浅海低频声场干涉结构及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声技术得到了长足的发展,但同时也面临着新的挑战。随着安静型技术的进步,潜艇的辐射噪声不断地降低,如何远距离探测安静型潜艇成为难点。拖曳线列阵声呐在反潜战中扮演着重要角色,也是最主要的鱼雷报警声呐,是声呐的重要发展方向之一,但此类声呐迄今仍无技术使它们具有被动测距、测速功能。海洋波导的重要特点是低频声场存在稳定可观察的干涉结构,本文欲基于声场的物理本质探索新的目标检测、识别和被动测距技术。
     声场的干涉结构是目标距离、深度及频率的函数,应通过某种时空变换对其简化,增强有用信息以便应用。文中以浅海低频声场的干涉结构为研究对象,重点关注了线谱甚低频声场干涉结构和连续谱低频声场干涉结构。对于前者,给出了浅海分层介质中波导简正波的矢量场,探讨了复声强的表述及其特征,定量分析了垂直(交互)复声强和水平交互复声强的无功分量和有功分量,并对复声强和交互复声强的相位角分布进行了数值计算。对于后者,基于波导不变量理论框架描述了连续谱低频声场干涉结构(相干函数图或LOFAR图)上的干涉条纹;首次基于相干声场的时空滤波理论用功率响应函数、双频函数、扩展分布函数等推广了连续谱干涉结构的表征手段;通过仿真研究和海试数据分析对上述理论进行了验证并结合波导不变量作了特征分析;并对其他形式的连续谱干涉结构作了简介。
     对线谱甚低频声场干涉结构的研究表明:当声场中只存在两阶简正波时,合理布放垂直双传感器的深度,可以使声压互谱(或分点测量的声压水平振速互谱)有功分量的正负号在较远距离处与水平距离无关,若定义声压互谱有功分量正负号变号的深度为临界深度,则通过与临界深度比较,可以对目标深度进行分类,即可以判断目标为浅声源(水面舰艇)或航深较大运动平台(潜艇);声压互谱无功分量正负号分布随水平距离呈周期性变化,利用建模或等效深度近似模型预报水平相干距离,并基于干涉结构测量目标渡越一个水平相干距离尺度的时间,可实现对目标径向运动速度的估计。运用Pekeris波导有效深度的概念建立了声压互谱有功分量正负号分布特性的近似理论分析,加深了对浅海低频声场特性的理解,并推导了双水听器合理的布放深度公式,以指导算法的实际使用。理论分析表明:当两个水听器的布放深度之和近似等于有效深度时,声压互谱有功分量正负号分布才与水平距离无关,值得注意的是,临界深度可调,通过设置一期望的临界深度,则双水听器的布放深度唯一确定。进一步的稳健性分析表明:深度分类算法和距变率估计算法对不同浅海环境是可以适用的。
     对连续谱低频声场干涉结构的研究表明:浅海低频声场中LOFAR图上的干涉条纹为一族类双曲线,通过干涉条纹方程将波导不变量、最近通过距离与线速度比及最近通过时刻等运动参数联系起来;时空滤波理论的四个系统函数中仅有一个是独立的,每个系统函数均能描述声场连续谱干涉结构的特性,但各个系统函数均能特别突出干涉结构某方面的特征,各有特色。结合LOFAR图和方位时间历程图提出了基于Hough变换的参数估计方法,分有无最近通过距离进行了仿真研究和海试数据分析,验证了算法的正确性和可行性,并表明其有较高的参数估计精度。在参数估计的基础上,提出了四种有最近通过距离时的基于水平双阵(元)的被动测距算法,并进行了定位精度分析,针对算法二稳健性差的缺点,提出了相应的改进算法。提出了两种无最近通过距离的双阵(元)被动测距算法,并进行了仿真研究、定位精度及稳健性分析,随后又提出了相应的改进算法,以提高低信噪比时的测距精度。
     本文所提出的参数估计和被动测距算法在海洋综合监测、海岸预警系统、航空浮标、潜标、海洋研究、声学测量、鱼雷报警等诸方面有重要应用前景,若要用于工程实际,还需做深入的海试研究。
Underwater acoustic technology has made great progress recently, but it also faces new challenges. With the development of quiet submarine, whose radiated noise has been greatly reduced, how to detect the quiet submarines in long range becomes difficult. Towed line array sonar is one of the important sonar developing directions, because it has been playing an important role in anti-submarine warfare and torpedo alarm. However, until now there is no any technology making this sonar possessing the functions of passive ranging and velocity estimation. The important feature of the ocean waveguide is that the stable interference structure can be observed in the low-frequency sound field. The purpose of this paper is to explore new target detection, identification and passive ranging techniques based on the physical nature of the sound field.
     Sound field interference structure is the function of the range, the depth and the radiated noise frequency of the target, so it should be simplified by adopting space-time transformation to enhance useful information for application. The interference structures in shallow water low-frequency sound field have been researched and many attentions are paid to the line spectrum interference structures in the very low frequency sound field and the continuous spectrum interference structures in the low-frequency sound field. For the former, the vector field of normal modes in shallow water stratified medium waveguide is concerned, the expression of complex acoustic intensity, especially the analysis of their characteristics are proposed; the reactive component and active component of the vertical (interactive) or horizontal interactive complex sound intensity are analyzed quantitatively; Further more, the phase angle of complex acoustic intensity is discussed and its distribution regularities are analyzed numerically. For the latter, the interference striations on the continuous spectrum interference structures, also called LOFARgram or coherent function records, in the low-frequency sound field are described based on the theoretical framework of waveguide invariants; Other than coherent function, the power response function, dual-frequency function and spread function from the space-time filtering theory of coherent sound field are adopted to promote the characterization means for continuous spectrum interference structures; The coincidence of the results from the simulation and sea trial, which are analyzed combined waveguide invariants, suggests the correctness of the theory; Then continuous spectrum interference structures in other scenarios are introduced briefly.
     Researches on the line spectrum interference structure in very low frequency sound field show that:the sign of the sound pressure cross-spectrum (or cross-spectrum between sound pressure and horizontal velocity) active component is independent of range by placing the receiving transducers in appropriate depths when only two normal modes trapped in the waveguide, so the target can be classified by comparing its depth with the critical depth on which the sign of the sound pressure cross-spectrum active component changed oppositely, in other words, the sound pressure cross-spectrum active component can be used to tell whether the sound source is near the surface (surface ship) or underwater (submarine); while the active component sign of the sound pressure cross-spectrum changes periodically with the horizontal range, and the period is defined as horizontal coherence distance which can be obtained by acoustic field modeling or predicting using effective depth approximate model, then the target radial velocity can be estimated by measuring the time during which the moving target passes one horizontal coherence distance scale. Approximate theoretic analysis of sound pressure cross-spectrum active component characteristics which deepens the understanding to the characteristic of shallow water low-frequency acoustic field is proposed in the paper combined with the concept of effective depth, and the prediction formula of appropriate deploying depth of transducers is presented which can be used to guide the actual application of the algorithm. The theoretic analysis indicates that the sum of the bi-hydrophone depths should be equal to the waveguide effective depth, then the sign distribution of the sound pressure cross-spectrum active component is independence on the horizontal range, and bi-hydrophone deploying depth is uniquely determined by setting a expected critical depth which is adjustable. Further stability analysis shows that the depth classification algorithm and radial velocity estimation algorithm are applicable to the different shallow water environment.
     Researches on the continuous spectrum interference structure in low frequency sound field show that:the interference striations on the LOFARgram obtained in the shallow water low-frequency acoustic field are a family of quasi hyperbolas, and the waveguide invariant, the range of the closest point of approach and the corresponding time are linked by the interference striation equation; Among the four system functions of the space-time filter theory, there is only one independent, every function can be adopted to describe the characteristics of the continuous spectrum interference structure, however, each system function owns special characteristics, which can give prominence to certain features of the interference structure. Hough transform based parameter estimation algorithms are proposed combining the image processing to LOFARgram and bearing-time records, and the correctness and feasibility of the parameter estimation algorithms under two scenarios that is whether there is closest point of approach have been validated by the simulation researches and sea trial data analysis, which also show its high accuracy of parameter estimation. For the scenario including the closest point of approach, four dual-array (element) based passive ranging algorithms are proposed when the estimated parameters are as the prerequisite, and the positioning accuracy is analyzed for the four algorithms. And the improved positioning algorithm is studied to overcome the poor stability of the second algorithm. For the scenario without the closest point of approach, two dual-array (element) based passive ranging algorithms are proposed, and then the corresponding simulation researches, accuracy analysis and stability analysis are finished. Furthermore, the improved positioning algorithms for both passive ranging algorithms are proposed to improve the positioning accuracy when the SNR is low.
     The parameter estimation algorithms and passive ranging algorithms proposed in this paper have important application prospect in many aspects, such as marine integrated monitoring, coastal forecasting and alarming system, airborne sonobuoy, marine research, acoustic measurement, torpedo alarm and so on. Further researches by sea trial will be needed for their practical engineering applications.
引文
[1]C B Leslie. Hydrophone for measuring particle velocity. J. Acoust. Soc. Am.,1956, 28(4):711-715P
    [2]Boyer G L. Instrumentation for measuring underwater acoustic intensity. J. Acoust. Soc. Am.,1960,32(11):1519P
    [3]V A Shchurov. Vector acoustics of the ocean. vladivostok: Dalhauka,2006
    [4]时胜国.矢量水听器及其在平台上的应用研究.哈尔滨工程大学博士学位论文.2007
    [5]杨德森,洪连进.矢量水听器原理及应用引论.科学出版社,2009
    [6]贾志富.三维同振球型矢量水听器的特性及其结构设计.应用声学.2001,20(4):124-129页
    [7]余华兵,孙长瑜,李启虎.探潜先锋——拖曳线列阵声呐.物理.2006,35(5):420-423页
    [8]刘孟庵.拖曳线列阵声呐技术发展综述.声学与电子工程.2006,3:1-5页
    [9]单秉彝.潜用拖曳线列阵声呐的发展及战术使用.声学与电子工程.1991,1:24-29页
    [10]N.R.Chapman, GR.Ebbeson. Acoustic shadowing by an isolated seamount. J. Acoust. Soc. Am.,1983,73:1979-1984P
    [11]J.F.Lynch, A.E.Newhall, C.S.Chiu, J.H.Miller. Three-dimensional ray acoustics in a realistic ocean. In Oceanography and Acoustics:Prediction and Propagation Models, eds, A.R.Robinson and D.Lee. American Institute of Physics, New York,1994, 198-232P
    [12]C.S.Chiu, L.L.Ehret. Three-dimensional acoustic normal mode propagation in the Gulf Stream. In Oceanography and Acoustics:Prediction and Propagation Models, eds, A.R.Robinson and D.Lee. American Institute of Physics, New York,1994,179-197P
    [13]D.Lee, M.H.Schultz. Numerical ocean acoustic Propagation in Three Dimensions. World Scientific Publishing, Singapore,1995
    [14]A.Tolstoy. Review of matched field processing for environmental inverse problems. Inter.J.Modern Phys.C,1992,3(4):691-708P
    [15]A.Tolstoy. Matched field processing for Underwater Acoustic. World Scientific Publishing, Singapore,1993
    [16]G.L.D Spain, J. J. Murray, W. S. Hodgkiss, et al. Mirages in shallow water matched field processing. J. Acoust. Soc. Am.,1999,105(6):3245-3265P
    [17]E.K.Westwood. Broadband matched-field source localization. J. Acoust. Soc. Am., 1992,91(5):2777-2789P
    [18]王新勇.互谱法被动测距改进研究.哈尔滨工程大学博士学位论文.2004
    [19]宋新见.数字式噪声目标被动测距声呐研究.哈尔滨工程大学博士学位论文.2004
    [20]黄益旺.浅海远距离匹配场声源定位研究.哈尔滨工程大学博士学位论文.2005
    [21]杨坤德.水声信号的匹配场处理技术研究.西北工业大学博士论文.2003
    [22](美)弗里德曼,诺曼著.丁振林等编译.1945年以来的美国潜艇:配图解说潜艇设计史.北京:中国船舶信息中心,2000.08
    [23]第701研究所五室编辑.安静型潜艇声学设计文集,北京:第701研究所五室出版,2000.10
    [24]Kuperman W A, D'Spain G L, Gerald L. Ocean Acoustic Interference Phenomena and Signal Processing. AIP,2002
    [25]S.D.Chuprov. Interference structure of a Sound Field in a Layered Ocean, in Ocean Acoustics.Current State, Edited by L.M.Brekhovskih and I.B.Andreevoi, Moscow, 1982:71-91P
    [26]GL.D'Spain, W.A.Kuperman. Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth. J. Acoust. Soc. Am.,1999,106(5):2454-2468P
    [27]Daniel Rouseff and Robert C. Spindel. Modeling the waveguide invariant as a distribution. AIP Conference Proceedings.2002,621(1):137-160P
    [28]G.A. Grachev. Theory of acoustic field invariants in layered waveguides, Acoust. Phys, 1993,39:33-35P
    [29]郭奕玲,沈慧君.物理学史[M].北京清华大学出版社,1995
    [30]花世群.用劳埃德镜干涉原理进行圆度误差测量.中国激光.2004,31(8):1013-1017页
    [31]陈万金,王金平.关于洛埃德镜实验光强分布的讨论.吉林师范大学学报(自然科学版).2005,3:60-62页
    [32]Urick著.洪申译.水声原理.哈尔滨船舶工程学院出版社,1990:102-105页
    [33]C.A.Sciammarella, D.Davis.Gap effect in moire fringe observed with coherent monochromatic collimated light. Experimental Mechanics,1968,10:459-466P
    [34]Joseph A. Clark. Moire processing of acoustic field holograms. Optics Communications,1978,25(2):157-162P
    [35]惠俊英,生雪莉.水下声信道.第2版.国防工业出版社,2007:37-40页
    [36]李风华,张仁和.浅海声场相干特性研究.声学技术.2009,28(2).
    [37]Paul C H著.蔡志明等译.水声建模与仿真.第3版.北京:电子工业出版社,2005:103-106页
    [38]F B Jensen, W A Kuperman, et al. Computational Ocean Acoustics. Springer-Verlag, 2000
    [39]刘伯胜,雷家煜.水声学原理.哈尔滨:哈尔滨工程大学出版社,1997,3:120-121页
    [40]杨娟.水下动目标被动跟踪关键技术研究.哈尔滨工程大学博士学位论文.2007
    [41]L.M.布列霍夫斯基赫,雷桑诺夫.海洋声学基础.北京:海洋出版社,1985
    [42]张仁和.水声物理、信号处理与海洋环境紧密结合是水声技术发展的趋势.应用声学.2006,25(6):325-327页
    [43]孙国仓.浅海矢量声场及其信号处理.哈尔滨工程大学博士学位论文.2008
    [44]惠俊英,孙国仓,赵安邦.Pekeris波导中简正波声强流及其互谱信号处理.声学学报.2008,33(4):300-304页
    [45]A. B. Wood. Model experiments on sound propagation in shallow seas. J. Acoust. Soc. Am.,1959,31(9):1213-1235P
    [46]A. B. Wood. Model Experiments on Propagation in Shallow Sea. Visualization of Weak Sound Fields, in Underwater Acoustics, edited by L. M. Brekhovskikh (Mir, Moscow),1965,195-240P
    [47]D. E. Weston. A moire fringe analog of sound propagation in shallow water. J. Acoust. Soc. Am.,1960,32(6):647-654P
    [48]D. E. Weston. Sound focusing and beaming in the interference field due to several shallow-water modes, J. Acoust. Soc. Am.,1968,44(6):1706-1712P
    [49]A. N. Guthrie, R. N. Fitzgerald, D. A. Nutile, and J. D. Shaffer. Long-range low-frequency CW propagation in the deep ocean:Antigua—Newfoundland. J. Acoust. Soc. Am.,1974,56(1):58-69P
    [50]A. N. Guthrie and J. D. Shaffer. Propagation of Low-Frequency CW sound signals in the deep ocean. J. Acoust. Soc. Am.,1960,32(6),645-647P
    [51]D. E. Weston and K. J. Stevens.Interference of wide-band sound in shallow water. J. Sound and Vibr,1972,21(1):59-64P
    [52]H. A. DeFerrari. Time-varying multipath interference of broad-band signals over a 7-NM range in the Florida Straits. J. Acoust. Soc. Am.,1973,53(l):162-180P
    [53]R. T. Bachman and G. T. Kay. Broadband interference patterns in shallow water, J. Acoust. Soc. Am.,1983,74,576-580P
    [54]M. L. Vianna and W. Soares-Filho, Broadband noise propagation in a Pekeris waveguide, J. Acoust. Soc.Am.1986,79:76-83P
    [55]S. G. Gershman and Yu. I. Tuzhilkin. Interference of wide-band noise signals. Sov. Phys. Acoust.,1965,1:34-41P
    [56]V. A. Zverev and E. F. Orlov, eds. Interference of Broadband Sound in Ocean (IPF AN SSSR, Gorky).1984
    [57]E. F. Orlov and G A. Sharonov. Interference of Sound Waves in Ocean (Dal'nauka, Vladivostok).1998
    [58]V. N. Golubev, V. I. Il'ichev, E. F. Orlov, I. Rakov, A. D. Sokolov, G A. Sharonov, and V. P. Shevtsov. Experimental Investigation of Broadband Sound in a Subsurface Oceanic Waveguide. in Acoustic Waves in Ocean, edited by L. M. Brekhovskikh and I. B. Andreeva (Nauka, Moscow),1987,100-111P
    [59]E. F. Orlov, V. N. Fokin, and G A. Sharonov. Parameters of interference modulation of wideband sound in the deep ocean. Sov. Phys. Acoust.,1988,34:520-523P
    [60]V. A. Lazarev, E. F. Orlov, V. N. Fokin, and G A. Sharonov. Frequency dependence of the parameters of interference modulation of wideband sound in a shallow sea. Sov. Phys. Acoust.,1989,35:395-397P
    [61]V. N. Golubev, Yu. V. Petukhov, and G A. Sharonov. Interference structure of the bottom reverberation of wideband sound in the deep ocean. Sov. Phys. Acoust.,1987, 33:262—265P
    [62]G K. Ivanova. Space-frequency dependence of a sound field in layered media, Sov. Phys. Acoust.,1984,30:293-296P
    [63]N. V. Gorskaya and G K. Ivanova. Frequency filtering in model acoustic waveguides. Sov. Phys.Acoust.,1986,32:192-195P
    [64]S. D. Chuprov and N. E. Mal'tsev. An invariant of the spatial-frequency interference pattern of the acoustic field in a layered ocean. Doklady Akademii Nauk SSSR (Proc. of the Russian Academy of Sciences),1981,257:475-479P
    [65]N. L. Dzenis and S. D. Chuprov. Influence of motion of a monochromatic source on the spatial interference structure of the field in a plane-layered waveguide. Sov. Phys. Acoust.,1986,32:242-243P
    [66]V. N. Kulakov, N. E. Mal'tsev, and S. D. Chuprov. Excitation of groups of modes in a layered ocean. Sov. Phys. Acoust.,1983,29:41-44P
    [67]V. Kh. Kiriakov and V. N. Kulakov. Determination of a space-frequency invariant of the sound field of a point source in a layered ocean. Sov. Phys. Acoust.,1983,29: 462-463P
    [68]S. V. Burenkov, N. L. Dzenis, A. V. Kishko, and E. A. Rivelis. Interference structure of the sound field in a shallow sea. Sov. Phys. Acoust.,1990,36:220-222P
    [69]S. V. Burenkov. Distinctive features of the interference structure of a sound field in a twodimensionally inhomogeneous waveguide. Sov. Phys. Acoust.,1989,35:465-467P
    [70]V. N. Lobanov and Yu. V. Petukhov. Space-frequency distribution of the intensity of wideband sound in a shallow sea. Sov. Phys. Acoust.,1993,39:574-581P
    [71]V. M. Kuz'kin and V. G Petnikov. Frequency scale estimations of a sound field interference structure in a shallow sea. Acoust. Phys.,1994,40:75-78 P
    [72]V. M. Kuz'kin. The effect of variability of ocean stratification on a sound field interference structure. Acoust. Phys.,1995,41:300-301P
    [73]V. A. Lazarev and Yu. V. Petukhov. Interference structure of wideband sound in a range-nonuniform waveguide. Sov. Phys. Acoust.,1988,34:323-324P
    [74]A. G. Voronovich and V. V. Goncharov. On connection of oceanologic characteristics with interference structure of sound field in the ocean, in Problems of Ocean Acoustics, edited by L. M. Brekhovskikh and I. B. Andreeva (Nauka, Moscow),1984,78-85P
    [75]I. G Malkina and V. P. Shevtsov. Spatiotemporal stability of the spectral transfer function of an acoustic waveguide in the deep ocean. Sov. Phys. Acoust.,1990,36: 173-177P
    [76]I. G Malkina and V. P. Shevtsov. Stability of the interference structure of the sound field in a shallow sea. Sov. Phys. Acoust.,1989,35:506-509P
    [77]V. M. Kuz'kin, A. V. Ogurtsov, and V. G Petnikov. The effect of hydrodynamic variability on frequency shifts of the interference pattern of a sound field in a shallow sea. Acoust. Phys.,1998,44:77-82P
    [78]V. M. Kuz'kin. Frequency shifts of the sound field interference pattern in a shallow sea. Acoust. Phys.,1999,45:224-229P
    [79]V. M. Kuz'kin. Spectral intensity oscillations of a sound field in a randomly inhomogeneous ocean. Acoust. Phys.,2000,46:310-316P
    [80]E. L. Borodina and Yu. V. Petukhov. Effect of lateral waves on broadband interference structure in a shallow sea. Acoustics Letters,1997,21,1-6P
    [81]E. L. Borodina and Yu. V. Petukhov. Effect of lateral waves on the interference structure of a broadband sound field in shallow sea. Acoust. Phys.,1999,45:272-278P
    [82]E. L. Borodina and Yu. V. Petukhov. Effect of the Sediment Layer on the Excitation of Acoustic Modes and Lateral Waves in Shallow Sea. Acoust. Phys.,2000,46:373-381P
    [83]V. A. Baranov and V. S. Grigor'ev. A water layer as a measuring instrument, Sov. Phys. Acoust.,1982,28:349-353P
    [84]F. J. Beron-Vera and M. G Brown. Ray stability in weakly rangedependent sound channels. J. Acoust. Soc. Am.,2003,144:23-130P
    [85]F. J. Beron-Vera and M. G. Brown. Travel time stability in weakly rangedependent sound channels. J. Acoust. Soc. Am.,2004,115:1068-1077P
    [86]A. L. Virovlyansky. Ray travel times at long range in acoustic waveguides. J. Acoust. Soc. Am.,2003,113:2523-2532P
    [87]F. J. Beron-Vera, M. G Brown, J. A. Colosi, S. Tomsovic, A. L. Virovlyansky, M. A. Wolfson, and G M. Zaslavsky. Ray dynamics in a long range acoustic propagation experiment. J. Acoust. Soc. Am.,2003,114:1226-1242P
    [88]I. P. Smirnov, A. L. Virovlyansky, and G M. Zaslavsky. Theory and applications of ray chaos to underwater acoustics. Phys. Rev. E,2001,64(3):036221
    [89]M. G Brown, J. A. Colosi, S. Tomsovic, A. L. Virovlyansky, M. Wolfson, and G M. Zaslavsky. Ray dynamics in long-range deep ocean sound propagation. J. Acoust. Soc. Am.,2003,113:2533-2547P
    [90]Michael G Brown, Francisco J. Beron-Vera, Irina Rypina, and Ilya A. Udovydchenkov. Rays, modes, wavefield structure, and wavefield stability. J. Acoust. Soc. Am.,2004, 117(3):1607-1610P
    [91]V. A. Zverev, V. A. Lazarev, V. N. Fokin, and G. A. Sharonov. Coherence of acoustic waves in the ocean. Acoust. Phys.,1993,39:440-440P
    [92]V. A. Zhuravlev, I. K. Kobozev, and Yu. A. Kravtsov. Dislocations of a phase front in an ocean waveguide and their manifestation in acoustical measurements. Sov. Phys. Acoust.,1989,35:156-159P
    [93]B. G. Katsnelson, L. G. Kulapin, A. A. Migulin, and V. G Petnikov. Influence of hydrodynamic fluctuations on the vertical interference structure of a sound field in a waveguide. Sov. Phys. Acoust.,1992,38:164-168P
    [94]Yu. V. Petukhov. Determination of the power of an explosion in an ocean waveguide from acoustic and seismoacoustic signals. Sov. Phys. Acoust.,1990,36:291-292P
    [95]祝献,赵航芳,葛辉良.浅海波导不变量的数值计算及提取技术研究.声学与电子工程.2008,增刊,126-129页
    [96]田玲爱,刘福臣,周士弘.利用Hough变换提取波导不变量.声学与电子工程.2009,4:22-24页
    [97]李风华,金国亮,张仁和.浅海相干混响理论与混响强度的振荡现象.中国科学.A 辑.2000,30(6):560-566页
    [98]李风华,刘建军,李整林,张仁和.浅海低频混响的振荡现象及物理解释.中国科学.G辑,2005,35(2):140-148页
    [99]苏晓星,张仁和,李风华.用频移补偿方法计算声场的波导不变量.声学技术.2007,26(6):1073-1076页
    [100]安良,王志强,陆佶人.利用LOFAR谱图的二维傅里叶变换脊计算波导不变量.电子与信息学报.2008,30(12):2930-2933页
    [101]Kevin D. Heaney. Rapid Geoacoustic Characterization Applied to Range-Dependent Environments. IEEE Journal of Oceanic Engineering,2004,29(1):43-50P
    [102]Kevin D. Heaney. Rapid Geoacoustic Characterization Using a Surface Ship of opportunity., IEEE Journal of Oceanic Engineering,2004,29(1):88-99P
    [103]Kevin D. Heaney, Daniel D. Sternlicht, Arthur M. Teranishi, et al. Active Rapid Geoacoustic Characterization Using a Seismic Survey Source. IEEE Journal of Oceanic Engineering, 2004,29(1):100-109P
    [104]S. V. Puchenkina and B. M. Salin. Investigation of the properties of the bottom in shallow-water regions according to the dispersion curves of low-frequency sound waves. Sov. Phys. Acoust.,1987,33:319-321P
    [105]E. L. Borodina and Yu. V. Petukhov. Restoration of the bottom characteristics by the interference structure of the wide-band sound. Acoustics Letters,1996,19:159-162P
    [106]V. V. Goncharov, B. F. Kuryanov, and A. I. Vedenev. Reconstruction of acoustic characteristics of bottom sedimentary layers in a deep ocean. Doklady Akademii Nauk SSSR (Proc. of the Russian Academy of Sciences),1984,279:328-331P
    [107]A. I. Vedenev. Application of the phenomenon of interference of broadband signals from moving sources to evaluation of bottom layering using correlation method, in Interference of Broadband Sound in Ocean, edited by V. A. Zverev and E. F. Orlov (IPF AN SSSR, Gorky),1984,133-153P
    [108]V. V. Goncharov, B. F. Kuryanov and A. I. Vedenev. Evaluation of acoustic parameters of sea bottom using interference of broadband sound, in Acoustic Waves in the Ocean, edited by L. M. Brekhovskikh and I. B. Andreeva (Nauka, Moscow),1987,162-173P
    [109]V. N. Golubev, E. F. Orlov, and Yu. V. Petukhov. Spectral characteristics of pulse signals in multiple reflection from the layered bottom and surface of the ocean. Sov. Phys. Acoust.,1986,32:290-293P
    [110]Yu. V. Petukhov. Influence of shear waves in sediments on spectral resonances in a reflected acoustic signal. Sov. Phys. Acoust.,1987,33:427-429P
    [111]V. A. Lazarev and V. N. Lobanov. Account of statistical distribution of the sea surface elevations using the wide band acoustic sounding. Izvestiya Akademii Nauk SSSR, Fizika Atmosfery i Okeana (Izvestiya Academy of Sciences USSR, Atmospheric and Oceanic Physics),1993,29:719-721P
    [112]Altan Turgut, Marshall Orr, Bruce Pasewark. Acoustic monitoring of the tide height and slope-water intrusion at the New Jersey Shelf in winter conditions. J. Acoust. Soc. Am.,2007,121(5):2534-2541P
    [113]Darrell R Jackson, David R Dowling. Phase conjugation in underwater acoustics. J. Acoust. Soc. Am.,1991,89(1):171-181P
    [114]Michael R Dungan, David R Dowling. Computed narrow-band azimuthal time-reversing array retrofocusing in shallow water. J. Acoust. Soc. Am.,2001,110(4): 1931-1942P
    [115]Michael R Dungan, David R Dowling. Orientation effects on linear time-reversing array retrofocusing in shallow water. J. Acoust. Soc. Am.,2002,112(5):1842-1852P
    [116]Sunny R Khosla, David R Dowlinga. Time-reversing array retrofocusing in noisy environments. J. Acoust. Soc. Am.,2001,109(2):538-546P
    [117]Kuperman W A, Hodgkiss W S, Hee Chun Song, et al. Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror. J. Acoust. Soc. Am., 1998,103(1):25-40P
    [118]H C Song, W A Kuperman, W S Hodgkiss. A time-reversal mirror with variable range focusing. J. Acoust. Soc. Am.,1998,103(6):3234-3240P
    [119]W S Hodgkiss, H C Song, W A Kuperman. A long-range and variable focus phase-conjugation experiment in shallow water. J. Acoust. Soc. Am.,1999,105(3): 1597-1604P
    [120]H C Song, W A Kuperman, W S Hodgkiss, et al. Iterative time reversal in the ocean. J. Acoust. Soc. Am.,1999,105(6):3176-3184P
    [121]Seongi Kim, G. F Edelmann, W A Kuperman, et al. Spatial resolution of time-reversal arrays in shallow water. J. Acoust. Soc. Am.,2001,110(2):820-829P
    [122]Seongil Kim, W A Kuperman, W S Hodgkiss, et al. Robust time reversal focusing in the ocean. J. Acoust. Soc. Am.,2003,114(1):145-157P
    [123]H Song, W A Kuperman, W S Hodgkiss, et al. Demonstration of a high-frequency acoustic barrier with a time-reversal mirror. IEEE J. Oceanic Eng,2003,28(2): 246-249P
    [124]W J Higley, Philippe Roux, W A Kuperman, et al. Synthetic aperture time-reversal communications in shallow water Experimental demonstration at sea. J. Acoust. Soc. Am.,2005,118(4):2365-2372P
    [125]H C Song, W S Hodgkiss, W A Kuperman, et al. Spatial diversity in passive time reversal communications. J. Acoust. Soc. Am.,2006,120(4):2067-2076P
    [126]M.J.Hinich, E.J.Sullivan. Maximum likelihood signal processing for a vertical array. J. Acoust. Soc. Am.,1973,54(2):499-503P
    [127]H.P.Bucker. Use of calculated sound fields and matched field detection to lacate sound sources in shallow water. J. Acoust. Soc. Am.,1976,59(2):368-373P
    [128]R.G.Fizell. Application of high-resolution processing to range and depth estimation using ambiguity function methods. J. Acoust. Soc. Am.,1987,82(2):606-613P
    [129]Evan K.Westwood. Broadband matched-field source localization. J. Acoust. Soc. Am., 1992,91(5):2777-2789P
    [130]P. D. Mourad, D. Rouseff, R. P. Porter, and A. Al-Kurd. Source localization using a reference wave to correct for oceanic variability. J. Acoust. Soc. Am.,1992,92: 1031-1039P
    [131]M. Siderius, D. R. Jackson, D. Rouseff, and R. Porter. Multipath compensation in shallow water environments using a virtual receiver, J.Acoust. Soc. Am.,1997,102: 3439-3449P
    [132]A.M.Thode, W.A.Kuperman, GL.D'Spain, W S Hodgkiss. Localization using Bartlett matched-field processor sidelobes. J.Acoust. Soc. Am.,2000,107(1):278-286P
    [133]A.M.Thode. Source ranging with minimal environmental information using a virtual receiver and waveguide invariant theory. J.Acoust. Soc. Am.,2000,108(4): 1582-1594P
    [134]Knut A. S(?)strand. Range localization of 10-100km explosions by means of an endfile array and a waveguide invariant. IEEE Journal of Oceanic Engineering.2005,30(1): 207-212P
    [135]T.C.Yang. Beam intensity striations and applications. J.Acoust. Soc. Am.,2003, 113(3):1342-1352P
    [136]Ryan Goldhahn, Granger Hickman, Jeffrey Krolikc. Waveguide invariant broadband target detection and reverberation estimation. J.Acoust. Soc. Am.,2008,124(5): 2841-2851P
    [137]Jorge E. Quijano, Lisa M. Zurk. Daniel Rouseff. Demonstration of the invariance principle for active sonar. J.Acoust. Soc. Am.,2008,123(3):1329-1337P
    [138]Jorge E. Quijano, Lisa M. Zurk. Use of the invariance principle for target tracking in active sonar geometries. OCEANS'06 Boston MTS/IEEE Conference,2006,18-21P
    [139]J.S.Rogers, J.L.Krolik. A study of active sonar reverberation using ultrasonic experiments in a shallow-water tank. OCEANS'07 Aberdeen Scotland MTS/IEEE Conference,2007,18-21P
    [140]R.Goldhahn, G.Hickman, J.L. Krolik. Waveguide invariant reverberation mitigation for active sonar. IEEE International Conferece on Acoustic, Speech and Signal Processing. Honolulu, HI,2007
    [141]Hailiang Tao and Jeffrey L. Krolik. Waveguide invariant focusing for broadband beamforming in an oceanic waveguide. J.Acoust. Soc. Am.,2008,123(3):1338-1346P
    [142]W.Munk and C.Wunsch. Ocean acoustic tomography: rays and modes. 4Rev.Geophys.Space.Phys.,1983,21:777-793P
    [143]苏晓星,张仁和,李风华.利用波导不变性提高声场的水平纵向相关.声学学报.2006,31(4):305-309页
    [144]Shihong zhou, Fuchen Liu. Array gain compensation of large-aperture horizontal line array in oceanic waveguide. The 10th Western Pacific Acoustics conference. Beijing. China,2009
    [145]郭国强,杨益新,孙超,李博.浅海低频本地海底混响的波导不变性结构及抑制方法研究.声学学报.2009,34(6):506-514页
    [146]郭国强,杨益新,孙超.利用波导不变性实现时反海底混响零点展宽.声学技术.2007,26(5):1-4页
    [147]王宁,张海青,高大治,王好忠,高伟,刘进忠.2005黄海声学实验2声传播起伏.中国海洋大学学报.2009,39(5):1029-1036页
    [148]杨娟,惠俊英等.利用低频声压干涉谱进行目标运动参数估计.哈尔滨工业大学学报.2008,40(3):471-474页
    [149]杨娟,惠俊英等.基于STFT-Hough变换的目标运动分析.哈尔滨工程大学学报(中文版).2007,28(2):137-142页
    [150]杨娟,惠俊英,王德俊,李姝.低频矢量声场及其应用研究.声学技术.2006,25(1):16-21页
    [151]江磊,惠俊英,蔡平,杨娟.干涉谱法测量水下竖直运动目标轨迹.海洋工程.2006,24(4):38-42页
    [152]鹿力成.海底变化环境下目标距离定位.声学技术.2007,26(4):65-68页
    [153]鹿力成,郭圣明,马力.海深变化环境下目标距离定位.声学技术,2009,28(5):586-591页
    [154]赵振东,高大治,王好忠,王宁.波导不变量原理在目标测距中的应用.声学技 术.2009,28(2):45-46页
    [155]徐海生.利用波导不变性概念实现声源定位的实验研究.197-203页
    [156]何作镛,赵玉芳.声学理论基础.北京:国防工业出版社,1981
    [157]杨晶.不规则海域声矢量场建模研究.哈尔滨工程大学硕士学位论文.2009
    [158]何永军.浅海距离有关波导耦合简正波数值建模.哈尔滨工程大学硕士学位论文.2005
    [159]魏文专.基于Pade高阶近似的抛物方程方法的实现与应用研究.哈尔滨工程大学硕士学位论文.2009
    [160]郭圣明.过渡区海域的声场求解.哈尔滨工程大学博士学位论文.1997
    [161]张景卓.基于简正波理论的声场计算应用研究.哈尔滨工程大学硕士学位论文.2008
    [162]S.R.Rutherford, K.E.Hawker. Consistent coupled modes theory of sound for a class of non separable problems. J. Acoust. Soc. Am.,1981,70:554-564P
    [163]R.B.Evans. A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom. J. Acoust. Soc. Am.,1983,74(1): 188-195P
    [164]R.B.Evans, K.E.Gilbert. The periodic extension of stepwise coupled modes. J. Acoust. Soc. Am.,1983,77:983-988P
    [165]S.R.Rutherford, K.E.Hawker. An examination of the influence of the range dependence of the ocean bottom on the adiabatic approximation. J. Acoust. Soc. Am., 1983,66:1145-1151P
    [166]A.D.Pierce. Augmented adiabatic mode theory for upslope propagation from a point source in variable-depth shallow water overlying a fluid bottom. J. Acoust. Soc. Am., 1983,74(6):1837-1847P
    [167]K.E.Gilbert, R.B.Evans. A Green's function method for one-way wave propagation in a range-dependent ocean environment. In Ocean Seismo-Acoustic, eds, T.Akal and J.M.Berkson. Plenum Press, New York.1986,21-28P
    [168]M.B.Porter. The time-marched fast-field program(FFP) for modeling acoustic pulse propagation. J. Acoust. Soc. Am.,1990,87:2013-2023P
    [169]M.G.Brown. Application of the WKBJ Green's function to acoustic propagation in horizontally stratified oceans. J. Acoust. Soc. Am.,1982,71(6):1427-1432P
    [170]R.F.Henrick, J.R.Brannan, D.B.Warner, G.P.Forney. The uniform WKB modal approach to plused and broadband propagation. J. Acoust. Soc. Am.1983,74(5): 1464-1473P
    [171]张仁和,何怡,刘红.水平不变海洋声信道中的WKBZ简正波方法.声学学报.1994,19(1):1-12页
    [172]L M Brekhovskikh. Waves in layered media. New York: Academic,1960,211P
    [173]C. L. Pekeris. Theory of propagation of explosive sound in shallow water. Geol. Soc. Am. Mem.,1948,27:1-117P
    [174]R.NEW, TJ.Eisler. Acoustic radiation from multiple spheres. J S and Vib,1972,22: 1-17P
    [175]杨士莪.水声传播原理.哈尔滨工程大学出版社,1994
    [176]汪德昭,尚尔昌.水声学.科学出版社,1981
    [177]D M F Chapman, P D Ward, D D Ellis. The effective depth of a Pekeris ocean waveguide, including shear wave effects. J. Acoust. Soc. Am.,1989,85(2):648-653P
    [178]Z.Y.Zhang, C.T.Tindle. Complex effective depth of the ocean bottom. J. Acoust. Soc. Am.,1993,93(1):205-213P
    [179]M.J.Buchingham, E.M.Giddens. On the acoustic field in a Pekeris waveguide with attenuation in the bottom half-space. J. Acoust. Soc. Am.,2006,119(1):123-142P
    [180]王燕,惠俊英,梁国龙.基于目标方位及时延差的双基阵目标运动分析.全国水声学学术会议论文集.2001,60-62页
    [181]惠娟,胡丹,惠俊英等.聚焦波束形成声图测量原理研究.声学学报.2007,34(2):356-361页
    [182]余赞,梅继丹,翟春萍等.声图测量及定位海试研究.声学学报.2009,32(4):103-109页
    [183]梅继丹,惠俊英,惠娟.水平阵聚焦波束形成声图定位算法研究.哈尔滨工程大学学报.2007,28(7):773-778页
    [184]P. V. Hough. A method and means for recognizing complex patterns. U.S.Patent.,1962, Vol 3069654
    [185]R.O.Duda, P.E.Hart. Use of the hough transform to detect lines and curves in pictures. Commun.ACM,1972,18(2):120-122P
    [186]C.S.Kannan, Henry Y.H.Chuang. Fast Hough Transform On A Mesh Connected Processor Array. Information Processing Letters,1990,33(5):243-248P
    [187]W.J.Austin, A.M.Wallace, V.Fraitot. Parallel algorithms for plane detection using an adaptive hough transform. Image and Vision Computing,1991,9(6):372-384P
    [188]Lei Xu, Erkki Oja, Pekka Kultanen. A new curve detection method:randomized hough transform (RHT). Pattern Recognition Letters,1990,11(1):331-338P
    [189]N.Kiryati, Y.Eldar, A.M.Bruckstein. A probabilistic hough transform. Pattern Recognition,1991,24(4):303-316P
    [190]陈国栋.Hough变换改进算法研究.哈尔滨工业大学硕士学位论文.2007
    [191]王伟华,付启众,李铁军.Hough积累及其在搜索雷达中的应用.雷达科学与技术.2006,4(6):367-372页
    [192]陶剑锋,陶秀.基于Hough变换的被动声呐航迹起始.舰船电子工程.2008,28(1):141-142页
    [193]巩向博.高精度Radon变换及其应用研究.吉林大学硕士学位论文.2007
    [194]陈见伟.用高分辨率双曲线Radon变换实现波场分离.长安大学硕士学位论文.2005
    [195]孙明,林君.线性Radon变换在弱信号提取及强干扰噪声抑制的应用.佛山科学技术学院学报(自然科学版).2003,21(1):19-22页
    [196]陈淑珍,刘怀林.基于τ-p变换的频散曲线及其算法实现.武汉大学学报(自然科学版).2000
    [197]王维红,崔宝文,林春华.加权抛物Radon变换叠加速度分析.天然气工业.2009,29(2):42-44页
    [198]刘喜武,刘洪.高分辨率Radan变换方法及其在地震信号处理中的应用.地球物理学进展.2004,19(1):8-15页
    [199]惠俊英,惠娟.矢量声信号处理基础.北京:国防工业出版社,2009:10-15页
    [200]姚直象,惠俊英,殷敬伟,杨娟.基于单矢量水听器四种方位估计方法.海洋工程.2006,24(1):122-131页