm的HPB235、HRB335级钢筋作为钢筋混凝土试件的箍筋。
     2)建立有限元分析模型对试验进行有限元仿真模拟,将试验和有限元模拟得到的梁、柱试件荷载-位移曲线、破坏形态及钢筋应变值进行对比分析,由对比分析可知,有限元模拟结果与试验结果吻合较好,这表明有限元分析模型可以较为准确地模拟梁和柱试件的试验情况。
     3)根据钢筋混凝土梁试件的破坏类型,设计了240根钢筋混凝土梁试件来进行变形性能计算,由有限元分析模型计算得出钢筋混凝土梁试件在小震、中震、大震时的变形限值,并进一步分析了影响梁试件变形限值的主要因素,结果表明:随着主要因素K值增大,试件的荷载-变形骨架曲线走势由平缓慢慢变陡,即随着K值增大试件的延性变差;随着主要因素λ值增大,试件的荷载-变形骨架曲线走势由陡慢慢变平缓,即λ值越大试件的延性越好。
     4)根据钢筋混凝土柱试件的破坏类型,设计了324根钢筋混凝土柱试件来进行变形性能计算,由有限元分析模型计算得出钢筋混凝土柱试件在小震、中震、大震时的变形限值,并进一步分析了影响柱试件变形限值的主要因素,结果表明:随着主要因素n值增大,试件的荷载-变形骨架曲线走势由平缓慢慢变陡,即随着n值增大试件的延性变差;随着主要因素λ值增大,试件的荷载-变形骨架曲线走势由陡慢慢变平缓,即λ值越大试件的延性越好。
     5)将梁和柱试件在弯曲破坏、弯剪破坏、剪切破坏时的最大变形限值与美国规范ASCE41中的相应变形限值进行对照比较,比较后发现美国的变形限值比本文计算的变形限值要宽松,这主要是因为美国规范中所用的建筑材料延性比我国的建筑材料延性要好。
     6)在综合考虑钢筋混凝土梁和柱试件塑性铰长度影响因素的基础上,对钢筋混凝土梁和柱试件的塑性铰长度lp进行回归分析,得出钢筋混凝土梁和柱试件的塑性铰长度估算公式,然后用相关性系数(R-square)来评价公式拟合的好坏,计算得到梁和柱试件的相关性系数(R-square)分别为90.12%、96.36%,这表明梁和柱试件的塑性铰长度估算公式对数据拟合的较好。
Reinforced concrete beams and columns are particularly important anti-seismic component in the frame, the deformation of the component is an important characterization parameter for reflecting the performance of components good or not. Based on the conclusion of an amount of references about reinforced concrete beams ,columns and frames, the paper studies the deformation performance of reinforced concrete beams and columns under small earthquake, moderate earthquake and severe earthquake to get the deformation limit of the beams and columns by test and nonlinear finite element analysis method, which would be used in the beams and columns of existing and future frames as a indicator for the performance evaluation. The main work and conclusions are as follows:
     1) In the paper, 18 beams and 32 columns are designed for low cyclic loading tests, and testing process, failure mode, deformation performance of 50 specimens are carried out a detailed analysis. Force-displacement hysteresis curves, force-displacement skeleton curves , cracking load, yield load, peak load, ultimate load of beam and column specimens are obtained from the test, which provides a basis for studying the bearing capacity and deformation limits of specimens. The paper also compares the differences of concrete specimens (beam and column specimens) using small diameter CRB550 stirrups and those using HPB235, HRB335 stirrup in the bearing capacity and deformation performance. Analysis and comparison reveals that the bearing capacity and deformation performance of them are very close, which indicates that in the same longitudinal reinforcement, the CRB550 small diameter steel bar (such as 6.25mm, 7.75mm, 9.25mm) can be used to replace HPB235, HRB335 steel bar of diameter 8mm, 10mm, 12mm as the stirrups of the reinforced concrete specimens (beam specimens and column specimens).
     2) The test is simulated by the finite element analysis method, and the finite element simulation results are compared with the test results for load-displacement curves, failure modes and reinforcement strain. By the comparative analysis, the finite element simulation results agree well with test results, indicating that the finite element analysis method can be accurately simulate the beam and column specimens test situation.
     3) According to the failure types of the reinforced concrete beam specimens, 240 reinforced concrete beam specimens are designed to calculate deformation performance, and to get the deformation limit of the reinforced concrete specimen through the finite element analysis model under small earthquake, moderate earthquake and severe earthquake, and further to analyze the factors influencing the deformation limits of beam specimens. The results show that: with the increases of the main factor K value , the load-deformation skeleton curve of the specimen become cliffy from gentle, so the ductility get worse with the K value increases. As the main factorλvalue increases, the load-deformation skeleton curve of the specimen become gentle from cliffy, so the ductility get better with theλvalue increases.
     4) According to the failure types of the reinforced concrete column specimens, 324 reinforced concrete column specimens are designed to calculate deformation performance, and to get the deformation limit of the reinforced concrete specimen through the finite element analysis model under small earthquake, moderate earthquake and severe earthquake, and further to analyze the factors influencing the deformation limits of column specimens. The results show that: with the increases of the main factor n value, the load-deformation skeleton curve of the specimen become cliffy from gentle, so the ductility get worse with the n value increases. As the main factorλvalue increases, the load-deformation skeleton curve of the specimen become gentle from cliffy, so the ductility get better with theλvalue increases.
     5) Comparing the maximum deformation limits of the beam and column specimens for bending failure, bending-shear failure, shear failure with U.S. code ASCE41, the deformation limits of the United States should be relaxed than the paper. It is mainly because building materials used in the United States is better ductility than ours.
     6) Considering the factors influencing plastic hinge lengths of reinforced concrete beam and column specimens, statistical regression of the plastic hinge length of the reinforced concrete beam and column specimens are obtained, as well as the estimation formula of plastic hinge length of reinforced concrete beam and column specimens. Then the correlation coefficient (R-square) is used to evaluate the fit of this formula, the calculated correlation coefficient of beam and column specimens (R-square) are 90.12%, 96.36%, indicating that the estimation formula of the plastic hinge length of the beam and column specimens is suitable.
引文
[1]高振世,朱继澄,等.建筑结构抗震设计[M].北京:中国建筑工业出版社, 1999.
    [2]沈聚敏,周锡元.抗震工程学[M].北京:中国建筑工业出版社, 2000.
    [3] Haitao Wan, Xiaolei Han, Jing Ji. The studies on brick masonry structure with RC constructional column under axial load[C]. The 10th International Symposium on Structural Engineering for Young Experts,Changsha,china,2008.
    [4]薛伟辰,程斌,李杰.双层双跨高性能混凝土框架抗震性能研究[J].土木工程学报, 2004, 37(3):58-65.
    [5]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报, 2004, 37(5):32-38.
    [6]刘伯权,白国良,张国军.高轴压比高强混凝土框架柱抗震性能试验研究[J].土木工程学报, 2005, 38(l):45-50.
    [7] Michael B, Myles P, Marc E. PEER structural performance database [EB/OL]. [2004-12-12]. http://nisee. berkeley. Edu.
    [8] Thomsen J, Wallace J. Lateral load behavior of reinforced concrete columns constructed using high-strength materials [J]. ACI Structural Journal, 1994, 91(5): 605-615.
    [9] Xiao Y, Yun H W. Experimental studies on full-scale high-strength conerete columns[J]. ACI Structural Journal, 2002 , 99(2):199-207.
    [10] Sezen H ,Moehle J P. Seismic behavior of shear-critical reinforced concrete building columns[C]// Seventh U.S.National Conference on Earthquake Engineering, Boston, Massaehusetts, 2002, 21-25.
    [11] Xiao Y, Martirossyan A. Seismic performance of high-strength concrete columns[J]. Journal of Structural Engineering, 1998, 124(3):241-251.
    [12] Haitao Wan, Xiaochun lao. Studies on seismic performance of reinforced concrete frame[C]. Proceedings of the International Symposium on Innovation &Sustainability of Structures in Civil Engineering, guangzhou,china,2009.
    [13]杨君.钢筋混凝土框架结构基于位移的抗震设计理论和方法[D].西安:西安建筑科技大学土木工程学院, 2007.
    [14]尚世仲.配高强钢筋混凝土梁的受弯性能试验研究[D].上海:同济大学, 2007
    [15]周靖.钢筋混凝土框架结构基于性能系数抗震设计法的基础研究[D].广州:华南理工大学,2006
    [16] California Office of Emergency Services. Vision2000: Performance Based Seismic Engineering of Buildings. Structural Engineering Association of California ,Vision2000 Committee,California,1995.
    [17] ATC-40.Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council.Redwood City,California,1996.
    [18] FEMA356. Pre-Standard and Commentary for The Seismic Rehabilitation of Buildings. Report FEMA356,Federal Emergency Management Agency,Washington DC,2000.
    [19] FEMA273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings. Federal Emergency management Agency,Washington,D.C. September,1996.
    [20] FEMA274. NEHRP Guidelines for the Rehabilitation of Buildings. Federal Emergency Management Agency,Washington,D.C. September,1996.
    [21] FEMA 349.Action Plan for Performance Based Seismic Design, 2000.
    [22] FEMA445. Next-Generation Performance-Based seismic Design Guidelines,program for the New and Existing Buildings. August, Federal Emergency management Agency, Washington, D.C. 2006
    [23] Recommended Administrative Bulletin on the Seismic Design & Review of Tall Buildings Using Non-Prescriptive Procedures. SEAONC AB-083 Tall Buildings Task Group, April 2007.
    [24] Los Angeles Tall Buildings Structural Design Council. A Consensus Document. 2008 Edition. An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region .
    [25] ACI Committee 318. 2005. Building Code Requirements for Structural Concrete and Commentary (ACI 318-05).
    [26] ASCE 41. Seismic Rehabilitation of Existing Buildings. US: American Society of Civil Engineers, 2007.
    [27] California Buildings Standards Commission. 2001. 2001 California Building Code, Part 2, Vol. 2. Sacramento,CA.
    [28] Panagiotou M, Restrepo JI. 2007. Lessons learnt from the UCSD full-scale shake table testing on a 7-story residential building slice. In Proceedings, SEAOC Convention, September 2007; 57–73.
    [29] Paulay T, Taylor RG. 1981.“Slab coupling of earthquake-resisting shear walls(Proceedings). ACI Journal 78(2):130–140.
    [30] Stewart JP. 2007. Input motions for buildings with embedment. In Proceedings, Los Angeles Tall Buildings Structural Design Council, 2007 Annual Meeting, May 2007.
    [31] Uniform Building Code: UBC-97. 1997. International Conference of Building Offi cials, Whittier, California,1997.
    [32] Wallace JW, Moehle JP. 1992. Ductility and detailing requirements of bearing wall buildings. Journal of Structural Engineering, American Society of Civil Engineers 18(6): 1625–1644.
    [33] Wallace JW, Moehle JP, Martinez-Cruzado J. 1990. Implications for the design of shear wall buildings using data from recent earthquakes. In Proceedings, Vol. 2, Fourth U.S. National Conference on Earthquake Engineering,Palm Springs, California, May 1990; 359–368.
    [34]门进杰.不规则钢筋混凝土框架结构基于的抗震设计理论和方法[D].西安:西安建筑科技大学, 2007.
    [35] T.J.sullivan, G.M.Calvi, M.J.N.priestley.The limitations and performances of different displacement based design methods.Journal of Earthquake Engineering,2003,Special Issue l :201–241.
    [36] PanagiotakosT.B., FardisM.N. Deformation-controlled earthquake–resistant design of RC buildings, Joumal of Earthquake Engineering,1999,3(4):498–518.
    [37] Browning J.P. Proportioning of earthquake-resistant RC building structures. Journal of Structure Divison,ASCE,2001,127(2):145–151.
    [38] Asehheim, M., E.Black.Yield Point spectra for seismic design and rehabilitation. Earthquake Spectra, 2000,16(2):317–335,
    [39] Asehheim, M.A.Seismic design based on the yield displacement.Earthquake Spectra,2002, 18(4):581–600.
    [40] Asehheim, M., E. Hernandez Montes.The representation of P–△affects using yield Point spectra, Engineering Structures, 2003, 25:1387–1396.
    [41] Mark Aschheim. A pragmatic approach for performance–based seismic design.Performance–based seismic design concepts and implementation, proceedings of an international workshop, bled, Slovenia, June28–July l, 2004.
    [42] Chopra, A.K., Goel,R.K. Direct displaeement–based design: use of inelastic vs. elastic design spectra. Earthquake Spectra, 2001,17(l):47–65.
    [43] S.A. Freeman. Development and use of capacity spectrum method. Proceedings of 6thUS Conference on Earthquake Engineering, Seattle, Washington, 1998.
    [44] SEAOC. Recommended Lateral Force Requirements and Commentary, 7th Ed. 1999.
    [45] Priestley M.J.N. and Kowalsky, M.J. Direct displacement–based design of concrete buildings. Bull. New Zealand Nat. Soc. Earthquake Engineering, 2000.
    [46] Kappos, A.J. and Manafpour, A. Seismic design of RC buildings with the aid of advanced analytical techniques.Engineering Strueture.2001.
    [47] P. Fajfar. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 1999, 28(l): 979–993.
    [48] Chopra A.K., Goel R.K. Capacity–demand–diagram method for estimating seismic deformation of inelastic structures: SDF Systems. University of California, Berkeley, Report No. PEER–1999/02.
    [49] Bozorgnia, Y, Bertero, VV. Damage spectra: Characteristics and applications to seismic risk reduetion. ASCE Joumal of Structural Engineering, October 2003, 129(10):1330–1340.
    [50] Jack Moehle, Gregory G. Deierlein. A framework methodology for performance–based earthquake engineering. Proeeedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August l–6, 2004, paper No. 679.
    [51] Nino M. Application of uniform hazard spectra in the seismic design of buildings. Master of Engineering Thesis, Graduate Program in Engineering. UNAM, Mexieo, 2003.
    [52] Qiang Xue. A direct displacement–based seismic design procedure of inelastic Structures. Engineering structures, 2001, 23:1453–1460.
    [53]建筑抗震设计规范(GB50011-2002).北京:中国建筑工业出版社, 2002.
    [54]胡聿贤.中国地震工程五十年[J].建筑结构, 1999, 29(10):22-25.
    [55]谢礼立,张晓志,周雍年.论工程抗震设防标准[J].地震工程与工程振动, 1996, 16(1):1-18.
    [56]陈肇元.要大幅度提高建筑结构设计的安全度[J].建筑结构, 1999, 29(1):3-6.
    [57]朱建钢,黄兴建.经济增长速度对抗震设防标准的需求[J],自然灾害学报1994, 3(4):31-38.
    [58]王亚勇,郭子雄,吕西林.建筑抗震设计中地震作用取值—主要国家抗震规范比较[J].建筑科学, 1999, 15(5):36-39.
    [59]李明顺,胡德炘.我国建筑结构设计可靠度设定水平的分析与改进意见[J].建筑科学, 1999,15(5):26-29.
    [60]杨媛,白绍良.从各国规范对比看我国抗震设计安全水准评价中的有关问题[J].重庆建筑大学学报, 2000, 22(22):192-200.
    [61]刘西拉,蒲德群.再论“必须提高我国结构安全设置水平”[J].建筑科学, 2001,15(5):46-50.
    [62]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动, 2001,21(4): 73-79.
    [63]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报, 2002, 30(12) :1429 - 1434.
    [64]李鸿晶,宗德玲.关于工程结构抗震设防标准的几个问题的讨论[J].防灾减灾工程学报,2003, 23(2):100-105.
    [65]叶列平,钱稼茹.关于取消承载力抗震调整系数λRE的意见[C].第九届全国高层建筑抗震学术交流会论文集,厦门, 2003.
    [66]梁兴文,黄雅捷,杨其伟.钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报, 2005, 38(9):53-60.
    [67]李刚,程耿东.基于性能的结构抗震设计一理论、方法与应用.北京:科学出版社, 2004.
    [68]韩小雷,郑宜,季静,等.清远盛泰大厦B栋基于性能和能力的结构抗震安全性复核报告[R].华南理工大学建筑学院高层建筑研究所, 2005.
    [69]蔡健,周靖,方小丹.钢筋混凝土框架中震可修标准及简化抗震设计方法[J].地震工程与工程振动, 2006, 26(2):13-19.
    [70]史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估.西安:西安建筑科技大学, 2002.
    [71]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法.地震工程与土程振动, 2005, 25(6):53-61.
    [72]韩小雷,戴金华,何伟球,等.广州花园酒店“白金五星级酒店”结构改造基于性能的可行性研究[J].地震工程与工程振动, 2007, 27(5). 88-93.
    [73] CECS160:2004,建筑工程抗震性态设计通则(试用),北京:中国计划出版社, 2004.
    [74]汪梦甫,周锡元.基于性能的建筑结构抗震设计.建筑结构, 2003, 33(3):59-61.
    [75]叶献国.多层建筑结构抗震性能的近似评估一改进的能力谱方法.工程抗震, 1998(4):10-14.
    [76]徐培福.复杂高层建筑结构设计[M].中国建筑工业出版社, 2005.
    [77]王亚勇.我国2000年工程抗震设计模式规范基本研究问题综述[J].建筑结构学报, 2000, 21(1):1-4
    [78]朱志达,沈参磺.在低周反复循环荷载作用下钢筋混凝土框架梁端抗震性能的试验研究[J].北京工业大学学报,1985, 11(1):17-38.
    [79] Matamoros A., Matchulat L., Woods C. Axial Load Failure of Shear Critical Columns Subjected to High Levels of Axial Load [C/CD]. Beijing, China: Proceedings of 14th World Conference on Earthquake Engineering, 2008.
    [80]罗文斌,钱稼茹. RC框架弹塑性位移的解构规则与构件的目标侧移角[J].工程力学, 2003, 20(5):32-36.
    [81] Lynn A.C. Seismic Evaluation of Existing Reinforced Concrete Building Columns [D]. Berkeley, USA: University of California, Berkeley, 2001.
    [82] Sezen H. Seismic Behavior and Modeling of Reinforced Concrete Building Columns [D]. Berkeley: University of California, Berkeley, 2002.
    [83] Elwood K.J. Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames [D]. Berkeley, USA: University of California, Berkeley, 2002.
    [84] Nakamura T., Yoshimura. M. Gravity Load Collapse of Reinforced Concrete Columns with Brittle Failue Modes [J]. Journal of Asian Architecture and Building Engineering, 2002, 1(1):21-27.
    [85] Ousalem H., Kabeyasawa T., Tasai A. Evaluation of Ultimate Deformation Capacity at Axial Load Collapse of Reinforced Concrete Columns [C/CD]. Vancouver, Canada: Proceedings of 13th World Conference on Earthquake Engineering, 2004.
    [86] Pujol S., Sozen M. A., Ramirez J.A. Displacement History Effects on Drift Capacity of Reinfoced Concrete Columns [J]. ACI Structural Journal, 2006, 103(2):253-262.
    [87] Shin Y.B. Dynamic Responses of Ductile and Non-Ductile Reinforced Concrete Columns [D]. Berkeley, USA: University of California, Berkeley, 2007.
    [88] Ghannoum W.M. Experimental and Analytical Dynamic Collapse Study of a Reinforced Concrete Frame with Light Transverse Reinforcement [D]. Berkeley, USA: University of California, Berkeley, 2007.
    [89]周定松,吕西林,蒋欢军.钢筋混凝土框架结构基于性能的抗震设计方法[J].四川建筑科学研究, 2005, 31(6):122-127.
    [90]熊勇.带腋撑大跨度预应力(钢筋)混凝土框架结构试验研究[D].广州:华南理工大学, 2008.
    [91]钟益村,任富栋,田家骅.二层双跨钢筋混凝土框架弹塑性性能试验研究[J].建筑结构学报, 1981, 2 (3): 34-41.
    [92]梁启智,韩小雷.低周反复荷载作用下刚性连梁及普通连梁性能[J].华南理工大学学报,1995,23(1):27-33.
    [93]周定松,吕西林,蒋欢军.钢筋混凝土框架梁的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动, 2005, 25(4):60-66.
    [94]朱志达,沈参璜.钢筋砼框架梁端的抗震强度和变形研究[J].建筑结构学报, 1990, 11(3):10-22.
    [95]刘林,白国良,李晓文,等.钢筋混凝土框架结构基于位移的抗震设计[J].工业建筑, 2009, 39(5):1-5.
    [96]张国军,刘伯权,白国良.钢筋混凝土框架柱在高轴压比下的抗震性能试验[J].长安大学学报, 2002, 22(6):53-57.
    [97]程斌,薛伟辰.基于性能的框架结构抗震设计研究[J].地震工程与工程振动, 2003, 23(4):50-55.
    [98]李斌,任利民.矩形钢管混凝土框架结构受力性能试验研究[J].工程力学, 2009, 26(2):103-107.
    [99]徐云扉,胡庆昌,陈玉峰,等.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J].建筑结构学报, 1986, 7(2): 1-16.
    [100]邹翾,周德源. 3层钢筋混凝土框架结构反复加载试验分析[J].四川建筑科学研究, 2005, 31(2):7-11.
    [101]康洪震,江见鲸.不同加载路径下钢筋混凝土框架柱抗震性能的试验研究[J].土木工程学报, 2003, 36(5):71-75.
    [102]杜宏彪.双向压弯钢筋混凝土柱的抗震性能[J].哈尔滨建筑大学学报, 1999, 32(4):47-52.
    [103]黄志华,吕西林,周颖.钢筋混凝土连梁的变形能力及基于性能的抗震设计[J].结构工程师, 2009, 25(5):13-18 .
    [104]王震宇,吴波,林少书,等.香港地区钢筋混凝土框架柱的抗震性能试验研究[J] .哈尔滨建筑大学学报, 2001, 34(2):6-11.
    [105]李瑞锋,孙长洲,王挺叶,等.高强混凝土框架柱受力变形的试验研究[J].中州煤炭, 2001, 109(1):4-5.
    [106]熊朝晖,潘德恩.钢筋混凝土框架柱侧向变形能力的研究[J].地震工程与工程振动, 2001, 21(2):103-108.
    [107]周小真,姜维山.高轴压作用下钢筋混凝土短柱抗震性能的试验研究[J].西安冶金建筑学院学报, 1985, 42(2):103-119.
    [108]路湛沁,陈家夔,崔锦,等.钢筋混凝土框架柱在低周反复荷载作用下的抗弯强度及延性[J].西南交通大学学报, 1987(l):1-10.
    [109]徐贱云,吴健生,铃木计夫.多次循环荷载作用下钢筋混凝土柱的性能[J].土木工程学报,1991,24(3):57-70.
    [110]钱国芳,童岳生,白国良.配置不同形式箍筋的钢筋混凝土短柱抗震性能试验研究[J].西安冶金建筑学院学报, 1991, 23(3):248-257.
    [111]姜维山,白国良.配复合箍、螺旋箍、X形筋钢筋砼短柱的抗震性能及抗震设计[J].建筑结构学报, 1994, 15(l):2-14
    [112] Atorod Azizinamini, Sharon S. Baum Kuska et al. Seismic Behaviors of High-Strength Concrete Columns. ACI Journal Structural, 1994, 91(3):336-345.
    [113] Shamim A. Sheikh, Dharmendra V Shah, Shafik S. khoury. Confinement of High-Strength Conerete Columns.ACI Joumal Structural, 1994, 91(l):100-111.
    [114]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报, 2004, 37(5):32-38.
    [115]汪训流,陆新征,叶列平.变轴力下钢筋混凝土柱的抗震性能分析[J].工业建筑, 2005, 37(12):71-75.
    [116]唐红元,孟少平.钢筋混凝土柱在长期荷载下的配筋率研究[J].工业建筑, 2005, 35(增刊):81-85.
    [117]孙宪春,邱法维,万力.钢筋混凝土柱在弯剪扭耦合作用下的试验研究[J].工程抗震与加固改造, 2008, 30(3):88-92.
    [118] T. Majewski J. Bobinski J. Tejchman.FE Analysis of Failure Behaviour of Reinforced Concrete Columns Under Eccentric Compression[J].Steel Construction, 2008, 8(23):78.
    [119]王海波,陈伯望,沉蒲生.双向压弯钢筋混凝土柱的非线性分析[J].计算力学学报, 2006, 23(4):502-507.
    [120]罗佑新,刁波,李淑春,等. RC异形柱框架反复加载试验及数值模拟[J].工业建筑, 2008, 38(8):46-51.
    [121]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社, 1996.
    [122]吴国梁,王立红.冷轧带肋钢筋在兰州大学综合科教楼工程中的应用[C].第二次全国冷轧带肋钢筋推广工作会论文集,广州, 1999.
    [123] GB50512-92,混凝土结构试验方法标准[S].北京:中国建筑工业出版社, 1997.
    [124] GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社, 2002.
    [125] GB/T 228-2002,金属材料室温拉伸试验方法[S].北京:中华人民共和国国家质量监督检验检疫总局, 2002.
    [126] JGJ101-96,建筑抗震试验方法规程[S] .北京:中国建筑工业出版社, 1997.
    [127]沈在康.混凝土结构试验方法新标准应用讲评[M].北京:地震出版社, 1992.
    [128] V.Thevendran,S.Chen,N.E.Shanmugam. Nonlinear Analysis of Steel-Concrete Composite Beams Curver in Plan. Finite Elements in Analysis and Design 32(1999) 125-139.
    [129]张国军,刘伯权,白国良.钢筋混凝土框架柱的三维有限元模拟分析[J].同济大学学报(自然科学版), 2005, 33(8) 995-1000.
    [130]陈立保.方钢管混凝土力学性能有限元分析[D].武汉:武汉大学, 2004.
    [131]李建清.型钢混凝土柱受力性能有限元分析[D] .武汉:武汉大学, 2005.
    [132]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社, 1994.
    [133]江见鲸,路新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社, 2005.
    [134]沈聚敏,王传志,江见鲸.钢筋混凝土结构有限元与板壳极限分析[M].北京:清华大学出版社, 1997.
    [135] D. Ngo, A. C. Scordelis. Finite element analysis of reinforced concrete beams[J]. Journal of ACI. 1967, 64(3): 152-163.
    [136] ASCE Committee on Concrete Structures. Task Committee on Finite Element Analysis of Reinforced Concrete Structures: A State-of-the-art Report on Finite Element Analysis of Reinforced Concrete Structures[J].ASCE SP. 1982.
    [137] W. F. Chen. Plasticity in Reinforced Concrete[M]. New York: McGraw-Hill Book Company, 1982.
    [138] N. S. Ottosen. Constitutive Model for Short-time Loading of Concrete[J]. Journal ofEngineering Mechanics Division, ASCE. 1979, 105(1).
    [139] K. H. Gerstel. Simple Formulation of Biaxial Concrete Behavior[J]. ACI. 1981, 78(1): 62-68.
    [140] E. Yamaguehi, W. F. Chen. Cracking Model for Finite Element Analysis of Concrete Materials[J]. Journal of the Engineering Mechanics, ASCE. 1990, 116(6): 1242-1260.
    [141] W. F. Chen, H. Suzuki. Constitutive Models for Concrete[J]. Computer and Structure. 1980, 12.
    [142] O. Bugukozturk. Nonlinear Analysis of Reinforced Concrete Structure[J]. Computer and Structure. 1977, 7.
    [143] E. C. Ting, W. F. Chen. Constitutive Models for Concrete Structures[J]. Journal of the Engineering Mechanics Division, ASCE. 1980, 106(1): 1-19.
    [144]过镇海.混凝土应力应变全曲线的试验研究[J].建筑结构学报, 1982, 3(1): 1-12.
    [145] D. Darwin, D. A. Pecknold. Nonlinear Biaxial Stress-strain Law for Concrete[J]. ASCE. 1977, 103(1): 229-241.
    [146] K. C. Valanis. A Theory of Viscoplasticity without a Yield Surface.Ⅰ:General Theory,Ⅱ:Application to Mechanical Behavior of Metals[J]. Arch. Mech. 1971, 23(4): 517-551.
    [147] Z. P. Bazant, C. L. Shieh. Hysteretic Fractureing Endochronic Theory for Concrete[J]. Journal of Engineering Mechanics, ASCE. 1980, 106(5): 929-950.
    [148]董毓利,谢和平,李世平.砼受压损伤力学本构模型的研究[J].工程力学. 1996, 13(1): 44-53.
    [149] C. Meyer, X. Peng. A Comprehensive Decription for Damage of Concrete Subjected to Complex Loading[J]. Structural engineering and Mechanics. 1997, 5(6): 679-689.
    [150]彭军,宋玉普,赵国藩.碾压混凝土内时损伤本构模型[J].工程力学. 1995, 12(4): 131-138.
    [151] Z. P. Bazant, P. D. Bhat. Endochronic Theory of Inelastic and Failure of Concrete[J]. Journal of Engineering Mechanics. 1976, 102(4): 701-721.
    [152] P. J. Yoder, W. O. Iwan. On the Formulation of Strain-space Plasticity with Multiple Loading Surfaces[J]. Journal of Applied Mechanics. 1981, 48(4): 773-778.
    [153] J. Casey, P. M. Naghdi. On the Nonequivalence of the Stress Space and Strain Space Formulations of Plasticity Theory[J]. Journal of Applied Mechanics. 1983, 50(2): 350-354.
    [154] E. Mizuno, S. Hatanaka. Compressive Softening Model for Concrete[J]. Journal ofEngineering Mechanics, ASCE. 1992, 118(8): 1546-1563.
    [155]吴建营,李杰.混凝土弹塑性损伤本构关系统一模型[J].建筑科学与工程学报, 2008, 22(4): 15-21.
    [156] LUBLINER J, OLIVER J. OLLER S,et al. A plastic-damage model for concrete[J]. International Journal of Solids Structures, 1989(25): 299-326.
    [157] LEE J, FENVES G L. A plastic-damage model for cyclic loading of concrete structures[J]. J. Eng. Mechanics, 1998, 124(8): 892-900.
    [158] A. Hillerborg, M. Modeer, P. E. Petersson. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements[J]. Cement and Concrete Research. 1976, 6(6): 773-781.
    [159]王金昌,陈页开. ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社, 2006.
    [160]冯丽娟,尚晓江,徐自国.基于ABAQUS程序的结构静力和动力弹塑性分析[J].工程抗震与加固改造. 2008, 30(5): 14-19.
    [161]方秦,还毅,张亚栋,等. ABAQUS混凝土损伤塑性模型的静力性能分析[J].解放军理工大学学报(自然科学版). 2007, 8(3): 254-260.
    [162]王素裹,韩小雷,季静. ABAQUS显式分析方法在钢筋混凝土结构中的应用[J].科学技术与工程. 2009, 9(16): 92-96.
    [163]过镇海.混凝土的强度和本构关系原理与应用[M].北京:中国建筑工业出版社, 2004.
    [164]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社, 2003.
    [165]薛伟辰,程斌,李杰.低周反复荷载下预应力高性能混凝土梁的抗震性能[J].地震工程与工程振动,2003, 23(1):78-83.
    [166]吕燕梅.高强箍筋高强混凝土梁抗剪性能试验研究与理论分析[D].长沙:湖南大学, 2007.
    [167]李艳艳.配置500MPa钢筋的混凝土梁受力性能的试验研究[D].天津:天津大学, 2007.
    [168]王清湘,赵国藩,林立岩.冷轧螺纹箍筋混凝土梁抗剪性能的试验研究[J].大连理工大学学报, 1993, 35(5):703-708.
    [169]李美云. HRB400级钢筋混凝土构件受力性能的试验研究[D].郑州:郑州大学, 2003
    [170]王铁城,李艳艳,戎贤,等.集中荷载下高强箍筋混凝土梁的抗剪性能[J].自然灾害学报, 2006.
    [171]金琰.集中荷载作用下高强箍筋混凝土简支梁斜裂缝宽度及受剪承载力试验研究[D].天津:天津大学, 2000.
    [172]董春敏.均布荷载下高强箍筋混凝土梁抗剪性能研究[D].天津:天津大学, 2003.
    [173]杨枫,薛伟辰.高预应力度混凝土梁抗震性能探讨[J].地震工程与工程振动, 2006, 26(6):108-113.
    [174] JGJ 3-2002,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社, 2002.
    [175]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报(自然科学版). 2002, 42(10): 1369-1373.
    [176]程文瀼,王铁成,颜德姮,等.混凝土结构上册混凝土结构设计原理[M].北京:中国建筑工业出版社, 2005.
    [177] Park R, Paulay T. Reinforced Concrete Structures[M]. New York: John Wiley & Sons, 1975.
    [178]郭子雄,吕西林,王亚勇.建筑结构抗震变形验算中层间弹性位移角限值的研讨[J].工程抗震, 1998(2).
    [179]沈聚敏,翁义军.钢筋混凝土构件的变形和延性[J].建筑结构学报, 1980 ,1 (2) :47-58.
    [180]王福明,曾建民,段炼.钢筋混凝土压弯构件塑性铰的试验研究[J].太原工业大学学报,1989 ,20 (4) :20–29.
    [181]谢涛,陈肇元.高强混凝土柱抗震性能的试验研究[J].建筑结构, 1998, 28(12):3-8.
    [182]贾金青,赵国藩.高强混凝土短柱的轴压比限值[J].工业建筑, 2002 ,32 (6):18-20.
    [183]李立仁,支运芳,陈永庆,等.高强约束混凝土框架柱抗震性能的试验研究[J].重庆建筑大学学报, 2002 ,24 (5) :38-45.
    [184]肖建庄,朱伯龙.钢筋混凝土框架柱轴压比限值试验研究[J].建筑结构学报,1998 ,19 (5) :2-7.
    [185]邹银生等.多层钢筋混凝土框架柱的抗震设计[R].北京:中国建筑科学研究院, 1985.
    [186]万海涛,韩小雷,季静.基于性能设计方法的钢筋混凝土柱构件分析[J].中南大学学报(自然科学版),2010 ,41 (4) :1585-1589.
    [187]贾金青,赵国藩.高强混凝土框架短柱力学性能的试验研究[J].建筑结构学报, 2001, 22(3):43-47.
    [188]梁书亭,丁大钧,赵建军.钢筋混凝土复合箍筋柱在低周反复荷载下的强度和延性[J].南京建筑工程学院学报, 1994, 31(4):21-29.