小麦磷转运蛋白基因的分子特征、表达及遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物根系对磷的吸收和磷在细胞和组织间的传输,是通过位于细胞原生质膜上的磷转运蛋白介导的需能主动运输过程。本项研究针对迄今有关小麦磷转运蛋白基因研究和报道较少的现状,利用现代生物信息学技术和分子生物学技术,对部分小麦磷转运蛋白的分子特征、表达特性进行较全面的研究。主要研究结果如下:
     1、通过在国际生物信息学网站进行小麦磷转运蛋白基因查找,获得4个尚未进行特征分析、表达和功能研究的小麦磷转运蛋白基因,GenBank登录号分别为AF488415、AJ830009、AY293827和AY293828。本研究依次命名为TaPT1、TaPT2、TaPT3和TaPT4。
     2、TaPT1~TaPT4的编码氨基酸数量变化在467~555之间,分子量变化在57.44~60.86之间,含有在11至14个跨膜域,以及蛋白激酶C位点和酪蛋白激酶磷酸化位点。表明TaPT1~TaPT4具有植物种属磷转运蛋白基因共有的结构特征。各供试小麦磷转运蛋白基因的表达特征存在较大差异。TaPT1在正常供磷水平下,根叶中的均有表达,低磷胁迫条件下,根系中检测不到该基因的转录本,而叶片中表达表现为随低磷胁迫时间延长不断增加;TaPT2和TaPT3的表达表现为根系特异表达的特征,随着低磷胁迫时间延长,表达水平也不断增强。TaPT4在根叶及不同供磷水平下呈组成型表达特征。
     3、采用染色体步移技术克隆TaPT2的启动子,克隆的启动子全长1237 bp。分析表明,在TaPT2启动子的翻译起始位点(ATG)上游附近,含有转录调控的保守元件TATA盒和CAAT盒。此外,含有应答低磷胁迫逆境能力的PHO-like元件(GACGTGG, -18 bp)。表明该PHO-like元件可能介导了TaPT2对低磷胁迫的应答。
     4、利用DNA重组技术,构建了融合TaPT2启动子的双元表达载体pCAMBIA3301-TaPT2-Gus,以及用TaPT2不同缺失片段长度驱动报告基因Gus表达的双元表达载体。为进一步揭示TaPT2的转录调控机制奠定了基础。
     5、以通过GenBank查找获得的1个栽培一粒小麦磷转运蛋白基因(TabPT1, GenBank登录号:AF488415)为基础,对该基因的分子特征、表达特性进行了研究。研究表明,TabPT1是普通小麦TaPT1的祖先,在分子特征和表达特性上与TaPT1一致。构建了融合TabPT1启动子及其不同缺失片段的双元表达载体,为进一步揭示该基因的转录调控机制和功能奠定了基础。
The uptake by the roots and the transportation in cells and tissues of inorganic phosphorus (Pi) were mediated by the phosphate transporters which are located at the cytoplasm membrane. The process of uptake and transportation of Pi is necessary of the energy supply. So far, few studies about of wheat (Triticum aestivum L.) phosphate transporters have been reported. In this study, the molecular characterization, expression patterns of several phosphate transporter genes derived from wheat and its ancestor Triticum boeoticum were analyzed based on modern bioinformatic approach and molecular biological techniques.
     1. Based on serches of wheat phosphate transporter genes in international bioinformatics website (NCBI), four wheat phosphate transporter genes with uncharacterized, unknown expression patterns and functions were obtained. The GenBank accession numbers were AF488415, AJ830009, AY293827, and AY293828. In this study, they were designated as TaPT1, TaPT2, TaPT3, and TaPT4, respectively.
     2. The translated amino acids of TaPT1~TaPT4 changed from 467~555, with the morlecular weights of 57.44~60.86 and 11 to 14 conserved transmembrane domains, and protein kinase C activation sites, and casein phosphorylation sites. Therefore, TaPT1~TaPT4 own the conserved structural properties of phosphate transporters in plant species. There were dramatic differences on the expression patterns of the tested phosphate transporter gens. Under normal Pi-supply condition, there were similar transcripts of TaPT1 in roots and leaves, with a pattern that no transcripts detected in roots under low-Pi condition and elevated expression levels with the extension of low-Pi treatment. The expressions of TaPT2 and TaPT3 were shown root specific, also increased in transcripts with the extension of low-Pi treatment. The expression patter of TaPT4 in roots and leaves under various-Pi conditions was shown to be constitutive.
     3. Using genome walking approach, the promoter region of TaPT2 with 1237 bp length was isolated. The conserved regulatory elements functional on transcriptional regulation, such as TATA box and CAAT box were identified. The Pi-starvation response element PHO-like (GACGTGG, -18 bp) was also figured out in TaPT2 promoter, indicating that this element possibly involved in the low-Pi cue responding of TaPT2.
     4. Using DNA recombinant technology, the binary cassette of TaPT2-Gus, and series of cassettes in which the reporter gene Gus being driven by the deleted promoter fragments have been constructed. This work would provide the basis for further exploration of the transcriptional regulation of TaPT2 in the future.
     5. Based on a DNA clone (GenBank accession number: AF488415), a phosphate transporter gene TabPT1 was identified. The molecular characterization, expression pattern were evaluated. It is found that the TabPT1 was the ancestor of TaPT1, the phosphate transporter gene which was former characterized. There were same molecular characterization and expression patterns between TabPT1 and TaPT1. The binary cassettes fused the open reading frame (ORF), the TabPT1 promoter and its series of deleted promoter fragments have been constructed, aiming at further understanding of the transcriptional regulation and function in the future.
引文
[1] Theodorou M E, Plaxton W C. Metabolic adaptations of plant respiration to nutritional phosphate depriveation[J]. Plant Physiol, 1993, 101: 339~344.
    [2] Marschner H. Mineral nutrition of higher plants[M]. London: Academic Press. 1995, second edition.
    [3] Goldstein A H. Phosphate starvation inducible enzymes and proteins in higher plants[J]. Soc Exp Biol Semin Set, 1992, 49: 25~44.
    [4] Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptation by plants for securing a nonrenewable resource[J]. New Phytol, 2003, 157: 423~447.
    [5] Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low Phosphorus availability[J]. Plant Cell Environ, 1996, 19: 529~538.
    [6] Lynch J P, Brown K M. Ethylene and plant responses to nutritional stress[J]. Plant Physiol, 1997, 100: 613~619.
    [7] Dinkelaker B, Romheld V, Marsher H. Citrite acid excretion and Precipitation of calcium titrate in the rhizosphere of white lupin (Lupinus albus L.)[J]. Plant Cell Environ, 1989, 12: 285~292.
    [8]李永夫,罗安程,黄继德,等.不同磷效率水稻基因型根系形态和生理特性的研究[J].浙江大学学报(农业与生命科学版), 32(6): 658~664.
    [9]郭程瑾,李宾兴,王斌,等.小麦高效吸收和利用磷素的生理机制[J].作物学报, 2006, 32(6): 827~832.
    [10]廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异[J].植物学报, 2000, 42(2): 158~163.
    [11]曹爱琴,廖红,严小龙.低磷土壤条件下菜豆根构型的适应性变化与磷效率[J].土壤学报, 2002, 39(2): 276~282.
    [12] Hocking P J. Organic acids exuded from roots in phosphorus uptake and aluminum tolerance of plants in acid soils[J]. Adv Agron, 2001, 74: 63~97.
    [13]陈凯,马敬,曹一平,等.磷亏缺下不同植物根系有机酸的分泌[J].中国农业大学学报, 1999, 4(3): 58~62.
    [14] Neumann G, Massonneau A, Langlade N, et al. Phsiological aspects of cluster root function and development in phosphorus-defieient white Iupin (Lupinus albus L.)[J]. Ann Bot, 2000, 85: 909~919.
    [15] Hedley M J, Nye P H, Wllite R E. Plant-induced changes in the rhizosphere of rape( Brasiea Npaus var. Emerald) seedling. II. Origin of the pH changes[J]. New Phytol, 1982, 91: 31~44.
    [16]王庆仁,李振声.磷高效基因型小麦对缺磷胁迫的根际适应性反应[J].西北植物学报, 2000, 20(l): 1~7.
    [17]徐惠龙.磷高效水稻根系响应低磷胁迫的生理特性与相关蛋白研究[D].福建农林大学硕士学位论文, 2007.
    [18] Gaareia M, Ascfucio J. Root morphology and acid phosphorus activity in tomato plants duringdevelopment and recovery from phosphorus stress[J]. Plant Nutr, 1992, 15(11): 2491~2530.
    [19] Tandano T, Sakai T. Secretion of acid phosphatase by the roots of several crop species under phosphorus deficient conditions[J]. Soil Sci Plant Nutr, 1991, 37: 129~140.
    [20]张恩和.供磷水平对间套作物根系酸性磷酸酶活性的影响[J].西北植物学报, 2001, 21(l): 53~58.
    [21] Liu Y, Mi G H, Chen F J, et al. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability[J]. Plant Sci, 2004, 167: 217~223.
    [22]张海国,张福锁.缺磷条件下的小麦根系酸性磷酸酶活性研究[J].应用生态学报, 2002, 13(3): 379~381.
    [23] Hunter D A, McManus M T. Comparison of acid phosphatase in two genotypes of white clover with different responses to applied phosphorus[J]. J Plant Nutr, 1999, 22: 679~692.
    [24]庞欣,张福锁,李春俭,等.部分根系供磷对黄瓜根系和幼苗生长及根系酸性磷酸酶活性的影响[J].植物生理学报, 2000, 26(2): 153~158.
    [25] Karthikeyan A S, Varadarajan D K, Mukatira U T, et al. Regulated expression of Arabidopsis phosphate transporters[J]. Plant Physiol, 2002, 130: 221~233.
    [26] Wang Y, Ribot C, Rezzonico E, et al. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis[J]. Plant Physiol, 2004, 135: 400~411.
    [27] Bariola P A, Howard C J, Taylor C B, et al. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation[J]. Plant J, 1994, 6: 673~685.
    [28]郭玉春,林文雄,石秋梅,等.低磷胁迫下不同磷效率水稻苗期根系的生理适应性研究[J].应用生态学报, 2003, 24(l): 61~65.
    [29]曹黎明,潘晓华.水稻耐低磷肥机理的初步研究.作物学报[J]. 2002, 28(2): 260~264.
    [30]李志洪,陈丹,曹国军,等.磷水平对不同基因型玉米根系形态和磷吸收动力学的影响[J].吉林农业大学学报, 1995, 4: 40~43.
    [31]戴良香,于玉桥.不同冬小麦基因型磷有效性的研究[J].土壤通报, 1999, 30(1): 35~37.
    [32] Poirier Y, Thoma S, Somerville C, et al. A mutant of Arabidopsis deficient in xylem loading of phosphate[J]. Plant Physiol, 1991, 97: 1087~1093.
    [33] Hamburger D, Rezzonico E, MacDonald-Comber J, et al. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem[J]. Plant Cell, 2002, 14: 889~902.
    [34] Delhaize E, Randall P J. Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana[J]. Plant Physiol, 1995, 107: 207~211.
    [35] Dong B, Rengel Z, Delhaize E. Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana[J]. Planta, 1998, 205: 251~256.
    [36] Trull M C, Deikman J. An Arabidopsis mutant missing one acid phosphatase isoform[J]. Planta, 1998, 206: 544~550.
    [37] Lioyd J C, Zakhleniuk O V, Raines C A. Identification of mutants in phosphorus metabolism[J].Ann Appl Biol, 2001, 138: 111~115.
    [38] Chen D L, Delatorre C A, Bakker A, et al. Conditional identification of phosphate-starvation-resp- onse mutants in Arabidopsis thaliana[J]. Planta, 2000, 211: 13-22.
    [39] Versaw W K, Harrison M J. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses[J]. Plant Cell, 2002, 14: 1751~1766.
    [40] Griffith J K, Baker M E, Rouch D A, et al. Membrane transport proteins: implications of sequence comparisons[J]. Curr Opin Cell Biol, 1992, 4: 684~695.
    [41] Smith F W, Ealing P M, Dong B, et al. The cloning of two Arabidopsis genes belonging to a phosphate transporter family[J]. Plant J, 1997, 11: 83~92.
    [42] Liu J, Versaw W K, Pumplin N, et al. Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities[J]. J Biol Chem, 2008, 283:24673~24681.
    [43] Paszkowski U, Kroken S, Roux C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. PNAS, 2002, 99: 13324~13329.
    [44] Henderson P J F. The 12-transmembrane helix transporters[J]. Curr Opin Cell Biol, 1993, 5: 708~721.
    [45] Gilroy S, Jones D L. Through form to function: root hair development and nutrient uptake[J]. Trends in Plant Sci, 2000, 5: 56~60.
    [46] Paszkowski U, Kroken S, Roux C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. PNAS, 2002, 99: 13324~13329.
    [47] Daram P, Brunner S, Amrhein N, et al. Functional analysis and cell specific expression of a phosphate transporter from tomato[J]. Planta, 1998, 206: 225~ 233.
    [48] Nagy R, Vasconcelos M J, Zhao S, et al. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.) [J]. Plant Biol, 2006, 8:186~197.
    [49] Kim D H, Muchhal U, Raghothama K G. Tomato phosphate transporters respond to altered phosphorus levels in cell cultures[J]. Plant Physiol, 1998, 136.
    [50]韩胜芳,肖凯.磷转运蛋白基因OsPT2和OsPT4在不同磷效率水稻品种中的表达特征[J].作物学报(已投稿), 2008.
    [51] Lefebvre D D, Glass A D M. Regulation of phosphate influx in barley roots: effects of phosphate deprivation and reduction in influx with provision of orthophosphate[J]. Physiol Plant, 1982, 54: 199~206.
    [52] Shimogawara K, Usuda H. Uptake of inorganic phosphate by suspension cultured tobacco cells: kinetics and regulation by Pi starvation[J]. Plant Cell Physiol, 1995, 36: 341~351.
    [53] Smith F W, Emuchhal U S, Pardo J M, et al. Phosphate transporters from the higher plant Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1996, 93: 10519~10523.
    [54] Chiou T J, Liu H, Harrison M J. The spatial expression patterns of a phosphate transporter (MtPT1)from Medicago truncatula indicate a role in phosphate transport at the root/soil interface[J]. Plant J, 2001, 25: 281~293.
    [55] Harrison M J, van Buuren M L. A phosphate transporter from the mycorrhizal fungus Glomus versifyorme[J]. Nature, 1995, 378: 626~629.
    [56] Ullrich-Eberius C I, Novacky A, van Bel A J E. Phosphate uptake in Lemna gibba G1: energetics and kinetics[J]. Planta, 1984, 161: 46~52.
    [57] Lefebvre D D, Glass A D M. Regulation of phosphate influx inbarley roots: Effects of phosphate deprivation and reduction in influx with provision of orthophosphate[J]. Physiol Plant, 1982, 54: 199~206.
    [58]杨存义,刘灵,严小龙,等.植物Pht1家族磷转运子的分子生物学研究进展[J].分子植物育种, 2006, 4(2): 153~159.
    [59]王萍,陈爱群,余玲,等.植物磷转运蛋白基因表达调控的研究进展[J].植物营养与肥料学报, 2006, 12(4): 584~591.
    [60] Mitsukawa N, Okumura S, Shirano Y, et al. Over expression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions[J]. Proc Natl Acad Sci USA, 1997, 94: 7098~7102.
    [61] Smith F W. Sulphur and phosphorus transport systems in plants[J]. Plant Soil, 2001, 232: 109~118.
    [62] Liu H, Trieu A T, Blaylock L A, et al. Cloning and characterizeation of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) Fungi[J]. MPMI, 1998, 11: 14~22.
    [63] Harrison M J, Dewbre G R, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J]. Plant Cell, 2002, 14: 2413~2429.
    [64] Pavón L R, Lundh F, Lundin B, et al. Arabidopsis ANTR1 is a thylakoid Na+-dependent phosphate transporter: functional characterization in Escherichia coli[J]. Biol Chem, 2008, 283(20): 13520~13527.
    [65] Guo B, Jin Y, Wussler C, et al. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters[J]. New Phytol, 2008, 177(4): 889~898.
    [66] Catarecha P, Segura M D, Franco-Zorrilla J M, et al. A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation[J]. Plant Cell, 2007, 19(3): 1123~1133.
    [67] Koyama T, Ono T, Shimizu M J, et al. Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice[J]. Biosci Bioeng, 2005, 99(1): 38~42.
    [68] Misson J, Thibaud M C, Bechtold N, et al. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants[J]. Plant Mol Biol, 2004, 55(5): 727~741.
    [69] Shin H, Shin H S, Dewbre G R, et al. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments[J]. Plant J,2004, 39(4): 629~42.
    [70] Karthikeyan A S, Varadarajan D K, Mukatira U T, et al. Regulated expression of Arabidopsis phosphate transporters[J]. Plant Physiol, 2002, 130(1): 221~233.
    [71] Versaw W K, Harrison M J. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses[J]. Plant Cell, 2002, 14(8): 1751~1766.
    [72] Mudge S R, Rae A L, Diatloff E, et al. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis[J]. Plant J, 2002, 31(3): 341~353.
    [73] Okumura S, Mitsukawa N, Shirano Y, et al. Phosphate transporter gene family of Arabidopsis thaliana[J]. DNA Res, 1998, 5(5): 261~269.
    [74] Daram P, Brunner S, Rausch C, et al. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis[J]. Plant Cell, 1999, 11(11): 2153~2166.
    [75] Xiao K, Liu J, Dewbre G, et al. Isolation and characterization of root-specific phosphate transporter promoters from Medicago trunatula[J]. Plant Biol (Stuttg), 2006, 8(4): 439~449.
    [76] Grunwald U, Guo W, Fischer K, et al. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, P(i)-fertilised and phytohormone-treated Medicago truncatula roots[J]. Planta, 2009, 229(5): 1023~1034.
    [77] Liu J, Versaw W K, Pumplin N, et al. Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities[J]. J Biol Chem, 2008, 283(36): 24673~24681.
    [78] Javot H, Penmetsa R V, Terzaghi N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis[J]. Proc Natl Acad Sci USA, 2007, 104(5): 1720~1725.
    [79] Misson J, Thibaud M C, Bechtold N, et al. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants[J]. Plant Mol Biol, 2004, 55(5): 727~741.
    [80] Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1996, 93(19): 10519~10523.
    [81] Smith F W, Ealing P M, Dong B, et al. The cloning of two Arabidopsis genes belonging to a phosphate transporter family[J]. Plant J, 1997, 11(1): 83~92.
    [82] Mitsukawa N, Okumura S, Shirano Y, et al. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions[J]. Proc Natl Acad Sci USA, 1997, 94(13): 7098~70102.
    [83] Harrison M J, Dewbre G R, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J]. Plant Cell, 2002, 14(10): 2413~2429.
    [84] Chiou T J, Liu H, Harrison M J. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface[J]. Plant J,2001, 25(3): 281~293.
    [85] Liu H, Trieu A T, Blaylock LA, et al. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi[J]. Mol Plant Microbe Interact, 1998, 11(1): 14~22.
    [86] Ai P, Sun S, Zhao J, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. Plant J, 2009, 57(5): 798~809.
    [87] Seo H M, Jung Y, Song S, et al. Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice[J]. Biotechnol Lett, 2008, 30(10):1833~1838.
    [88] Ming F, Lu Q, Wang W, et al. Cloning, expression and function of phosphate transporter encoded gene in Oryza sativa L[J]. Sci China C Life Sci, 2006, 49(5): 409~413.
    [89] Ming F, Mi GH, Lu Q, et al. Cloning and characterization of cDNA for the Oryza sativa phosphate transporter[J]. Cell Mol Biol Lett, 2005, 10(3): 401~411.
    [90] Paszkowski U, Kroken S, Roux C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proc Natl Acad Sci USA, 2002, 99(20): 13324~13329.
    [91] Yu F T, Zhang A M, Chen S Y, et al. Differential accumulation of the new high-affinity phosphate transporter candidated gene fragment in rice roots in response to phosphorus deficiency stress[J]. Yi Chuan Xue Bao, 2001, 28(2): 144~151.
    [92] Xu G H, Chague V, Melamed-Bessudo C, et al. Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression[J]. J Exp Bot, 2007, 58(10): 2491~2501.
    [93] Daram P, Brunner S, Persson B L, et al. Functional analysis and cell-specific expression of a phosphate transporter from tomato[J]. Planta, 1998, 206(2): 225~233.
    [94] Liu C, Muchhal U S, Uthappa M, et al. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus[J]. Plant Physiol, 1998, 116(1): 91~99.
    [95] Nagy R, Vasconcelos M J, Zhao S, et al. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.) [J]. Plant Biol (Stuttg), 2006, 8(2):186~197.
    [96] Schünmann P H, Richardson A E, Vickers C E, et al. Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation[J]. Plant Physiol, 2004, 136(4): 4205~4214.
    [97] Schünmann P H, Richardson A E, Smith F W, et al. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.) [J]. J Exp Bot, 2004, 55(398): 855~865.
    [98] Rae A L, Cybinski D H, Jarmey J M, et al. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family[J]. Plant Mol Biol, 2003, 53(1-2): 27~36.
    [99] Huang C, Barker S J, Langridge P, et al. Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and deficient barley roots[J]. PlantPhysiol, 2000, 124(1): 415~422.
    [100] Rausch C, Daram P, Brunner S, et al. A phosphate transporter expressed in arbuscule-containing cells in potato[J]. Nature, 2001, 414(6862): 462~470.
    [101] Leggewie G, Willmitzer L, Riesmeier J W. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants[J]. Plant Cell, 1997, 9(3): 381~392.
    [102] Gordon-Weeks R, Tong Y, Davies T G, et al. Restricted spatial expression of a high-affinity phosphate transporter in potato roots[J]. J Cell Sci, 2003, 116: 3135~3144.
    [103] Takabatake R, Hata S, Taniguchi M, et al. Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopis[J]. Plant Mol Biol, 1999, 40(3): 479~486.
    [104] Muchhal U S, Raghothama K G. Transcriptional regulation of plant phosphate transporters[J]. Proc Natl Acad Sci USA, 1999, 96(10): 5868~5872.
    [105] Nakamori K, Takabatake R, Umehara Y, et al. Cloning, functional expression, and mutational analysis of a cDNA for Lotus japonicus mitochondrial phosphate transporter[J]. Plant Cell Physiol, 2002, 43(10): 1250~1253.
    [106] Maeda D, Ashida K, Iguchi K, et al. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis[J]. Plant Cell Physiol, 2006, 47(7): 807~817.
    [107] Baek S H, Chung I M, Yun S J. Molecular cloning and characterization of a tobacco leaf cDNA encoding a phosphate transporter[J]. Mol Cells, 2001, 11(1): 1~6.
    [108] Huang X, Zhu W, Dai S, et al. The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa) [J]. Planta, 2008, 228(4): 545~552.
    [109] Kiiskinen M, Korhonen M, Kangasj?rvi J. Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mpt1): ozone stress induces Mpt1 mRNA accumulation in birch (Betula pendula Roth) [J]. Plant Mol Biol, 1997, 35(3): 271~279.
    [110] Quick W P, Neuhaus H E. Evidence for two types of phosphate translocators in sweet-pepper (Capsicum annum L.) fruit chromoplasts[J]. Biochem J, 1996, 320: 7~10.
    [111] Li Q, Gao X, Sun Y, et al. Isolation and characterization of a sodium-dependent phosphate transporter gene in Dunaliella viridis[J]. Biochem Biophys Res Commun, 2006, 340(1): 95~104.
    [112] Wang Y, Secco D, Poirier Y. Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens[J]. Plant Physiol, 2008, 146(2): 646~656.
    [113] Hürlimann H C, Stadler-Waibel M, Werner T P, et al. Pho91 Is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae[J]. Mol Biol Cell, 2007, 18(11): 4438~4445.
    [114] Takabatake R, Siddique A B, Kouchi H, et al. Characterization of a Saccharomyces cerevisiae gene that encodes a mitochondrial phosphate transporter-like protein[J]. J Biochem, 2001, 129(5):827~833.
    [115] Tittarelli A, Milla L, Vargas F, et al. Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots[J]. J Exp Bot, 2007, 58(10): 2573~2582.
    [116]常胜合,舒海燕,童一平,等.两个小麦磷转运蛋白基因的分离、功能鉴定和表达研究[J].西北植物学报, 2004, 24 (10): 1779~1785.
    [117] Furihata T, Suzuki M, Sakurai H. Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts[J]. Plant Cell Physiol 1992, 33: 1151~1157.
    [118] Mitsukawa N,Okumura S, Shirano Y, et al. Overexpression of an Arabidopsis thaliana phosphate transporter gene in tobacco Cultured cells enhance cell growth under phosphate-limited conditions[J]. Proc Natl Acad Sic USA, 1997, 94(13): 7098~7102.
    [119] Raghothama K G. Phosphate acquisition[J]. Annu Rev Plant Physiol Plant Biol, 1999, 50: 665~693.
    [120] Michael Carey S T S. Transcriptional Regulation in Eukaryotes Concepts, Strategies, and Techniques[M]. Clod Spring Harbor, 2001.
    [121] Huang W W, Bateman E. TATA elements direct bidirectional transcription by RNA polymerases II and III[J]. Nucleic acids Res, 1996, 24(6): 1158~1163.
    [122] Gusmaroli G, Tonelli C, Mantovani R. Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits[J]. Gene, 2002, 283(1-2): 41~48.
    [123] Weising K,Kahl G. Towards an understanding of plant gene regulation the action of nuclear factors[J]. Z Naturforsch C, 1991, 46(1-2): 1~11.
    [124] Odell J T. Identification of DNA sequences Requiried for activity of the cauliflower mosaic virus 35S promoter[J]. Nature, 1985, 313: 810~812.
    [125] Christensen A H, Sharrock R A, Quail P H. Maize polyubiquitin gene: structure, thermal perturbation of expression and tran-script splicing, and promoter activity following transfer to protoplasts by electroporation[J]. Plant Mol Biol, 1992, 18: 675~689.
    [126] Mcelroy D, Brettell R I S. Foreign gene expression in transgenic cereals[J]. Trends Biotechnol, 1994, 12: 62~68.
    [127]王关林,方宏筠.植物基因工程原理与技术[M].科学出版社, 1998.
    [128]李杰,张福城,王文泉,等.高等植物启动子的研究进展[J].生物技术通讯, 2006, 17(4): 658~661.
    [129]张春晓,王文棋,蒋湘宁,等.植物基因启动子研究进展[J].遗传学报, 2004, 31(12): 1455~1464.
    [130] Schünmann P H D, Richardson A E, Vickers C E, et al. Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation[J]. Plant Physiol, 2004b, 136: 4205–4214.
    [131] Hammond J P, Bennett M J, Bowen H C, et al. Changes in gene expression in Arabidopsis shootsduring phosphate starvation and the potential for developing smart plants[J]. Plant Physiol, 2003, 132: 578~596.
    [132] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216:23~37.
    [133]张海娜,李小娟,李存东,等.高表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响[J].作物学报, 2008, 34 (8): 1403~1408.
    [134] Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1996, 93: 10519~10523.
    [135] Leggewie G, Willmitzer L, Riesmeier J W. Two cDNAs from potato are able to complement a phosphate up-take-deficient yeast mutant: identification of phosphate transporters from higher plants[J]. Plant Cell, 1997, 9: 381~392.
    [136] Liu C, Muchhal U S, Raghothama K G. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus[J]. Plant Physiol, 1998a, 116: 91~99.
    [137] Pattison-Granberg J, Persson B L. Regulation of cation-coupled high-affinity phosphate uptake in the yeast Saccharomyces cerevisiae[J]. J Bacteriol, 2000, 182: 5017~5019.
    [138] Motoshi K, Kouji T, Hirofumi A, et al. Cloning and characterization of four phosphate transporter cDNAs in tobacco[J]. Plant Sci, 2002, 163:837~846.
    [139] Davies T G E, Ying J, Xu Q, et al. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats[J]. Plant Cell Environ, 2002, 25: 1325~1339.
    [140] Rae A L, Cybinski D H, Jarmey J M, et al. Characterization of two phosphate transporters from barley;evidence for diverse function and kinetic properties among members of the Pht1 family[J]. Plant Mol Biol, 2003, 53: 27~36.
    [141] Franco-Zorrilla J M, González E, Bustos R, et al. The transcriptional control of plant responses to phosphate limitation[J]. J Exp Bot, 2004, 55(396): 285~293.
    [142] Schunmann P H D, Richardson A E, Smith F E, et al. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.) [J]. J Exp Bot, 2004a, 55(399): 855~865.
    [143] Hammond J P, Bennett M J, Bowen H C. Changes in genes expression in Arabidopsis shoots during phosphate starvation and the potentialfor developing smart plants[J]. Plant Physiol, 2003, 132: 1~19.
    [144]刘剑光,肖松华,狄佳春,等. Bt基因导入对棉花农艺性状的影响[J].中国棉花, 2003, 3: 15~17.