粉体脉冲微输送的微特性实验及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆快速成形技术集激光技术、计算机技术、数控技术、传感器技术及材料加工技术于一体,是一门多学科交叉的边缘学科和新兴的先进制造技术。为提高成形件的质量和精度,激光熔覆快速成形对粉体输送技术提出了较高的要求,一方面希望输送过程稳定、均匀、精确可控,另一方面希望尽量提高粉体输送分辨率。
     目前的粉体输送方式存在以下一些问题:机械结构比较复杂,磨损严重;粉末利用率不高;可控性普遍不高,通断不可控;粉体输送分辨率较低;粉体广适性差等。因此,研究分辨率高、稳定性好、可控性高、具有粉体广适性并且装置结构简单的粉体输送技术是值得研究的重要课题。
     本论文针对粉体脉冲微输送技术进行研究,首先进行理论分析,在此基础上进行大量实验,研究系统参量对脉冲输送微特性的影响规律,最后通过实验结论指导功能梯度材料的制备。取得的成果如下:
     以粉体在微喷嘴中形成的微拱为研究对象,得到了微喷嘴内静态微拱形成的两个必要条件,以及粉体在微喷嘴中的流动判据,在此基础上分析了粉体脉冲输送的过程,并定性地得到了粉体质量流量方程。
     选取粉体输送率Q与输送稳定性C·V作为粉体脉冲输送微特性的评价指标;构建了粉体脉冲微输送实验系统;得出了电压幅值、驱动频率、微喷嘴内径、输送角度4种系统参量对角形铬粉和角形TC4粉的输送微特性的影响规律;设计了正交试验,得到了各个系统参量对粉体输送率的影响程度大小,并对系统参量进行了优化;以铬粉为例,给出了粉体脉冲微输送中系统参量的确定与选择依据,实验表明了很好的输送效果。结果表明,粉体脉冲微输送系统能够输送流动性差的角形粉体,并且具有分辨率高、稳定性好等良好的输送微特性。
     构建了两路粉体脉冲微输送系统,通过实验验证了两种粉体可按一定比例精确稳定输送。在此基础上,制备出了Cu/Cr功能梯度材料、Cu/A1203功能梯度材料,并进行了相应的表征,表明了粉体脉冲微输送系统可以用于制备功能梯度材料。
Laser cladding rapid prototyping is a multidisciplinary frontier subject and an emerging advanced manufacturing technology, which integrates laser technology, computer technology, numerical control technology, sensor technology and material processing technology. To improve the quality and precision of formed parts, higher requirements in laser cladding rapid prototyping are put forward. On the one hand, the process of powder transfer is to be stable, homogeneous and exact controllable, on the other hand, the transfer resolution improved.
     The following problems exist in the current powder transfer methods:mechanical structure is complicated and badly worn; powder utilization not high; controllability generally not well, usually uncontrollable; powder transfer resolution lower; the powder adaptability width poor and so on. Therefore, the research of powder transfer technique with high resolution, good stability, high controllability, wide powder adaptability and simple structure is an important topic worthy of study.
     This thesis aims to pulse transfer of powder (treated as microfluids) technique researching. Theoretical analysis was made, and then, to study the influencing rules of the system parameters on micro characteristics, lots of experiments were carried out. The experiment results could be used to guide the generation of functional gradient materials. Results obtained are as follows:
     Two necessary conditions for the formation of the static micro-arch and the flow criterion of powder were obtained through researching the powder micro-arch in the micro-nozzle, based what the process of powder transfer was analyzed and the powder mass flow equation was got qualitatively.
     Powder transfer rate Q and transfer stability C·V was chosen as the evaluation index of micro characteristics; the experiment system of pulse transfer of powder was built; influencing rules of four system parameters which were the voltage amplitude, the driving frequency, the inner diameter of micro-nozzle, and the angel of transfer, on micro characteristics of triangular Cr powder and TC4 powder; an orthogonal experiment was designed and the significant influence of each system parameter on the transfer rate was obtained and these parameters were optimized. Setting Cr powder as the experiment object, the identification and selection basement of the microfluids system parameters was given out. Experiment results indicate that the pulse transfer of powder system can transfer angular powder and has excellent micro characteristics of high transfer resolution and good stability.
     A novel pulse transfer of powder system which could separately transfer two kinds of powder on the same time was built; experiment results indicated that two kinds of powder could be stably transferred for a precision mixing proportion. The Cu/Cr and Cu/AI2O3 functional gradient materials were generated and characterized, which indicated that the system could generate functional gradient materials.
引文
[1]David C. Duffy, Cooper McDonald, Olivier J. A. Schueller, etc. Rapid Prototyping of Microfluidic Systems in Poly (dimethylsiloxane) [J].Anal. Chem.,1998, 70(23):4974-4984.
    [2]Miller, B.W., Moore, J.W., Gehm, M.E. Novel applications of rapid prototyping in gamma-ray and X-ray imaging [C].Nuclear Science Symposium Conference Record (NSS/MIC),2009:3322-3326.
    [3]Hugo I. Medellin-Castillo, Joel Esau Pedraza Torres. Rapid Prototyping and Manufacturing:A Review of Current Technologies [C]. ASME 2009 International Mechanical Engineering Congress and Exposition (IMECE2009),2009:609-621.
    [4]Abbas Azari, Sakineh Nikzad. The evolution of rapid prototyping in dentistry:a review [J]. Rapid Prototyping Journal,2009,15(3):216-225.
    [5]张冬云,王瑞泽,赵建哲,左铁钏.激光直接制造金属零件技术的最新进展[J].中国激光,2010,37(1):18-25.
    [6]宋建丽,李永堂,邓琦林,胡德金.激光熔覆成形技术的研究进展[J].机械工程学报,2010,46(14):29-39.
    [7]M L Griffith,D M Keicher,et al. Free form fabrication of metallic components using laser engineered net shaping(LENSTM)[R]. Proceedings of the Solid Freeform Fabrication Symposium, August 12~14,1996, Austin, TX, p.125.
    [8]John E Smugeresky, Dave M Keicher, Joseph A Romero, Michelle L Griffith, Lane D Harwell. Using the laser engineered net shaping (LENS) process to produce complex components from a CAD solid model[R]. Photonics West SPIE Proceedings-Laser as Tools for Manufacturing,1997,2993:91-97.
    [9]E Schlienger,D Dimos,M Griffith,J Michael,et al. Near net shape production of metal components using LENS[R].Proceedings of the Third Pacific Rim International 8 Conference on Advanced Materials and Processing, July 12~16,1998,Honolulu,HI,1581.
    [10]GriffithML, Harwell L D, Romero J A, Schlienger E, Atwood C L, Smugeresky J E. Multi-material processing by LENS. Proceedings of the Solid Freeform Fabrication Symposium. Austin,TX:University of Texas at Austin Publishers, August 1997: 387-393.
    [11]http://www.optomec.com/
    [12]Arcella F G, Abbott D H,House M A. Rapid laser forming of titanium structures[J]. Proceedings of the PowderMetallurgy World Conference, Granada, Spain,18~22 October 1998
    [13]AeroMet implementing novel Ti process. Metal Powder Report,1998,53(2):24.
    [14]Arcella F G,Froes F H. Production of titanium aerospace components from powder using laser forming[J]. Journal of Metals,2000,52(5):28.
    [15]Abbott D H, Arcella F G. Laser forming titanium components[J]. Advanced Materials and Processes,1998, (5):29-30.
    [16]Mazumder, J., et al, The direct metal deposition of H13 tool steel for 3-D components [J]. JomJournal of the Minerals Metals & Materials Society,1997,49(5): 55-60.
    [17]Mazumder J,Schilerer A,Choi J. Direct materials deposition:dsesigned macro and microstructure.Materials Research. Innovations,1999,3(3):118-131.
    [18]Mazumder J,Dutta D,Kikuchi N,et al.Closed loop direct metal deposition:art to part.Optics and Lasers in Engineering,2000,34(4-6):397~414
    [19]J Mazumder, QI H. Fabrication of 3-D Components by Laser Aided Direct Metal Deposition [C]. Critical Review:Industrial Lasers and Applications, edited by J. Thomas Schriempf, Proceedings of SPIE,2005,5706:38-59.
    [20]http://www.pomgroup.com
    [21]Lewis G K, Nemec R B, Milewski J O, Thoma D L, Barbe M R, Cremers D A. Directed light fabrication[J]. Proceedings of the ICALEO'94, Laser Institute of America, Orlando, Florida,1994:17-26.
    [22]MAH R. Directed light fabrication [J]. Advanced Materials and Processes,1997, 151(3):31-34.
    [23]J O Milewski, G K Lewis, D JThoma, G I Keel, R B Nemec, R A Reinert. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition[J]. Journal of Materials Processing Technology,1998,75(1-3):165-172.
    [24]G K. Lewis, Eric Schlienger. Practical considerations and capabilities for laser assisted direct metal deposition. Materials and Design,2000, (21):417-423.
    [25]Alexander H Nickel. Analysis of thermal stresses in shape deposition manufacturing of metal parts [D]. USA:Stanford University,1999.
    [26]R Merz, F B Prinz, K Ramaswami, M Terk, L E Weiss. Shape deposition manufacturing[C]. In Proceedings of the Solid Freeform Fabrication Symposium, University of Texas at Austin,1994:1-8.
    [27]李延民.激光立体成形工艺特性与显微组织研究[D].西安:西北工业大学,2001.
    [28]ZHANG F Y, CHEN J, et al.. Chemical composition analysis for laser solid forming of titanium alloys from blended elemental powders [J]. CHINESE OPTICS LETTERS,2009,7(3):222-225.
    [29]ZHANG S Y, LIN X, et al.. Effect of solution temperature and cooling rate on microstructure and mechanical properties of laser solid forming Ti-6AI-4V alloy [J]. CHINESE OPTICS LETTERS,2009,7(6):498-501.
    [30]张永忠,石力开,章萍芝,徐骏.基于金属粉末的激光快速成型技术新进展[J].稀有金属材料与工程,2000,29(6):361-365.
    [31]张永忠,席明哲,石力开,等.激光快速成形316L不锈钢的组织和性能[J].稀有金属材料与工程,2002,31(2):103-105.
    [32]ZHANG Y Z,XI M Z,GAO S Y, et al.. Characterization of laser direct deposited metallic parts[J]. Journal of Materials Processing Technology,2003,142:582-585.
    [33]张永忠,石力开.高性能金属零件激光快速成形技术研究进展[J].航空制造技术,2010,(8):47-50.
    [34]钟敏霖,宁国庆,刘文今,杨林.激光快速柔性制造金属零件基本研究[J].应用激光,2001,21(2):76-78.
    [35]钟敏霖,宁国庆,刘文今.激光熔覆快速制造金属零件研究与发展[J].激光技术,2002,26(5):388-391.
    [36]宁国庆,钟敏霖,杨林.激光直接制造金属零件过程的闭环控制研究[J].应用激光,2002,22(2):172-176.
    [37]王华明,张凌云,李安,等.金属材料快速凝固激光加工与成形[J].北京航空航天大学学报,2004,30(10):962-967.
    [38]王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战[J].中国激光,2009,36(12):3204-3209.
    [39]尚晓峰,刘伟军,王天然.激光工程化净成形技术的研究[J].工具技术,2004,38(1):22-25.
    [40]ZHANG K, LIU W J, SHANG X F. Coaxial ppwder delivery system for Laser metal deposition shaping [C]. Technology and Innovation Conference 2009(ITIC2009), International,2009:1-5.
    [41]王建军.基于激光熔覆的快速制造技术的初步研究[D].天津:津工业大学,2003.
    [42]周广才.送粉激光熔覆成型L合金试验研究[J].南京航空航天大学学报,2005,37(增刊):26-30.
    [43]黄家胜.大功率激光熔覆快速成形工艺试验研究[D].苏州:苏州大学,2006.
    [44]S. Yang, J.R.G. Evans. Metering and dispensing of powder; the quest for new solid freeforming techniques [J]. Powder Technology,2007,178:56-72.
    [45]崔海涛,李强,武强,等.激光快速成型送粉器及其特性[J].北京工业大学学报,2002,28(3):341-344.
    [46]Li L, Steen W M. Sensing modeling and closed loop control of powder feeder for laser surface modification[J]. SPIE,1994,2306:965-974.
    [47]Sexton C L, Steen W M, Watkins K G, et al.. Triple hopper powder feeder system for variable composition laser cladding [J]. SPIE,1994,2306:824-834.
    [48]李艳丽,胡芳友,尚晓峰,等.金属零件直接成型螺旋送粉器[J].应用激光,2004,24(6):355-356.
    [49]李朋,杨慧宾,张炳春,等.激光熔覆同步送粉器的设计与应用[J].表面技术,2007,36(1):81-83.
    [50]姚纯,胡进,史建军,等.改进刮板式送粉器用于激光直接金属沉积成形[J].机械制造,2006,44(504):26-28.
    [51]钦兰云,杨光,王维,等.激光熔覆摆针刮板式同步送粉器的设计[J].制造技 术与机床,2010,(6):40-43.
    [52]刘常乐,杨洗陈,王云山.一种新型载气式激光熔敷送粉器[J].天津工业大学学报,2003,22(5):30-33.
    [53]GRUNENWALD, NOWOTNY S, HENNING W, et al.. New technological developments in laser clading[J]. SPIE 2306,1994,934-944.
    [54]杨林,钟敏霖,刘文今,等.集成控制高精度微型三路送粉系统研制[J].应用激光,2005,25(1):9-12.
    [55]邵其文,赵海翔,杨勇,石世宏.一种新型磁力送粉器的研制[J].新技术新工艺,2007,(5):45-46.
    [56]MATSUSAKA S, URAKAWA M, MASUDA H. Micro-feeding of fine powders using a capillary tube with ultrasonic vibration[J]. Advanced Powder Technology, 1995,6(4):283-293.
    [57]LI X CH, CHOI H, YANG Y. Micro rapid prototyping system for micro components [J]. Thim Solid Films,2002,420-421:515-523.
    [58]TAKANO T, TOMIKAWA Y. Excitation of a progressive wave in a lossy ultrasonic transmission line and an application to a powder-feeding device [J]. Smart Mater Struct.1998,7:417-421.
    [59]赵淳生,郭浩,张贵林.行波型超声粉体输送装置[P].中国:02262406.6,2003-06-18.
    [60]章维一,侯丽雅.影响流体流动的方法及其装置和应用[P].中国:03152948.8,2004-08-25.
    [61]章维一,侯丽雅.微流体数字化的科学与技术问题(I):概念、方法和效果[J].科技导报,2005,23(8):4-9.
    [62]章维一,侯丽雅.微流体数字化的科学与技术问题(II):物质数字化及物质能量信息统一数字化概念研究[J].科技导报,2006,24(3):41-47.
    [63]科学技术部基础研究司科技部高技术研究发展中心.新微流体数字化技术可使液滴量分辨率达到飞升级[J].基础科学研究快报,2004,4(总第150期):6-7.
    [64]张晓乐,侯丽雅,章维一.数字化微喷射用直列微喷嘴制作工艺[J].光学精密工程,2008,16(11):2221-2227.
    [65]耿鑫,侯丽雅,章维一.微流体数字化喷点技术的实现[J].光学精密工程,2009,17(8):1902-1907.
    [66]穆莉莉,侯丽雅,章维一.基于微流体数字化技术的流式细胞术的设计[J].化工学报,2010,61(4):949-954.
    [67]林峰,吴涛,齐海波,等.基于粉末精确喷射的TC4粉末微熔覆沉积制造初步研究[C].第13届全国特种加工学术会议论文集,南昌:中国机械工程学会特种加工分会,2009:546-552.
    [68]吴涛.基于数字化喷射的高精度金属熔覆沉积制造技术研究[D].北京:清华大学本科综合训练论文,2009.
    [69]谢洪勇,刘志军.粉体力学与工程[M].北京:化学工业出版社,2007.
    [70]王奎升.工程流体与粉体力学基础[M].北京:中国计量出版社,2002.
    [71]新野正之,平井敏雄,渡边龙三.倾斜机能材料—宇宙机用超耐热材料应用[J].日本复合材料学会志,1987,13(6):257-264.
    [72]卜恒永,赵诚,卢晨.功能梯度材料的制备与应用进展[J].材料导报,2009,23(12):109-112.
    [73]Ki-Hoon Shin, Harshad Natu, et al.. A method for the design and fabrication of heterogeneous objects[J]. Materials and Design,2003,24:339-353.
    [74]B. Kieback, A. Neubrand, H. Riedel.Processing techniques for functionally graded materials[J]. Materials Science and Engineering,2003,362:81-105.
    [75]魏增敏,张永忠,高士友,等.激光快速成形技术的发展及其在功能梯度材料制备上的应用[J].材料导报,2005,19(5):77-80.