低磷胁迫下甘蓝型油菜幼苗蛋白双向电泳及图谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是中国最重要的油料经济作物之一,土壤有效磷缺乏严重影响油菜的产量和品质。人们通过大量施用磷肥来提高油菜的产量,然而我国的磷矿储存量有限,而且磷肥的大量施用会污染环境,因此对植物暨油菜响应低磷胁迫的分析有助于解析植物对磷营养的吸收和利用,为作物的抗逆机理及遗传育种研究打下理论基础。
     本研究首先建立油菜幼苗营养液水培的方法,在此基础上以甘蓝型油菜(中油821)为材料,结合前期研究基础,对低磷胁迫下油菜幼苗形态、相关生理特征进行分析;建立了基于管状胶的油菜蛋白双向电泳技术体系,得到了低磷胁迫下幼苗叶片、根系蛋白差异表达图谱并进行分析,为本实验室后续开展的油菜幼苗响应低磷胁迫的分子机理研究奠定基础。主要研究结果如下:
     1、优化了油菜幼苗低磷胁迫的水溶液培养方法。结合后续实验要求和低磷营养液处理剂量、培养时间、培养步骤等因素,采取预培养环节并降低营养液浓度至四分之一,确定了适合于低磷胁迫的油菜幼苗水溶液培养方法。
     2、考察了低磷胁迫下油菜幼苗的形态学指标。低磷胁迫下,油菜幼苗外部形态与对照比有明显变化。地上部分真叶叶片较小、颜色暗绿;根系变细,低磷胁迫下幼苗根系长度显著高于对照(处理后14天达到对照的122%)。
     3、低磷胁迫下油菜幼苗根系相关生理学分析表明:低磷胁迫促进了油菜幼苗根系活力,低磷胁迫处理期间,油菜幼苗根系活力均有不同程度的提高,21天时为对照的127%;低磷胁迫诱导根系分泌磷酸酶,酸性磷酸酶活显著高于对照,在低磷肋、迫21天后为对照的187%;低磷胁迫在一定范围内提高保护酶活性,低磷胁迫下过氧化物酶和过氧化氢酶活性均有不同程度的升高,14天后达到最大值,分别为对照的205%和190%。
     4、建立和优化了基于管状胶的油菜幼苗双向电泳体系(two-dimensional gel electrophoresis,2D-PAGE)。采用三氯醋酸-丙酮法提取总蛋白;选取7M尿素裂解液裂解(含7M尿素,4%Chaps,2M硫脲)蛋白干粉;确定叶片和根系蛋白的最佳上样量分别为400μg和260μg。
     5、利用上述适合幼苗生长的水培方法和优化的双向电泳技术体系,对低磷胁迫处理的油菜幼苗根系、叶片蛋白双向电泳分析,获得了蛋白丰度、解析度较高的差异蛋白表达图谱。图像解析表明:差异蛋白稳定表达,图谱重复性较好,叶片和根系的相关系数分别为0.86和0.72;低磷胁迫下叶片中稳定上调表达的差异点为11个,下调表达的为11个;低磷胁迫下根系中稳定上调表达的蛋白点为25个,下调表达的为37个。
     6、分析了低磷胁迫对油菜幼苗生长和生理影响的相关机理;探讨了有关自制管状胶双向凝胶电泳及蛋白图谱分析中存在的问题,为后续的实验奠定了良好的基础。
Brassica Napus L. is one of the most the important oil-bearing plants in China. The production and quality of Brassica Napus L. will decrease sharply when there is not enough phosphorous in soil. However, with too much phosphate fertilizer being used to improve the yield of crops, the environment will be polluted. The study on brassica seedings under phosphorus deficiency will help to understand the molecular mechanism of Brassica napus L. endured phosphorus deficiency stress, which consequently setted a foundation for a breeding research on Brassica Napus L.
     For this study, an hydroponics method for culturing Brassica Napus L.(Zhongyou821) was first established. The young seedling characters of morphology under the stress phosphorus deficiency were surveyed. Also the root activity, the secreted acid phosphatase(Apase), the catalase(CAT) enzyme and the peroxide(POD) in seeding roots were evaluated. An system of two-dimensional gel electrophoresis (2D-PAGE) with tube gels suitable for brassica seedings was established. The leaf and root proteins under low-phosphorus stress were seperated using2D-PAGE, and the differential protein patterns were acquired and analysised. The main results were summarizeal as follows:
     1. The different treatment dosage of phosphorus deficiency stress, the time cultured and the procedure cultured were evaluated. The concentration was optimized to1/4dosage of nutrient solution, and the pre-culture for3days before the treatment of phosphorus deficiency stress was proved to be available. And the modified hydroponics method of culturing brassica young seedlings adapted to the physiology and differential proteome analysis was established finally.
     The morphological characteristics of brassica seedings under low phosphorus deficiency stress were investigated. The exterior aspects of the young seedlings showed an obvious difference after stress low phosphorus deficiency. The leaves of seedling subjected to phosphorus deficiency were small and dark green compared with control, while the root was longer and slender. The length of root under phosphorus deficiency stress was measured up to an increasement by22%compared to control.
     2.The effects of low-phosphorus treatment on the physiology parameters of brassica seedings were conducted. The root activity presented an rapid increasement and then a slight decreasement at the treatment course of phosphorus deficiency. The root activity showed a constant enhancement against untreatment, with a1.27times activity as that of control after21-days'phosphorus deficiency. The acid phosphatase (Apase) of seeding root was secreted in low-phosphorus environment. And the activity of acid phosphatase showed a highest increasement at the21th day during treat course, which is1.87times as of control. The activity of protective enzymes, peroxide (POD) enzyme and the catalase(CAT), were promoted under phosphorus deficiency stress. The activity of POD was achived the highest folds of2.05to control at14th day, while the CAT1.90to control at14th day.
     3. The two-dimensional electrophoresis method based tube gels for the separation of brassica young seedlings was established and optimized. Two protein extraction protocol from leaf and root were evaluated, and the Optimization is TCA-acetone precipitation method. Four protein lysis buffers for isoelectric focusing electrophoresis (IEF) suitable for tubel gels were compared together. The optimized lysis buffer is7M urea lysis buffer (including7M urea,4%Chaps,2M thiourea). After the comparison of protein quantity subjected to tube gel, the loading quantity of400and260p.g were present for2D-PAGE separation of leaf protein and root proteins, respectively.
     4. The whole proteins extreated from hydroponics young seedlings under phosphorus deficiency stress were seperated by2D-PAGE. After dying by Coomassie Brilliant Blue, the proteomics image patterns were resolved by PDQuest8.0.1software. The correlation ratio of leaf protein differential patterns between21-day-treatment by phosphorus deficiency and its control is0.86.22proteins showed diffenently expressed under salt stress, with11up and11down. The correlation ratio of root protein differential patterns between16-day-treatment by phosphorus deficiency and its control is0.72.62proteins showed diffenently expressed under salt stress, with25up and37down.
     5. In the paper, the effect of low-phosphorus treatment on the physiology parameters of brassica seedings were also discused. The feasible suggestions on procedure of2D-PAGE and image analysis were presented.
引文
[1]刘飞,王代容,吕长平等.我国花卉水培研究及应用[J].广州农业科学,2009,5:69~71
    [2]袁梅,林萍,何银生等.中国水培花卉研究现状及发展趋势[J].西南园艺,2006,34(3):35~37
    [3]刘十哲.现代实用无土栽培技术[M].北京:中国农业出版社,2001,1~5
    [4]马太和.无土栽培[M].北京:北京出版社,1980,1~17
    [5]周静波.无土栽培技术综述[J].安徽林业科技,2008,133:35~37,41
    [6]牛雅静,黄河,杨可等.甘菊水培体系的建立[J].中国园艺文摘,2011,11:1~3
    [7]孟彩霞,王合理.不同浓度营养液对樱桃番茄生长发育的影响[J].塔里木大学学报,2010,22(4):1~5
    [8]邸葆,陈段芬,方正等.新儿内亚凤仙水培与土培根系特性的比较[J].中国农学通报,2012,289(1):162~165
    [9]杨少辉,季静,王罡等.不同营养液对蝴蝶兰水培生长的影响[J].河北农业大学学报,2008,31(6):30~33
    [10]秦丽娟,方正,李英丽等.不同营养液对水培火鹤幼苗生长及相关生理指标的影响[J].河北农业大学学报,2009,32(2):38~41
    [11]张仲新,方正,华珞等.水培条件下营养液pH值对含羞草生长发育的影响[J].首都师范大学学报,2008,29(6):43~45
    [12]洪坚平,谢英荷,孟会生等.水培油菜营养液养分动态变化研究[J].中国农学通报,2008,24(1):330~334
    [13]赵彩霞,洪坚平.光合细菌对水培油菜产量和品质影响的研究[J].山西农业科学,2007,35(7):36~41
    [14]Agrawal G K, Dominique J, Michel Z, et al. Time to articulate a vision for the future of plant proteomics-A global perspective:An initiative for establishing the International Plant Proteomics Organization (INPPO)[J]. Proteomics,2011,11:1559-1568
    [15]萧小鹃.植物发育突变体的蛋白质组学研究[D].[博士学位论文].长沙:湖南大学,2008
    [16]Delaplace P, Fauconnier ML, Sergeant K, et al. Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern [J]. Experimental Botany,2009,60 (4):1273-1288.
    [17]赵丹丹.低磷胁迫下油菜幼苗叶片的蛋自质组学初步研究[D].[硕士学位论文].郑州:郑州大学,2010
    [18]王慧.拟南芥响应改变重力的蛋白质组1研究[D].[博士学位论文].上海:中国科学院上海生命科学研究院,2007
    [19]Kathryn S L, Paul D.Plant organelle proteomics[J].Current Opinion in Plant Biology, 2007,10:594-599
    [20]程彦伟,李建友,姜爱良等.蛋白质组学在植物科学研究中的进展[J].江苏农业科学,2010(1):17~20
    [21]Tanaka N,Fujita M,Handa H,et al.Proteomics of the rice cell:systematic identification of the protein population in subcellular com-partments[J].Mol Gen Genom,2004,271: 566-576
    [22]Bin Li, Daisuke Takahashi, Yukio Kawamura, et al.Comparison of Plasma Membrane Proteomic Changes of Arabidopsis Suspension Cultured Cells(T87 Line)after Cold and Abscisic Acid Treatment in Associ ation with Freezing Tolerance Development[J].Plant and cell Physiology,2012,53(3)
    [23]Millar A H,Sweetlove L J,Gieg6 P,et al.Analysis ofthe Arabidopsis mitochondrial proteome[J].Plant Physiol,2001,127:1711-1727
    [24]Xiao Song, Christ of Rampitsch, Bahram Soltani, et al.Proteome analysis of wheat leaf rust fungus, Puccinia triticina,infection structures enriched for haustoria[J].Proteomics, 2011,11,944-963
    [25]关西贞.小麦抗白粉病近等位基因系的差异蛋白质组学研究[D].[硕士学位论文].济南:山东农业大学,2010
    [26]范海延,崔娜,邵美妮等.植物应答逆境胁迫的蛋白质组学研究进展[J].生物技术通报,2009(10):15~19
    [27]Fatehi F,Hosseinzadeh A,Alizadellet H,et al.The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress[J].Mol Biol Rep,2012
    [28]Mutthurajan R, Shobbar Z S, Jagadish S.V.K, et al.Physiological and Proteomic Responses of Rice Peduncles to Drought Stress[J].Mol Biotechnol,2011,48:173-182
    [29]严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究[D].[博士学位论文].上海:中国科学院上海生命科学研究院,2006
    [30]刘寒寒.低磷胁迫下不同磷效率玉米叶片吸收光能分配的差异与叶片蛋白质组学研究[D].[硕士学位论文].济南:山东大学,2011
    [31]吴平.植物营养分子生理学[M].北京:科学出版社,2001
    [32]印莉萍.植物营养分子生物学及信号转导[M].北京:科学出版社,2006
    [33]Fredeen AL, Rao IM, Terry N.Influence of phosphoms nutrition on growth and carbon panitioning in Glycine maX.Plant physioilogy,1989,89:225-230.
    [34]廖红,严小龙.高级植物营养学[M].北京:科学出版社,2003
    [35]严小龙,廖红.根系生物学原理与应用[M].北京:科学出版社,2007
    [36]梁泉,廖红,严小龙.植物根构型的定量分析[J].植物学通报,2007,24(6):695~702
    [37]马献发,宋凤斌,张继舟.根系对土壤环境胁迫响应的研究进展[J].中国农学通报2011,27(05):44~48
    [38]张新蕊.生长素和赤霉素参与调节低磷胁迫下玉米根系形态的改变[D].[硕士学位论文].济南:山东大学,2011
    [39]赵华,徐芳森,石磊等.植物根系形态对低磷胁迫应答的研究进展[J].植物学通报,2006,23(4):409~417
    [40]Ma Q F, Renge Z. Phosphorus acquisition and wheat growth are influenced by shoot phosphorus status and soil phosphorus distribution in a split-root system [J]. Journal of plant nutrition and soil science,2008,171(2):266-271.
    [41]Jeannette S Bayuelo-Jimenez, Veronica A Perez-Decelis, Lourdes Magdaleno-Armas, et al. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability[J]. Field Crops Research,2011,121:350-362
    [42]Yifan Hu, xiangsheng Ye, Haiyan Duan, et al. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica Napus L. under low phosphorus supply[J]. Plant Nutrition,2010,33(6):889-901
    [43]Gardner W, Barber D.& Parbery D. The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced[J]. Plant and Soil 1983,70,107-124.
    [44]Neumann G, Massonneau A, Martinoia E. & Romheld V. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin[J]. Planta,1999, 208,373-382
    [45]M W SHANE, M DE VOS, S DE ROOCK, et al. Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system[J]. Plant Cell and Environment,2003,26,265-273
    [46]刘文菊,张西科,尹君等.低磷胁迫对水稻基因型根系形态及吸收铁锰铜锌的影响[J].生态环境,2003,12(1):49~51
    [47]周建朝,王孝纯,邓艳红等.低磷胁迫对不同基因型甜菜根系形态及根分泌物的影响[J].中国农学通报,2011,27(02):157~161
    [48]李德华,向春雷,姜益益泉等.低磷胁迫下不同水稻鼍种根系有机酸分泌的差异[J].植物生理科学,2005,21(11):186~189
    [49]李德华,向春雷,姜益泉等.低磷胁迫下不同水稻品种根系生理特性的研究[J].华中农业大学报,2006,25(6):626~629
    [50]范伟国,杨洪强,韩小娇等.低磷胁迫下平邑甜茶根构型与磷吸收特性的变化[J].园艺学报,2007,34(6):1341~1346
    [51]丁艳,韩卓,王泽港等.不同基因型玉米幼苗对低磷条件的响应[J].中国农学通报2011,27(30):32~34
    [52]Yao Q L, Yang K C, Pan G T. The Effects of Low Phosphorus Stress on Morphological and Physiological Characteristics of Maize (Zea mays L.) Landrace[J]. Agricultural Sciences in China,2007,6(5):559-566.
    [53]章爱群,贺立源,门玉英等.磷水平对不同耐低磷玉米基因型幼苗生长和养分吸收的影 响[J].应用与环境生物学报,2008,14(3):347~350.
    [54]Jun Wasakil, Takuya Yamamura, Takuro Shinano et al. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency[J]. Plant and Soil, 2003,248:129-136
    [55]杨乾,杨宏羽,刘玉汇等.马铃薯适应低磷胁迫的生理生化效应[J].分子植物育种,2011,9(2):224-229
    [56]Jun Wasakil, Takuya Yamamura, Takuro Shinano, et al. Secreted.acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency[J]. Plant and Soil, 2003,248:129-136
    [57]许长征.玉米根系对低磷胁迫响应的转录组分析[D].[硕士学位论文].济南:山东大学,2009
    [58]林海建.玉米根系低磷胁迫响应分子机理的初步研究[D].[博士学位论文].成都:四川农业大学,2010
    [59]郭玉春,徐惠龙,陈芳育等.磷高效水稻根系对低磷胁迫响应的差异蛋白分析[J].应用生态学报,2010,21(12):3231~3238;
    [60]李朝霞.磷匮乏影响玉米根系发育机制的研究[D].[博士学位论文].济南:山东大学,2011
    [61]Marie Desclos, Lucie Dubousset, Philippe Etienne, et al. A Proteomic Profiling Approach to Reveal a Novel Role of Brassica Napus L. Drought 22 kD/Water-Soluble Chlorophyll-Binding Protein in Young Leaves during Nitrogen Remobilization Induced by Stressful Conditions[J]. Plant Physiology,2008,147:1830-1844
    [62]王志方.甘蓝型油菜低硼胁迫下的根系蛋白质学研究[D].[硕士学位论文].武汉:华中农业大学,2010
    [63]岳彩鹏,黄进勇等编.植物生物学实验实习指导[M].郑州:郑州大学出版设,2007
    [64]潘宝海,李德发,陆文清等.对硝基酚-α-D-吡喃半乳糖法测定饲用α-半乳糖苷酶(黑曲霉)活力的方法[J].中国农业大学学报,2002,7(5):107~111
    [65]李坤朋.不同基因型玉米对低磷胁迫的反应及根系蛋白质组学的研究[D].[博士学位论文].济南:山东大学,2007
    [66]曹小红,白晓丽.大肠杆菌中β-葡萄糖醛酸酶活性的测定李仕飞[J].中国食品学报,2003,3(4):83~85
    [67]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,164~165
    [68]李仕飞,刘世同,周建平等.分光光度法测定植物过氧化氢酶活性的研究[J].安徽农学通报,2007,13(2):72~73)
    [69]李福后.天麻发育过程中酸性磷酸酶及主要代谢产物累积规律研究[D].[硕士学位论文].武汉:华中农业大学,2004
    [70]贺学礼.植物生物学[M].北京:科学出版社,2009
    [71]孙建,张秀荣,张艳欣等.湿害处理对不同生育时期芝麻叶片保护酶活性和种子产量的影响[J].应用与环境生物学报,2009,15(6):790~795
    [72]Damerval C, De Vienne D, Zivy MThiellement H. Technical im-provements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedling proteins[J]. Electrophoresis,1986,7(1):52-54
    [73]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72: 248-254
    [74]陈雅蕙,陈来同,余瑞元等编.生物化学实验原理和方法[M].北京:北京大学出版社,2008
    [75]刘健平,陈国华,陈本美等.蛋白质组双向电泳实验中一些常见失误的分析[J].生命利学研究,2003,(2):177~180
    [76]王振华,王志方,陈水森等.甘蓝型油菜根系可溶性蛋白的提取及双向电泳体系的优化[J].华中农业大学学报,2011,30(2):219~224
    [77]Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics,2002,2,1131-1145
    [78]余永芳,赵丹丹,李玉琴等.低磷胁迫下油菜幼苗叶片差异蛋白表达的初步分析[J].河南农业科学,2011,,40(8):89~91,112
    [79]孙海燕.甘蓝型油菜响应低磷胁迫的差异蛋白质组学研究[D].[硕士学位论文].贵阳:贵州大学,2009