水煤浆喷嘴的实验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对水煤浆喷嘴进行了实验和数值模拟研究。有关机理研究表明,液体雾化过程与相间界面波的发展和失稳机制有关。在高速气流冲击下,形成的雾化液滴的尺寸分布与We和Oh等雾化准则数有关。
     对大容量空气雾化式水煤浆喷嘴进行了流量和雾化特性的实验研究。撞击式喷嘴内液体撞击形式主要有液柱撞击和液滴撞击。理论表明,使用撞击件能够有效地减少喷嘴长度,同时提高雾化效果;液滴撞击以飞溅为主要的碎裂形态。实验验证了气耗率是决定雾化效果的重要运行参数,对两相速度差、相间相互作用有显著影响,进而会影响雾化质量,增加气耗率能够使液滴撞击效率增加,SMD(索太尔平均直径)减小。实验得出了各结构参数的变化对喷嘴流量特性及雾化质量的影响,其中浆孔直径是影响枪前浆压的重要参数;1、2级气孔、混合室内径和雾化头出口孔径的变化均会影响气流量,但影响程度各不相同。雾化头出口孔径对流量的影响最为显著,而1、2级气孔尺寸的影响大于混合室尺寸的影响。通过喷嘴热力学过程建模,导出喷嘴的各个极限状态方程以及流量特性方程的一般形式,通过多参数数值拟合,得出喷嘴压力-流量特性的半经验公式。粒径测量实验表明,额定工况下较大的1级气孔直径能够强化雾化头的雾化作用,因而有较好的雾化特性,有利于实现较高的雾化质量。
     对三通道同轴液膜式喷嘴进行了PIV瞬态流场测量,得出了雾化角、射流长度和瞬态速度场。对速度场的频谱分析表明,速度脉动的峰值强度均随频率增加而下降,且峰值强度与气体流速密切相关。在观测意义较大的100Hz以上的中频及高频区域内,各流速下的第一个中频强度峰值在一般210-370Hz附近出现,且出现位置随气流速度的增加有向高频区域移动的趋势。在500Hz以上的频段,气流速度增加对脉动特性的影响更为显著,此频段内的峰值强度随气流速度增加出现明显增长。
     基于Realizable k-ε模型对撞击式喷嘴外的两相流场进行数值模拟。计算辅以自适应加密网格,并结合喷嘴内部流动的VOF方法给出的喷嘴出口流动的雾化粒径和初速度等边界条件。模拟结果表明,喷嘴外0.05-0.1m内存在气相膨胀压缩波系以及液滴的加速区,之后压缩-膨胀波的影响基本结束,气体压力接近炉内平均水平;不同粒径的液滴在该区域内出现显著的变速运动;粒径越小的颗粒,对于气相的跟随性越好,在加速区之后,颗粒速度逐渐下降,在距离喷嘴0.5m后接近于气相流速。
     通过有限元方法对典型的燃烧工况不同雾化介质的喷嘴的热应力和热变形进行了数值模拟。雾化介质的改变将在喷嘴内部温度场分布产生变化,由此改变喷嘴内的热应力和热变形分布情况。采用温度相对较低的压缩空气做雾化介质时,计算得到喷嘴顶部的最大热应力比采用过热蒸汽下降约70MPa,最小热应力下降约10MPa。在额定工况下,两种雾化介质的喷嘴的热变形程度也不同。计算得出喷嘴的内径变化在10μm量级,外径在0.1mm量级,因而对关键的结构尺寸的影响较小。高温、高负荷下喷嘴表面热应力升高,同时热应力的最大值的出现位置向喷嘴内表面方向移动、喷嘴的整体热应力增加,是造成高负荷下锅炉高层燃烧器上的喷嘴易于损坏的重要原因之一。
     对压缩空气和过热蒸汽两种雾化介质的技术经济性分析表明,在气耗率相当的情况下,压缩空气的经济性好于水蒸气。根据Spalding蒸发模型对雾化颗粒的平衡蒸发温度、蒸发速率进行了对比计算。经济性对比分析表明,气耗率相当时,压缩空气有一定的成本优势,设备投资回收期短,对每吨容量的水煤浆喷嘴,压缩空气相对于水蒸气每小时相当于节省生产成本8-10kg标准煤;而对670T/h的大型水煤浆锅炉,相当于每小时节约标煤0.9-1.2t。
The technique of CWS (Coal Water Slurry) atomization has been investigated experimentally and numerically. Mechanism analysis reveals that the atomization process is controlled by the development of interface instability, and the resulting distribution of droplet diameter is largely determined by the We and Oh number of the spray.
     Experiments on the flow and atomization characteristic of high fluid loading, air assisted, impinging jet CWS nozzle have been conducted. Relating theory shows that jet impingement and droplet impingement play important roles inside the nozzle. By the use of the impingment block, the length of the nozzle decreased and atomization improved. According to the experiment, GLR(gas liquid ratio) is the main parameter influencing the atomization process by the effect of velocity difference and phase interaction.With the increase of the GLR the atomization process of droplet impingment become more effective and the SMD (Sauter Mean Diameter) deceased. The influence of different geometric structure parameters of the nozzle on the atomization and spray characteristics is illustrated in the experiment,which reveals that the diameter of slurry orifice has a direct effect on the slurry pressure, and the diameters of the Y-shaped gas orifices(the1st stage gas), the orifice of nozzle end and the mixing chamber all influence the gas flow rate in varying degrees.The impact of the diameter of the orifice of the nozzle end is the most significant and the influence of the T orifice(the2nd stage gas), and Y orifice is more effective than the mixing chamber. The critial state equations and the general form of the flow rate equation are derived from the thermal analysis of the nozzle, and a semi-empirical flow characteristic equation was obtained by the multi-parameter regression method. The measurement of the droplet diameter shows that the atomization performance was improved with an increase of the diameter of the Y-shaped gas orifice.
     The transcient characteristcs of the flow field generated by triple-orifice nozzle was investigated by PIV measurement and the atomization angle and the inact length of the liquid jet was obtianed. Based on the PIV measuerment,the analysis of the droplet velocity field showed that the peak frequency of the velocity flactuation decreaed at high frequencies, and the peak frequencies are associated with the gas jet velocity.The peak frequency at the median frequency occured at210-370Hz,and increased with the gas jet velocity. At the frequency above500Hz, the impact of the increase of the gas jet velocity to the fluctuation characteristic of the flow field became more noticeable and the peak frequency increased fast with the gas jet velocity.
     Based upon the k-ε model the two phase flow field of the impinging jet atomizer was investigated numerically with the self-adapted, refined mesh and the boundary conditions given by the VOF model on the intial droplet diameter and velocity. Simulation results show that there exist a compressional dilatational wave system and an acceleration zone of the droplets within0.05-0.1m downstream of the nozzle exit. The gas pressure becomes approximate to the average level of the boiler pressure further dowmstream, and droplets of different sizes experienced different acceleration within this region and the smaller droplet followed the gas phase more closely.The velocity of the droplets decreased downstream of the acceleration zone and approached the gas velocity0.5m downstream of the nozzle exit.
     The thermal stress and deformation of the nozzle at different typical thernal state was calculated by the FEM (Finite element method). The temperature distributuon of the nozzle changes according to the different type of the atomzation gas and thus rebuilding the thermal stress field and the distrubution of the thermal deformation. The maximum thermal stress that occurred at the top of the nozzle end, deceased70MPa, with the use of low temperature compressed air as the atomizing gas, and the minimum stress decreasd10MPa. The thermal deformation is10μm for the inner diameter of the nozzle and0.1mm for the outer diamter at the full loading of the nozzle. At high temperature, high fluid loading, the maximum thernal stress increased and the maximum-stress-point moved forward to the interior surface of the nozzle with the overall stress increased, causing the nozzle more inclined to be damaged by the attack of high temperature at the higher position in the boiler.
     A techno/economic analysis of different atomizing media is made in this work, with the reaults that the compressed air is more economic than the superheated steam.The equilibrium temperature of vaporization and the vaporization ratio were calculated according to the Spalding vaporization model, which show that for CWS atomization,8-10kg/h standard coal can be saved per t/h of the nozzle capacity by the use of compressed air as the atomizing medium, and for a670T/h large-capacity boiler,0.9-1.2t/h standard coal can be saved, with a short payoff period.
引文
[1]国家统计局能源统计司.中国能源统计年鉴.2010.北京:中国统计出版社,2011.
    [2]梁仁彩等.世界能源地理.北京:科学出版社,1989.
    [3]姚强,陈超.洁净煤技术.北京:化学工业出版社,2005.
    [4]李增学.煤矿地质学.北京:煤炭工业出版社,2009.
    [5]周师庸.应用煤岩学.北京:冶金工业出版社,1985.
    [6]刘守仁,曾江华.中国煤文化.北京:新华出版社,1993.
    [7]M.A.埃利奥特.煤利用化学.北京:化学工业出版社,1991.
    [8]许世森,张东亮,任永强.大规模煤气化技术.北京:化学工业出版社,2006.
    [9]戴和武,谢可玉.褐煤利用技术.北京:煤炭工业出版社,1999.
    [10]岑可法等.煤浆燃烧,流动,传热和气化的理论与应用技术.杭州:浙江大学出版社,1997.
    [11]沙兴中,杨南星.煤的气化与应用.上海市:华东理工大学出版社,1995
    [12]于海龙.新型水煤浆气化喷嘴和气化炉的开发以及气化过程数值模拟:[D].杭州:浙江大学,2004.10.
    [13]煤炭加工利用文集.水煤浆技术译文集-国际煤浆会议论文选.中国煤炭加工利用协会,1984.
    [14]曹欣玉,翁卫国,黄镇宇,等.白杨河电厂230 t/h锅炉燃用水煤浆工业试验[J].中国电力,2001,34(7):16-18.
    [15]夏青杜维侠,惠润堂.水煤浆洁净燃烧技术在南海发电一厂的工程应用与分析[J].电力环境保护.2009.25(2):60-62.
    [16]张传名,刘建忠,周俊虎,等.220t/h燃油锅炉改烧水煤浆技术及应用[J].热力发电,2006,35(5):30-33.
    [17]Cheng, J., Zhou, J., Li, Y., et al. Effects of pore fractal structures of ultrafine coal water slurrieson rheological behaviors and combustion dynamics [J]. Fuel,2008,87(12):2620-2627.
    [18]翁卫国,周俊虎,牛志刚,等.220t/h水煤浆锅炉NOx排放特性的研究[J].浙江大学学报:工学版,2006,40(8):1439-1442.
    [19]丁振亭.水煤浆气化技术的开发应用与发展(上)[J].氮肥设计.1996,34(1):12-15.
    [20]许波Texaco和U-GAS气化技术比较[J].煤化工.1997,(2):3-11.
    [21]Chase, D.L., Kehoe, P.T.. GE combined-cycle product line and performance, GE Power Systems, Schenectady (2000).
    [22]Cui, L.L., An, L.Q., Gong, W.L., Jiang, H.J.. A novel process for preparation of ultra-clean micronized coal by high pressure water jet comminution technique[J]. Fuel 2007;86:750-7.
    [23]Guo, Z.B., Feng, R., Zheng Y.F., Fu, X.R.. Improvement in properties of coal water slurry by combined use of new additive and ultrasonic irradiation[J]. Ultrason Sonochem 2007; 14:583-88.
    [24]Atesok, G., Dincer, H., Ozer, M., Mutevellioglu, A.. The effects of dispersants (PSS-NSF) used in coal-water slurries on the grindability of coals of different structures[J]. Fuel 2005;84:801-8.
    [25]张庆,赵晓琳.水煤浆的流变学属性[J].化学工程.1994,22(1):53-59.
    [26]Turian, M., Ma, W., Hsu, G.,et al. Characterization, settling, and rheology of concentrated fine particulate mineral slurries [J]. Powder Technology,1997,93(3):219-233.
    [27]Turian M., Attal F., Sung D J, et al. Properties and rheology of coal-water mixtures using different coals[J]. Fuel,2002,81(16):2019-2033.
    [28]赵卫东.低阶煤水热改性制浆的微观机理及燃烧特性研究[D],杭州:浙江大学,2009.
    [29]郭树才.煤化工工艺学.北京:化学工业出版社,1992.
    [30]Khandwawala, A., Natarajan, R., Makam, C. Experimental investigation of liquid-fuel atomization using Hartmann acoustic generator[J].Fuel,1974,,53 (4):268-73.
    [31]US Patent,No.4502633.
    [32]黄镇宇,周志军,曹欣玉,等.撞击式多级雾化水煤浆喷嘴的试验研究[J].热力发电,2001(4):40-42.
    [33]严心浩.国内首台670t/h水煤浆锅炉的燃烧调试与运行[J].广东电力,2006(19)4:60-63.
    [34]丁宁.410T/h高长宽比、六角切圆水煤浆、重油两用电站锅炉动力、燃烧特性的数值模拟和试验研究[D].杭州:浙江大学,2005.
    [35]Kundu, Pijush, K., Cohen, Ira M.. Fluid Mechanics.3rd Edition[M] San Diego, California: Elsevier Academic Press,2004.
    [36]Drazin,G., Reid, H.. Hydrodynamic stability(2nd Edition)[M].London:Cambridge University Press,2004.
    [37]Chandrasekhar, S.. Hydrodynamic and hydromagnetic stability.New York:Dover Publications,1981.
    [38]Weber, C.. Disintegration of liquid jets[J]. Z Angew Math Mech.1931;11(2):136-159.
    [39]Merrington, A. C. The break-up of liquid jets[J].1947 Proc. Phys. Soc.591-13.
    [40]Frankel, I. Weihs, D.. Influence of viscosity on the capillary instability of a stretching jet[J]. J. Fluid Mech. Vol.185, pp.361-383.
    [41]Donnelly, R. J., Glaberson,W.. Experiments on the Capillary Instability of a Liquid Jet[J].Proc. R. Soc. Lond. A,1966,290:547-556.
    [42]Rutland, D. F., Jameson.G. J.. A non-linear effect in the capillary instability of liquid jets[J].J. Fluid Mech,1971,46:267-271.
    [43]Yang, H.Q.. Asymmetric instability of a liquid jet[J]. Phys.Fluids A4(4),1992.681-689.
    [44]Brennen,C. A numerical solution of axisymmetric cavity flows[J]. J. Fluid Mech, 1969,37 (4):671-688.
    [45]Reitz,R.D.. Mechanisms of atomization processes in high-pressure vaporizing spray[J]. Atomization and Spray Technology,1987,3:309-337.
    [46]Jiang, X., Siamas, G. A., Jagus, K. et al. Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays [J]. Progress in Energy and Combustion Science,2010,36(2):131-167.
    [47]Lefebvre, A. H.. Atomization and sprays [M]. New York:Hemisphere,1989.
    [48]Clark, C. J.,Dombrowski, N.. Aerodynamic Instability and disintegration of inviscid liquid sheets[J]. Proc. R. Soc. Lond.1972(329):467-478.
    [49]Chuech S. G..Spatial instability of a viscous liquid sheet[J].Int. Journal for Numerical Methods in Fluids.2006,50(12):1461-1474.
    [50]Liao Y., Jeng S. M., Jog, M. A.,et al.The effect of air swirl profile on the instability of a viscous liquid jet[J]. J. Fluid Mech,2000,424:1-20.
    [51]Cheong, B.S., Howes,T.. Effect of initial disturbance amplitude in gravity affected jet break-up[J]. Chemical Engineering Science 60 (2005) 3715-3719.
    [52]Brennen,C. Cavity surface wave patterns and general appearance[J]. J. Fluid Mech 1970,44:33-49.
    [53]Srinivasan, V., Salazar, A.J.,Saito,K.,2010.Modeling the disintegration of cavitating turbulent liquid jets using a novel VOF-CIMD approach[J].Chem. Eng. Sci 65,2782-2796.
    [54]Orme, M., Liu Q.,Smith,R..Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications[J]. Aluminum Transactions Journal,2000,3(1):95-103.
    [55]Barreras, F., Amaveda, H., Lozano A.. Transient high-frequency ultrasonic water atomization[J]. Experiments in Fluids 2002,33:405-413.
    [57]O'Rourke P.J., Amsden A. A..The TAB Method for Numerical Calculation of Spray Droplet Breakup[J]. SAE Technical Paper,1987,872089.
    [58]Rotondi R., Bella G., Grimaldi C. et al.Atomization of high-pressure diesel spray: Experimental validation of a new breakup model[J].SAE paper,2001,011070.
    [59]Wierzba, A.. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers[J]. Experiments in Fluids,1990,9,59-64.
    [60]Wierzba, A., Takayama,K.. Experimental investigation of the aerodynamic breakup of liquid drops.[J].AIAA J.1988,26(11):1329-1335.
    [61]Lee, C.H., Reitz, R.D.. An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J].International Journal of Multiphase Flow.2000,26:229-244.
    [62]Hinze, J. O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion. processes[J].AIChE J.1955,1,289-295.
    [63]Jameson, G.J..A non-linear effect in the capillary instability of liquid jets[J].J. Fluid Mech,1971,46:267-271.
    [64]Clark, C. J., Dombrowski N.. Aerodynamic instability and disintegration of inviscid liquid sheets[J]. Proc. R. Soc. Lond.1972,329, (1579),12:467-478.
    [65]Nayfeh,A.H..Nonlinear stability of a liquid jet Phys. Fluids 1970,13,841.
    [66]Seyed, A. and Li X..Nonlinear instability of plane liquid sheets[J].J. Fluid Mech,2000, 406:281-308.
    [67]Rangel, R. H., Sirignano, W. A..The linear and nonlinear shear instability of a fluid sheet[J].Phys. Fluids A.1991(3):2392-2400.
    [68]Ibrahim, A., Jog, M.A.. Nonlinear instability of an annular liquid sheet exposed to gas flow[J].International Journal of Multiphase Flow.2008,34 (7):647-664.
    [69]Faeth, G.M.. Current status of droplet and liquid combustion[J].Progress in Energy and Combustion Science,1977,3 (4):191-224.
    [70]Wu, P.K., Faeth, G.M..1995. Onset and end of drop formation along the surface of turbulent liquid jets iri still gases[J]. Phys. Fluids A 7,2915-2917.
    [71]Sallam, K. A., Michigan, Univ., Ann Arbor; Dai, Z.,; Faeth, G. M. Turbulent primary breakup of round and plane liquid jets in still air.AIAA Aerospace Sciences Meeting and Exhibit, 40th, Reno, NV, Jan.14-17,2002.
    [72]Bergwerk, W..Flow pattern in diesel nozzle spray holes[J].Proceedings of the Institution of Mechanical Engineers.1959,173:655-660.
    [73]Abani, N., Reitz, R. D. Unsteady turbulent round jets and vortex motion [J].Phys. Fluids, 2007,19,125102.
    [74]Yoon,S.S.,Heister,S.D.. A nonlinear atomization model based on a boundary layer instability mechanism[J].Phys. Fluids 2004,16:47.
    [75]范维澄等.计算燃烧学.合肥市:安徽科学技术出版社,1987.
    [76]Desjardins, O.. Numerical methods for liquid atomization and application in detailed simulations of a diesel jet[D],Palo Alto:STANFORD UNIVERSITY,2008.
    [77]Kim, H.T.,Kline, S.J., Reynolds, W.C., The production of turbulence near a smooth wall in a turbulent boundary layer[J].J. Fluid Mech.1971,50:133-160.
    [78]Fustera, D., Bague,A., Boeckc, T.,et al.MoyneSimulation of primary atomization with an octree adaptive mesh refinement and VOF method[J].International Journal of Multiphase Flow 2009,35 (6):550-565.
    [79]Boeck, S., Zaleski, M.. Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile[J].Phys. Fluids 2005,17:032106.
    [80]Meyer, P.L,概率引论及统计应用.北京市:高等教育出版社,1986.
    [81]Bracco, F.V. Theoretical analysis of stratified, two-phase Wankel engine Combustion[J]. Combustion Science and Technology.1973,8(1):69-84.
    [82]Gosman, A. D., Harvey, P. S.. Computer analysis of fuel-air mixing and combustion in an axisymmetric D.I Diesel [J]. SAE Paper 1982,820036.
    [83]Sellens, R. W.,Brzustowski, T. A.. A prediction of the drop size distribution in a spray from first principles[J].Atomisation and Spray Technology 1985,1,(2):89-102.
    [84]Sellens, R.W., Brzustowskia, T.A..A simplified prediction of droplet velocity distributions in a spray.Combustion and Flame 1986,65(3):273-279.
    [85]Keskinen, H., Aromaa, M., Heine, M.C., et al. Size and velocity measurements in sprays and particle producing flame sprays[J]. Atomization Sprays 2008,18:1-26.
    [86]Kamraka,J., Kongsombuta, B., Grehanb, G. et al. Mechanistic study on spraying of blended biodiesel using phase Doppler anemometry[J]. Biomass and Bioenergy.2009, 33(10),1452-1457.
    [87]戴昌晖.流体流动测量.北京:航空工业出版社,1992.
    [88]常太华.检测技术与应用.北京:中国电力出版社,2003.
    [89]Keane R.D., Adrian R.J.. Theory of cross-correlation analysis of PIV images[J]. Appl. Sci.Res,1992,49,191-215.
    [90]Ikeda, Y., Yamada,N. and Nakajima,T. Multi-intensity-layer particle-image velocimetry for spray measurement[J]. Meas. Sci. Technol.11 (2000) 617-626.
    [91]Goldschmidt, M., Beetstra, R., Kuipers, A.. Hydrodynamic modelling of dense gas fluidised beds:comparison and validation of 3D discrete particle and continuum models[J]. Powder Technology,2004,142 (1):23-47.
    [92]Frohn, A., Roth, N.. Dynamics of droplets[M].Berlin:Springer,2000.
    [93]Anders, K., Poth, N.,Frohn, A. Simultaneous measurenents of droplets size and droplet velocity in monodisperse droplet streams, von Karman Ins. for Fluid Dynamics,Lecture Series,Particle Image Displacement Velocimetry:11-13,1988.
    [94]王喜忠.喷雾干燥.北京:化学工业出版社,2003.
    [95]蔡履中.光学(第3版).北京:科学出版社,2007.10.
    [96]李海青,乔贺堂.多相流检测技术进展.北京:石汕工业出版社,1996.
    [97]孙渝生.激光多普勒测量技术及其应用.上海:上海科学技术文献出版社,1995.
    [98]McDonell, V. G., and Samuelsen, S., Liquid Particle Size Measuring Techniques:2nd Edition, ASTM STP 1083,1990.
    [99]Breitenstein, M., Kruter, U., Riebel, U. The Fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 1:A theory on temporal transmission fluctuations in dilute suspensions t[J]. Par. Sys. Charact.1999,16:249-256.
    [100]Glover, A.R..Skippon, S.M andBoyle, R.D. Interferometric laser imaging for droplet sizing:a method for droplet-size measurement in sparse spray systems[J]. Appl. Opt.,1995,34: 8409-21.
    [101]Anders,K.,Roth,N. and Frohn, A.. Light scattering at the rainbow angle:Information on size and refractive index.In Proc.3rd Int.. Congr. On Optical Particle Sizing,1993:237-242.
    [102]Crapper, G. D., Dombrowski, N.,Jepson, W. P.. A note on the growth of Kelvin-Helmholtz waves on thin liquid sheets[J]. J. Fluid Mech.,1973,4:671-672.
    [103]Hoyt, J.W. and Taylor, J.J.. Turbulence structure in a water jet discharging in air[J]. Physics of Fluids,1977,20, S253.
    [104]Pilch M, Erdman C.A..Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int J Multiphase Flow 1987,13(6):741-757.
    [105]Folsom, R.G. Jet pumps with liquid drive[J].Chem. Eng. Progress.1948,44.
    [106]Hughmark, G.A.. Holdup in gas-liquid flow[J].Chemical Engineering Progress,1962, 4:58.
    [107]Johnston, K.P..Encyclopedia of Chemical Processing and Design[M]. New York:Marcel Dekker,1996.
    [108]Coif, J.A. and Coogn, C.H. Some two dimensional aspects of the ejector problem[J]. ASME J. Apply. Mech.1942,9(4).
    [109]张远君.两相流体动力学基础理论及工程应用.北京:北京航空学院出版社,1987.
    [110]Thompson,P.A.. Compressible Fluid Dynamics[M].McGraw-Hill,1972.
    [111]Lasheras, J. C., Villermaux,E., Hopfinger, J. Break-up and atomization of a round water jet by a high-velocity annular air jet [J]. J. Fluid Mech,1998,357(4):351-379.
    [112]Ashgriz, N., Washburn R.,Barbat T.. Segregation of drop size and velocity in jet impinging splash-plate atomizers[J]. Int. J. Heat Fluid Flow.1996,17,509-516.
    [113]Cossali, G E, Marengo, M., Santini, M.. Single-drop empirical models for spray impact on solid walls:a review [J]. Atomization and Sprays,2005,15 (6):699-736.
    [114]任建兴.水煤浆喷嘴技术的研究[D].杭州:浙江大学,1992.
    [115]童祜嵩.颗粒粒度与比表面测量原理.上海市:上海科学技术文献出版社,1989.
    [116]Crapper,G. D.., Dombrowski, N., Pyott G. A. D..Kelvin-Helmholtz wave growth on cylindrical sheets. J. Fluid Mech.1975 (68),03:497-502.
    [117]Fernandez, V.G., Berthoumie, P., Lavergne G..Liquid sheet disintegration at high pressure:An experimental approach[J].C. R. Mecanique 2009,337 481-491.
    [118]Rizk, N.K.and Lefebvre, A.H.. Airblast atomization:studies on drop-size distribution[J] Journal of Energy 1982,6(5):323-327.
    [119]Sallam, K.A., Dai, Z., Faeth,G.M.. Liquid breakup at the surface of turbulent round liquid jets in still gases[J]. International Journal of Multiphase Flow 2002,28:427-449.
    [120]Saptari,V..Fourier transform spectroscopy instrumentation engineering[M].Bellingham, WA:SPIE Optical Engineering Press,2004.
    [121]Beer,R.. Remote sensing by Fourier transform spectrometry.New York:John Wiley & Sons.Inc.,1992.
    [122]Hirt, C.W.,Nichols, B. D.. Volume of fluid (VOF) method for the dynamics of free boundary[J]. Compute Phys,1981,39:201-225.
    [123]Tomiyama,I,A., Sou,A.. Numerical analysis of bubble motion with the VOF method[J].Nuclear Engineering and Design 1993,141:69-82.
    [124]Veldman, A.P., Gerrits, J., Luppes, R.,et al.The numerical simulation of liquid sloshing on board spacecraft[J]. Journal of Computational Physics 2007,224:82-99.
    [125]Gao, D. Morley, N.B, Dhir, V..Numerical simulation of wavy falling film flow using VOF method[J]. Journal of Computational Physics2003 192:624-642.
    [126]Guignard, S., Marcer, R., Rey, V. et al.Solitary wave breaking on sloping beaches:2-D two phase flow numerical simulation by SL-VOF method[J].Eur. J. Mech. B-Fluids 2001,20:57-74.
    [127]Fazlul, K.M.. Modelling and simulation of wave transformation in porous structures using VOF based two-phase flow model[J].Applied Mathematical Modelling 2009,33(1):343-360.
    [128]Samuel, W. J. and Wilson, J..A Volume of fluid based method for fluid flows with phase change[J].Journal of Computational Physics.2000,160,662-682.
    [129]Jan, B., Haelssig, A., Tremblay, Jules, Y., et al. Direct numerical simulation of interphase heat and mass transfer in multicomponent vapour-liquid flows[J].International Journal of Heat and Mass Transfer 53 (2010):3947-3960.
    [130]Raynal, L., Boyer, C. and Ballaguet,J.P.. Liquid holdup and pressure drop determination in structured packing with CFD simulations[J].The Canadian Journal of Chemical Engineering 2004,82:871-879.
    [131]Mandal, A., Jog, M.A., Xue, J., et al.Flow of power-law fluids in simplex atomizers[J]. International Journal of Heat and Fluid Flow 2008,29,1494-1503.
    [132]Yeh C Turbulent flow investigation inside and outside plain-orifice atomizers with rounded orifice inlets[J].Heat Mass Transfer (2005) 41:810-823.
    [133]Anantharamaiah, N., Vahedi, H., and Pourdeyhimi, B.. A simple expression for predicting the inlet roundness of micro-nozzles[J].J. Micromech. Microeng.17 (2007) N31-39
    [134]Ibrahim, E. A., Yang, H. Q., Przekwas, A. J.Modeling of spray droplets deformation and breakup[J]. Journal of Propulsion and Power.9(4):651-654.
    [135]Reitz,R. D. Mechanisms of atomization processes in high-pressure vaporizing sprays. [J] Atomization Spray Tech.1987,3,309-337.
    [136]Bai C.;Cosman A.D. A phenomenological of diesel spray atomization. Proc. Int. Conf. on Multiphase Flows. Tsukuba, Japan,1991.
    [137]Dombrowski, N., Johns, W. R. The aerodynamic instability and disintegration of viscous liquid sheets[J]. Chem. Eng. Sci.1972,18,467-478.
    [138]Chen, C. J., Jaw, S.Y.. Fundamentals of turbulence modeling[M], Washington D.C.:Taylor & Francis,1998.
    [139]Stevens, J., Webb, B. W..Measurements of flow structure in the radial layer of impinging free-surface liquid Jet[J]. Int. J. Heat Mass Transfer.1993,36,3751-3758.
    [140]赵凯.大型电站锅炉水煤浆燃烧器流场和火焰黑度的实验研究及数值模拟[D].杭州:浙江大学,2004.
    [141]刘光宗.流体力学原理与计算基础[M].西安市:西安交通大学出版社,1988.
    [142]Eaton,A. M., Smoot, L. D., Hill, S. C, et al. Components, Formulations, Solutions, Evaluation, and Application of Comprehensive Combustion Models[J]. Progress in Energy and Combustion Science,1999,25(4):387-46.
    [143]李维特.热应力理论分析及应用.北京市[M]:中国电力出版社,2004.
    [144]梁醒培,王辉,王定标等.应用有限元分析[M].北京市:清华大学出版社,2010.
    [145]Brener, B. C., Scot, T. L.. The Mathematical Theory of Finite Element Methods[M]. New York:Springer-Verlag,1994.
    [146]Kenneth, H..The finite element method for engineers[M].John Wiley & Sons:2001.
    [147]Peraire,J.,Peiro, J. and Morgan, K..Finite element multigrid solution of Euler flows past installed aero-engines[J] Computational Mechanics 1993,11:433-451.
    [148]Peultier, B., Ben Zineb, T., Patoor, E.. Macroscopic constitutive law of shape memory alloy thermomechanical behaviour:Application to structure computation by FEM [J] Mechanics of Materials,2006 (38):510-524.
    [149]Kanda,T., Makino,A, Onoa,T. et al. A micro ultrasonic motor using a micro-machined cylindrical bulk PZT transducer[J]. Sensors and Actuators A:Physical,2006,127(1):131-138.
    [150]Ueda,Y., Yamakawa,T.Analysis of thermal elastic-plastic stress and strain during welding by finite element method [J]. Transactions of the Japan Welding Society 1971, 2(2):186-196.
    [151]Levy, A., Papazian, J.M. Elastoplastic finite element analysis of short fiber reinforced SiC/Al composites:effects of thermal treatment.Acta Metallurgica et Materialia 1991,39 (10):2255-2266.
    [152]Okamoto, K.;Hosaka, T.;Edahiro, T.Stress analysis of optical fibers by a finite element method.:Quantum IEEE Journal of Electronics,1981,17(10):2123-2129.
    [153]王光钦.弹性力学.北京:中国铁道出版社,2008.
    [154]Hashish, M..Observations of wear of abrasive2waterjet nozzle materials[J]. Journal of Tribology,1994,116:439-444.
    [155]Hussainova, I., Kubarsepp, J., Pirso, J.. Mechanical Properties and features of erosion of cermets[J]. Wear,2001,250:818-825.
    [156]Nanduri, M., Taggart, D. G., Kim, T. J.. The effects of system and geometric parameters on abrasive water jet nozzle wear[J]. International Journal of Machine Tools & Manufacture, 2002,42:615-623.
    [157]张传名.低品位水煤浆成浆、燃烧特性研究及应用[D].杭州:浙江大学,2009.
    [158]中国动力工程学会编.火力发电设备技术手册[M].北京:机械工业出版社,2000.
    [159]侯凌云,侯晓春.喷嘴技术手册[M].北京:中国石化出版社,2002.
    [160]岑可法,樊建人.燃烧流体力学[M].水利电力出版社,1991.
    [161]岑可法,倪明江,曹欣玉,等.水煤浆滴燃烧过程的简化数学模型[J].工程热物理学报,1984,5(3):312-315.
    [162]Minkova, V., Razvigorova, M., Goranovaa, M. et al. Effect of water vapor on the pyrolysis of solid fuels[J].Fuel,1991,70(6):713-719.
    [163]徐建英.螺杆式空气压缩机[M].北京:中国铁道出版社,2003.
    [164]林宗虎,徐通模.实用锅炉手册[M].北京市:化学工业出版社,2009.
    [165]陈明祥.弹塑性力学[M].北京市:科学出版社,2007.