以PNIPAm系凝胶为载体的复合相变材料的制备和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固-液相变蓄热材料因其具有较大的相变焓而成为目前研究的热点,但有固-液相变蓄热材料在相变过程中有固体变成液体体积变化大,盛装困难。针对这种缺点本文将固-液相变蓄热材料复合到高分子凝胶载体中,制备了一种不需要容器盛装的新型复合蓄热材料。
     首先,本文作者以N-异丙基丙烯酰胺(NIPAAm)系共聚凝胶为研究对象,通过引入亲水单体丙烯酰胺(AAm)和疏水单体甲基丙烯酸丁酯(BMA)制备了PNIPAAm、P(NIPAAm-co-AAm)和P(NIPAAm-co-BMA)三种具有不同亲水性的共聚凝胶。实验发现,NIPAAm系共聚凝胶呈现热缩温敏特性,在相转变温度LCST以下,随凝胶亲水性增强,凝胶的LCST升高。研究了三种凝胶在不同浓度的六种钠盐溶液中溶胀行为。结果表明,PNIPAAm系温敏凝胶在六种钠盐溶液中的仍具有热缩温敏特性,与在水中相比,温敏性减弱。20℃时,随着盐溶液浓度的增大,凝胶的溶胀速率减慢,平衡溶胀度减小。凝胶在盐溶液中达到溶胀平衡的时间比在水中达到溶胀平衡的时间长,且三种凝胶在盐溶液中的平衡溶胀度均小于相同温度下纯水中的平衡溶胀度。
     其次,本文采用自由基聚合法,合成了以PNIPAAm凝胶为载体,棕榈酸和月桂酸的混合物为相变材料有机复合相变蓄热材料;及P(NIPAAm-co-AAm)凝胶为载体,棕榈酸、月桂酸和Na_2HPO_4·12H_2O为相变材料的有机/无机复合相变蓄热材料,采用红外光谱(IR)、示差扫描量热法(DSC)、热重分析(TG)、扫描电镜(SEM)等手段对两种复合材料的结构及热性能进行了表征与分析,研究了有机酸和无机盐的百分含量对复合材料的相变温度和相变焓的影响。结果表明,两种复合材料都随有机酸含量的增加,相变温度升高,相变焓增大,相变材料和凝胶的相容性增强。在150℃之前,两种材料的失重率都只有1%左右。
     PNIPAAm凝胶与混合酸复合的相变材料,当混合酸的含量达到76%时,材料的相变焓为105 J·g~(-1)。添加Na_2HPO_4·12H_2O的复合材料,相变焓均大于100 J·g~(-1),随着有机酸和无机盐的质量比例增大,复合材料的相变温度范围变窄。Na_2HPO_4·12H_2O在复合材料中依然保持原来的物性。
Solid-liquid phase change materials for thermal storage become theresearch hotspot because of its big phase change enthalpy at the presenttime. However, Solid-liquid phase change materials has a so big volumethat it is difficult to load when materials change solid to liquid. Aim atthis phenomenon, solid-liquid phase change materials for thermal storagewas compounded to polymer gel carriers in this paper. A kind ofnew-style composite materials which needn't container to fill wasprepared.
     Firstly, a serie of N-isopropylacrylamide (NIPAAm) copolymer gelswas investigated in this paper. Three homogeneous PNIPAm、P(NIPAm-co-BMA) and P(NIPAm-co-AAm) hydrogels with differenthydrophilicity were prepared from hydrophilic acrylamide (AAm) andhydrophobic butyl metha-crylate(BMA). Copolymer gels show negativethermo-sensitivities. Lower critical solution temperature (LCST)、equilibrium swelling degree and the initial swelling rate increase as thehydrophilicity of gels increases. Swelling behavior in six different sodiumsalt solution were researched. Experimental results shows three gels shownegative thermo-sensitivities in salt solution , temperature responsiveperformance weakens compared with water. Swelling rate becomesslower and Equilibrium swelling ratios is small with increasing ofConcentration for salt under 20℃,Time for swelling equilibrium is longerin salt solution than that in water, furthermore, equilibrium swelling ratiosin sodium salt solution are all smaller than that in water when under thesame temperature.
     Secondly, organical composite thermal storage materials which takethe PNIPAAm gels as the carriers and the palmitic acid and the lauric acidmixture for phase change materials were Synthesized by radicalpolymerization ,and organical/inorganical composite materials which takeP(NIPAAm-co-AAm) gels as the carriers and the palmitic acid、thelauric acid and Na_2HPO_4·12H_2O mixture were also Synthesized byradical polymerization. Structure and thermal performance of twocomposite material were characterized and analyzed by infrared spectroscopy and differential scanning calorimetry, thermogravimetricand Scanning Electron Microscope. The influence of organic acid and theinorganic salt percentage on phase change enthalpy and transfertemperature studied. It finds out that phase change temperature andenthalpy for two composite material increase, Phase change material andgels are more compatible along with organic acid content increasing. Twokind of materials weightlessness rate all only have about 1%.
     For composite material of PNIPAAm gels and mixture acid, the phasechange enthalpy is 105 j.g~(-1) when the mixed acid content achieved 76%the enthalpy is bigger than 100 J·g~(-1)when adding Na_2HPO_4.12H_2O,withthe quality proportion for organic acid and inorganic salt increasing, thephase change temperature scope changes narrowly. Na_2HPO_4·12H_2O stillmaintains the original nature in the compound materials.
引文
[1] 何天白,胡汉杰.功能高分子与新材料(第一版).北京:化学工业出版社,2001.178-191
    [2] 张寅平,胡汉平,孔祥东,等.相变储能-理论和应用(第一版).北京:中国科技大学出版社.1996.Ⅰ—Ⅲ
    [3] M.Grayson. Encyclopedia of Chemical Technology. 3rd edition. John Wiley&Sons, 1979.294-315
    [4] J Yagi, T A kiyama. Storage of thermal energy for effective use of waste heat from industries. Journal of Material Processing Technology, 1995, 48:793-804.
    [5] 张月莲 郑丹星.石蜡相变材料在同心环隙管内的基本传热行为.北京化工大学学报,2006,33(2):5-12
    [6] S M HASNAN. Review on sustainable thermal energy storage technologies, Part Ⅰ: Heat storage materials and techniques. Energy Convers, Mgmt, 1998 (39):1127-1138
    [7] Thomas W, Kerslake. Experments with phase change thermal energy storage canisters. NASA Technical Memorandum 1991.104427,
    [8] Mohammed Fraid. A review on phase change energy storage: materials and applications.Energy Conversion and Management, 2004,45:1597-1615
    [9] 秦培煜,周世权.能源材料的研究现状及发展前景.节能,2002,5:5-7
    [10] 王剑峰.相变储热研究进展.新能源,2000,(3):22-33
    [11] 叶宏.新型贮热材料.新能源,2000,(3):10-11
    [12] 马芳梅.相变物质蓄能建筑材料性质研究的进展.新型建筑材料,1997,(8):40-42
    [13] 林怡辉,张正国,王世平.复合相变蓄能材料的研究与进展.新能源,2000,(7):35-38
    [14] 王剑峰,欧阳应修,朱永雷,等.相变材料应用于热泵干燥的实验研究.太阳能学报,2002,(1):23-26
    [15] 姜勇,丁恩勇,黎国康.相变储能材料的研究进展.广州化学,1999,(3):48-53
    [16] 李爱菊,张仁元,周晓霞.化学储能材料开发与应用.广东工业大学学报,2002,(1):81-84.
    [17] 贺岩峰,张会轩,燕淑春.热能储存材料研究进展.现代化工,1994,(4):8-11
    [18] M G. Mavleous, J J Desy. Power driven lawn sweeper. U.S Patent 3183653, 1965
    [19] Hisham EI-Dessouky, Faisal AL-Juwayhel. Effectiveness of a thermal energy storage system using phase-change materials. Energy Convers, 1997, (38): 601-617
    [20] Kazunobu sagara. Presientation situation of PCM thermal energy storage in Japan. IEA Annex 10, Phase change material and chemical reaction for thermal energy storage First Workshop, 16-17 April 1998, Adana, Turky.
    [21] 李玉红,焦庆影等.常低温相变储热材料的研究和应用.化学教育,2004,10:9-13
    [22] Abhat A. Low temperature latent heat thermal energy storage. Solar Energy, 1983,30:313-332.
    [23] 王跃志.乙二醇市场现状和发展前景分析.江苏化工.2002,30(1):48-50.
    [24] 左远志,丁静,杨晓西.中温相变蓄热材料研究进展.现代化工,2005,25(12):15-19
    [25] Aceves S M, Nakamura H, Reistard G M. The effects of freezing and melting on the efficiency of latent heat storage system. Journal of Chemical Engineering of Japan, 1994, 6(27):779-784.
    [26] Adebiyi G A, Hodge B K, Steele W G. Computer simulation of a high-temperature thermal energy storage system employing multiple families of phase change storage materials. Journal of Energy Resources Technology, 1996, 118:102-111.
    [27] 贺洛夫,阮德水.有机物在相变储热中的应用.益阳师专学报.1994,6(11):58-62
    [28] 邢琳,方贵银,杨帆.微胶囊相变蓄冷材料的制备及其性能研究.真空与低温,2006,12(3):153-156
    [29] 王春莹,张兴祥.调温微胶囊的研制.印染,2002,6:13-17
    [30] Shin, Younsook.Development ofthermoregulating textile materials with microencapsulated Phase Change Materials (PGM). Ⅳ. Performance properties and hand of fabrics treated with PCM microcapsules.Journal of Applied Polymer Science, 2005, 97(3): 910-915
    [31] Yuan Li. Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer, 2006, 47(15):5338-5349
    [32] Ishiguro, Mamoru. Microcapsules of heat-storing materials. JP 11152466 A2, 1999
    [33] Ishiguro, Mamoru. Microcapsules of heat-storage materials. JP 20011040342, 2001
    [34] Ishiguro, Mamoru. Odorless heat-storage materials and their use. JP 20022045385, 2002
    [35] Mouri Shinkichi, Ishiguro Mamoru. Production method of odor-free microcapsules for heat storage material. JP 2002038136, 2002
    [36] Matsushite Shinichi, Aoki Kensuke, Ishiguro Mamoru. Latent heat storage type gypsum based building material and microcapsules containing latent heat storage material. JP 20022114560 A2, 2002.
    [37] Fujii Norki, Omuro Takahiro, Nakata Yasushi. Heat-storage materials. JP 2001348566 A2, 2001.
    [38] Ishiguro Mamoru. Production of heat-storage material microcapsules. JP 2002080835 A2, 2001
    [39] Gordon Nelson. Application of microencapsulation in textiles. International. Journal of Pharmaceutics, 2002, 242:55-62
    [40] Jeong-sook Cho, Aehwa Kwon, Chang-Gi Cho. Microencapsulation of octadecane as a phase change material by interfacial polymerization in an emulsion system. Colloid Polymer Science, 2002, 280:262-266.
    [41] 石海峰.光热转换蓄热调温纤维德研制:[硕士论文],天津:天津工业大学,2001
    [42] Hadjieva M, Stoykov R, Filipova Tz. Composite salt-hydrate concrete system for building energy storage. Renewable Energy, 2000,19:111-115
    [43] Xavier Py, Sylvain Mauran. International Journal of Heat and Mass Transfer, 2001, (44):2727-2737
    [44] Ye Hong, Ge Xinshi. Structural and chemical analyses of a kind of shape-stabilized paraffin. Acta Energiae Solaris Sinica, 2000,21 (4):417-421.
    [45] 肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能.太阳能学报,2001,22(4):427-430
    [46] 姜勇,丁恩勇,黎国康.化学法和共混法制备的PEG/CDA相变材料的性能比较—微相结构与储热性能的关系.纤维素科学与技术,2000,8(1):17-25
    [47] 林怡辉,张正国,王世平.新型复合相变储热材料的研究.2000年中国材料研讨会论文摘要集(上),北京,2000,194-195
    [48] 林怡辉,张正国,王世平.溶胶.凝胶法制备新型蓄能复合材料.太阳能学报,2001,22(3):334~337
    [49] 武克忠,张建玲等.蒙脱石复合贮热材料的制备.矿产综合利用,2000,2:15-18
    [50] 张羽中,陈中华,张正国.有机/无机纳米复合相变储能材料的制备.高分子材料科学与工程,2001,17(5):137-140.
    [51] 吴会军,朱冬生.固体吸附蓄冷在空调工程中的应用展望.制冷,2001,20(3):16
    [52] Wu H J, Zhu D S, et al. Thermal dynamics analysis of ground source heat pump with adsorption dehumidification. 7th international Sorption Heat Pump Conference, 2002. 528
    [53] 朱冬生,吴会军,邹华生,等.除湿系统中固定床内部气体流场的数值分析.华南理工大学学报,2002,30(5):45
    [54] 朱冬生,毛本平,吴会军,等.吸附式蓄热电采暖装置.CN Pat,03274753,2003-05
    [55] 钟学明,肖金辉,邓安民,等.相变材料及其在贮热中的应用,江西化工,2003,4,27-32
    [56] 余晓国,张正国,王世平.复合蓄热材料研究进展.新能源,1999,21(9):35
    [57] 戴或,唐黎明.相变蓄热材料研究进展.化学世界,2001,(12):602
    [58] 冒东奎.一种蓄存低温潜热的新型复合材料.新能源,1998,20(6):8
    [59] Yu.I.Aristov, G.Restuccia, G.Cacciola, et al. A family of new working materials for solid sorption air condition systems.Applied Thermal Engineering,2002, 22,191
    [60] 邓卓,卢英先.结晶性高聚物作为相变材料的应用.中国塑料,1995,9(4):17-20
    [61] Royonl. Investigation of heat transfer in a polymeric phase change material for low level heat stoerage. Energy Convers Manage, 1997, 38(6):517
    [62] Hisham EI-Dessouky. Effectiveness of a thermal energy storage system using phase-change materials. Energy Convers Manage, 1997, 38(6):601
    [63] 文越华,张公正,王正刚,等.Na_2SO_410H_2O复合相变储冷体系的热力学性质.北京理工大学学报,1999,19(6):778
    [64] Kakiuchi, Hiroyuki. Latent heat storage material composition. EP Patent, 0620261, 1994
    [65] 郭开华,梁德青,樊拴狮.一种用于蓄热或蓄冷系统的储热介质,中国专利,CN1302839A.2001-07-11
    [66] 张丽芝,张庆.相变储能材料.化工新型材料,1998,27(2):19
    [67] 戴或,唐黎明.相变储热材料研究进展.化学世界,2001,(12):662
    [68] 张兴祥,张华,等.聚乙二醇结晶及低温能量储存行为研究.天津纺织工学 院学报,1997,16(2):53
    [69] 姜勇,丁恩勇,黎国康.一种新型的相变储能高分子材料.高分子材料科学与工程,2001,17(3):173
    [70] 诺伊施茨M,格劳施R,洛茨N,等.潜热储存系统的储存介质.中国专利,CN1321720A.2002-11-14
    [71] Halawa E, BrunoE Saman W. Numerical analysis of a PCM thermal storage system with varying wall temperature. Energy Conversion and Management, 2005, 46(15-16): 2592-2604.
    [72] Tyagi, Vineet Veer. PCM thermal storage in buildings: A state of art. Renewable and Sustainable Energy Reviews, 2007, 11(6): 1146-1166.
    [73] 李震,张寅平,江艺.非理想相变特性材料热性能简化分析方法及适用条件.太阳能学报,2002,23(3):384
    [74] 崔海亭,袁修干,侯欣宾.高温固液相变蓄热容器的研究与进展.太阳能学报,2002,21(1):23
    [75] 崔海亭,袁修干,侯欣宾.蓄热技术的研究进展与应用.化工进展,2002,21(1):23
    [76] Gong Z X, Mujumdar A S. Heat Transfer,1994,Proc Int Heat Transfer Conf,10th,1994, 6:343
    [77] 张正国,方晓明,陈中华.有机相变物/膨润土纳米复合相变储热建筑材料制备方法.中国专利,CN327024,2001-12-19
    [78] 林怡辉,张正国,王世平.一种新型相变蓄热材料的实验研究.江汉石油学院学报,2001,23(4):81
    [79] 李晓霞,张胜虎,凌勇顺,等.新型热红外伪装体系红外技术,2002,24(1):42
    [80] 吕石磊,冯国会,等.脂酸类相变材料墙板在北方寒冷地区应用的DSC分.节能,2004,3:36-39
    [81] Sayer I O. Thermoplastic, moldable, non-exuding phase change materials. US Patent US5565132. 1994
    [82] 李贤真,李彦锋等.高分子水凝胶材料研究进展.功能材料,2003,4(33):382-385
    [83] Dai Hong-jun, etal. A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules, 2006, 19(39): 6584-6589
    [84] Bhattarai, Narayan, etal. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Journal of Controlled Release, 2005, 103(3):609-624
    [85] 冯霞,陈莉,等.快速响应温敏凝胶及其在生物分离中的应用研究.南开大学学报(自然科学版),2005,38(6):34-40
    [86] Zhang Yalong, etal. Radiation synthesis ofpoly[(dimethylaminoethyl methacrylate)-co- (diallyl dimethyl ammonium chloride)] hydrogels and its application as a carrier for notoginsenoside delivery. European Polymer Journal, 2006, 42(11):2959-2967
    [87] Dong Jing. Swelling and mechanical properties of a temperature-sensitive dextran hydrogel and its bioseparation applications. Macromolecular. 2005, 2069(19): 1973-1980
    [88] Huang Jian, Zhu De-quan, etal. Preparation of thermosensitive chitosan formulations containing 5-fluorouracil/poly-3-hydroxybutyrate microparticles used as injectable drug delivery system. Chinese Journal of Chemical Engineering, 2006, 14(1):87-79
    [89] 刘瑞兴.高吸水树脂应用研究进展.现代化工,1989,(2):36-38
    [90] 邹欣禧.超强吸水剂.化学工业出版社,1991
    [91] Raju M P, Raju K M. Design and synthesis of superabsorbent polymer. Journal of Applied Polymer science, 2001, 80:2635-2639
    [92] 吴季怀,林建明,魏月琳,等.高吸水保水材料,化学工业出版社,2005
    [93] 张月莲 郑丹星.石蜡相变材料在同心环隙管内的基本传热行为.北京化工大学学报,2006,33(2):5-12.
    [94] P Kauranen. An organic PCM storage system with adjustable melting temperature. Solar Energy, 1991,15(4):275-278
    [95] 林怡辉.有机.无机纳米复合相变蓄热材料的研究:博士学位论文.广州:华南理工大学,2001.
    [96] 肖德炎,张 东,田胜力.有机/无机复合相变储能材料的长期化学稳定性研究.材料开发与应用,2005,20(2):13-16
    [97] 张羽中,陈中华,张正国.有机/无机纳米复合相变储能材料的制备.高分子材料科学与工程,2001,17(5):1372139.
    [98] C J Hoogendoorn. Performance and modelling of latent heat stores. Energy, 1992, (48):53-58.
    [99] R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer, Heat transfer enhancement in latent heat storage system. Sol Energy, 1999 (65): 171-180
    [100] JA Weaver, R Viskanta, Melting of frozen porous media contained in a horizontal or a vertical. Heat Mass Transfer, 1986, (29): 1943-1951.
    [101] A M Tayeb, Use of some industrial wastes as energy storage media. Energy Convers, 1996, (37): 127-133.
    [102] J Fukai, M Kanou, Y Kodama, etal. Thermal conductivity enhancement of energy storage media using carbon fibres. Energy Convers, 2000 (41): 1543-1556.
    [103] Ahmet San, Ali Karaipekli. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering, 2007,(27): 1271-1277
    [104] 汤勇.复合相变蓄热材料及制做方法.中国专利,CN1211605A,1999-03-24
    [105] Andersson M, Axelsson A, Zacchi G. Swelling kinetics of poly(N-isopropylacrylamide) gel. Journal of Controlled Release, 1998, 50(1): 273-281
    [106] Tanaka T, Fillmore D J. Kinetics of swelling of gels. Journal of Chemical Physics, 1979, 70(3):1214-1218
    [107] Hirose H, Shibayama M. Kinetics of volume phase transition in poly(N-isopropylacrylamide-co-acrylic acid) gels. Macromolecules, 1998, 31(16): 5336-5342
    [108] Ganorkar C, Liu F, Baudys M, et al. PH and temperature-responsive polymers for controlled polypeptide drug delivery. American Chemical Society, 1997, 38(2):560-561
    [109] 兰孝征.胶囊化、微胶囊化低温相变储能材料的研究:[博士学位论文].大连:中国科学院大连化学物理研究所,2003.
    [110] D A Pantony. Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry. 1st edition: Longmans, Green and Co Ltd, 1961:1280-1280