聚合氯化铁—腐殖酸(PFC-HA)絮体空间形貌的各向异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过互相垂直的双镜头同步拍摄技术获取PFC-HA絮体的二维图像,对上述二维图像的表面灰度识别和高度校正技术,确定了聚合氯化铁-腐殖酸混凝体系中不同化学条件时典型絮体的表面高程分布矩阵,然后分别采用空间形貌涨落的一维和二维量测原理与方法,研究不同化学条件下PFC-HA絮体在一维空间不同方向上的变异函数、Hurst指数、分形维数、频谱分布以及二维空间中形貌涨落的分形特征,并分析某些参数的尺度效应和形貌高程变化对PFC-HA絮体各向异性的影响。初步尝试了空间异质性与絮凝过程的关系研究,对于饮用水中腐殖酸的强化混凝去除过程,具有重要的科学意义。
     利用CCD高分辨率显微摄像系统拍摄的PFC-HA絮体的形貌照片表明:PFC-HA絮体整体形状很不规则,表面凹凸不平,不同于任何一种简单的欧式几何体,而且絮体存在着许多尺寸不一、形态各异的孔隙。其三维曲面图和三维网格图也直观的体现了絮体空间填充能力及形貌高程的涨落。
     不同混凝化学条件下,PFC-HA絮体的粒度分布和平均粒径随PFC投药量和pH的改变均有明显变化,并且它们的变化特征一致。都随着PFC投药量的增加,粒径基本上逐渐减小,并且趋于稳定。随着pH的升高,絮体粒径的变化幅度减小,粒径的大小趋于稳定。
     PFC-HA絮体一维空间不同方向上的变异函数结果表明:不同化学条件下,套合结构函数的各向异性比k(h)的变化幅度在0.3816-2.4117之间,可以认为PFC-HA絮体空间形貌具有各向异性特征。基于变异函数法确定的分形维数(D)值处于1.30-1.50之间,符合一维分形维数的取值范围(1-2),相应的R2值也较高,表明该方法计算的分形维数偏差较小,是一种可行的表面轮廓分形维数的计算方法。并且不同方向的D值呈现上下波动的趋势,与混凝pH值、PFC投药量没有形成某种相关性。
     PFC-HA絮体一维空间的频谱分布表明:不同方向上的高度分布、高度斜率分布和功率谱分布差异显著,表现出明显的各向异性特征。高度分布体现了PFC-HA絮体空间形貌不同方向的粗糙不平的性质;斜率分布中含有多种频率成分,说明了PFC-HA絮体空间形貌不同方向上组成的复杂性;另外,能谱密度高的区域普遍集中在频率(f)<1mm-1的部分。因此,分别计算了不同pH下,f<1mm-1部分的累积功率谱密度指数(psd*),其数值绝大部分集中在0.6-0.9之间,显示PFC-HA絮体空间形貌高程的斜率分布中低频信号所占的比重较大,含有较多某种低阶的形状参量,这种参量在空间上更多的表现为一种形状上的起伏。此外,psd*并没有与PFC投药量形成某种相关性。另外,还考察了测量间距对PFC-HA絮体空间形貌不同方向的功率谱密度的影响,当测量间距从0.0128mm逐步增大到0.1024mm时,平均功率谱密度急剧减小。
     PFC-HA絮体一维空间不同方向上的自仿射分形维数(D1)表明:不同混凝化学条件下不同方向上D1呈波动变化,说明PFC-HA絮体空间形貌是各向异性的。并且在低pH(pH=5.00±0.05和pH=6.00±0.05)时,D1随PFC投药量的增加变化幅度较大;在低PFC投药量(以Fe3+计,为2.02×10-4 mol.L-1)时,D1随pH的升高变化幅度较大。不同方向上D1值与1.0的较大差别表明,在弱酸性条件下和低投药量下PFC-HA絮体空间形貌不同方向上的曲线较粗糙。
     PFC-HA絮体二维空间中形貌涨落的分形维数(Ds)表明:不同混凝条件下,利用TPSAM、PCM、CCM和ICCM等方法确定的Ds均大于2.0,符合分形维数的定义。其中,ICCM法能够获取更为详细、准确的形貌涨落信息,计算出的Ds值稍高一些,但总体上看,4种方法计算出的Ds值都比较小,表明PFC-HA絮体的空间填充能力较低,不存在大的形貌高程的涨落。
     在混凝pH=5.00±0.05、6.00±0.05和7.00±0.05时,PFC-HA絮体Ds值随PFC投药量的增加变化区间较大,ICCM法确定的Ds值分别处于2.0017-2.0057、2.0025-2.0065和2.0029-2.0067之间;当PFC投药量(以Fe3+计)分别为1.01×10-4mol·L-1和2.02×10-4mol·L-1时,Ds值随pH的升高变化区间较大,ICCM法确定的Ds值分别处于2.0025-2.0067和2.0037~2.0054之间,表明在弱酸性和低投药量下,PFC-HA絮体空间填充能力稍强,空间形貌涨落趋势明显。
     PFC-HA絮体空间形貌的各向异性特征对形貌高程的敏感性分析结果表明:PFC-HA絮体空间形貌的变异函数值和频谱分布均随形貌高程的增加而升高,但各向异性程度不变;Hurst指数对形貌高程的变化不敏感;二维分形维数Ds随形貌高程的增大逐渐升高,不同算法确定Ds值的处于2.0000~2.2609之间。
The morphological gray of PFC-HA flocs two-dimensional images was analyzed through Anisotropy analysis software, and the height corresponding to the gray was calibrated. Then, the spatial morphological height distribution matrixes of typical flocs produced under different coagulation-flocculation conditions were identified as well. Then, the parameters including variograms, Hurst indices, fractal dimensions, spectral distribution in one-dimensional space and fractal characteristics of spatial morphological fluctuation in two-dimensional space, were employed to describe the anisotropy of spatial morphology PFC-HA flocs formed under various chemical conditions. In addition, effects of the scale dependence and spatial morphological height for certain parameters on space anisotropy of PFC-HA flocs were analyzed. And a first attempt was made to study the relation between space heterogeneity and flocculation process.
     The flocs images were taken with a charged coupled device (CCD) sensor and the results indicated that the flocs, being different from any simple geometric body, were irregular and unsmooth and many pores with various sizes and morphologies were found in them. The three-dimensional curved surface figure and three-dimensional grid figure directly showed the space-filling capacity and fluctuation of spatial morphological height for the flocs as well.
     Particle distribution and average particle size for the PFC-HA flocs under different coagulation-flocculation conditions changed significantly with PFC dosage and pH. With the increasing of PFC dosage, the particle size reduced gradually and tended to be stable. With an increase in pH, the changing range for the particle size decreased and it became steady as well.
     Results of variograms in different directions of PFC-HA flocs in one-dimensional space showed that under various chemical conditions, the anisotropic ratio of nested model variograms k(h) varied between 0.3816 to 2.4117, which indicated the anisotropy of spatial morphology for the PFC-HA flocs. The fractal dimension (D) calculated by variogram was between 1.30 and 1.50 with a high R2 value, which is consistentwith the definition of one-dimensional fractal dimension (1-2). This suggested fractal dimension deviations calculated by the method were relatively small and therefore the method was feasible for working out surface profile fractal dimension. Further, D in different directions fluctuated and showed no relation with coagulation-flocculation pH and PFC dosage.
     Spectral distribution of PFC-HA flocs in one-dimensional space indicated that height distribution, slope distribution and power spectral density in different directions varied significantly and space anisotropy can be observed obviously. Height distribution showed roughness and unsmooth in different directions for spatial morphology of PFC-HA flocs, while slope distribution gave various kinds of frequency components, indicating complexity of spatial morphology composition in different directions for PFC-HA flocs. Moreover, area with high power spectral density mainly focused in the frequency range (f)<1mm-1. Therefore, the indexes for accumulated power spectral density (psd) were calculated under different pHs when f<1mm-1 and most data were found between 0.6 to 0.9, demonstrating that low frequency signal occupied most of the area in the slope distribution of spatial morphological height of PFC-HA flocs and there were a lot of low stage shape parameters which mostly exhibited fluctuation in space. In addition, the accumulated psd was not clearly related to PFC dosage. Effects of measurement interval on psd for spatial morphology of PFC-HA flocs in different directions were also investigated and the results showed that average psd reduced drastically when the measurement interval increased from 0.0128mm to 0.1024mm.
     One-dimensional self-affine fractal dimension (D1) of PFC-HA flocs in different directions fluctuated under different coagulation-flocculation conditions, which indicated the space anisotropy of PFC-HA flocs. D1 changed widely with the increasing of PFC dosage at low pH (pH=5.00±0.05 and pH=6.00±0.05) and with the increasing of pH at low PFC dosage ([Fe3+]=2.02×10-4 mol·L-1). D1 in different directions varied largely from 1.0, suggesting that the profile of spatial morphology of PFC-HA flocs in different directions was rough under weak acid condition and low dosage.
     The results showed that all the Ds vlues of PFC-HA flocs under different coagulation-flocculation conditions were greater than 2.0, which were calculated through the following four methods:Triangular Prism Surface Area Method(TPSAM), Projective Covering Method(PCM), Cubic Covering Method(CCM) and Improved Cubic Covering Method(ICCM). This agrees with the definition of fractal dimension.More detailed and accurate information on space morphological fluctuation can be obtained by ICCM with a slightly higher Ds value. However, Ds calculated by the four methods were generally low, which demonstrated low space-filling capacity and gentle fluctuation on morphological height for PFC-HA flocs.
     Ds of PFC-HA flocs varied greatly with the increasing of PFC dosage at coagulation-flocculation pH=5.00±0.05,6.00±0.05 and 7.00±0.05. Ds calculated by ICCM were around 2.0017~2.0057, 2.0025~2.0065 and 2.0029~2.0067, respectively. Ds changed largly with increasing pH when the PFC dosage (by Fe3+) were 1.01×10-4mol·L-1 and 2.02×10-4mol·L-1. Ds calculated by ICCM were around 2.0025~2.0067 and 2.0037~2.0054. These indicated that PFC-HA flocs had a slightly larger space-filling capacity and showed stronger fluctuation under low pH and PFC dosage.
     The influence of spatial anisotropy of PFC-HA floes on the sensitivity of spatial morphological height was studied. The spatial morphology variograms and spectral distribution of PFC-HA flocs increased with the increasing of spatial morphological height without a change in the extent of spaceanisotropy. Hurst indices were insensitive to morphological height. Two-dimensional fractal dimension Ds increased gradually with the increasing of morphological height. Ds calculated by different methods ranged between 2.0000 and 2.2609.
引文
[1]柏森,李小敏.球状模型的最优参数估计[J].物探化探计算技术.1998.20(1):25-29.
    [2]毕华兴,李笑吟,刘鑫,等.晋西黄土区土壤水分空间异质性的地统计学分析[J].北京林业大学学报.2006,28(5):59-66.
    [3]毕新慧,杨观乐,黄进,等.强化混凝去除水中的腐殖质[J].环境污染治理技术与设备,2003,7(4):47-51.
    [4]曾抗美,董海山,史建福.多维电极法去除水中溶解态腐殖酸的机理探讨[J].四川大学学报(工程科学版).2001.(6):45-49.
    [5]柴晓利,赵由才.混凝絮凝法去除腐质酸的研究[J].环境污染与防治,2003,10(25):268-270.
    [6]陈亚新,史海滨,魏占民,等.土壤水盐信息空间变异的预测理论与条件模拟[M].北京:科学出版社.2005.
    [7]陈袁袁.渗流污染物浓度空间变异性综合评价方法研究[D].北京:北京林业大学,2005:14.
    [8]池志淼.地下水污染物运移空间变异的条件模拟研究[D].北京林业大学硕士论文.2007.
    [9]褚武扬,等.材料科学中的分形[M].北京:化学工业出版社,2004.
    [10]戴树桂主编.环境化学[M].北京:高等教书出版社,2003:119-120.
    [11]邓红梅,陈永亨,常向阳.腐殖酸对铊污染土壤中铊形态和分布的影响[J].生态环境学报.2009,18(3):891-894.
    [12]范文宏,陈俊,王琼.胡敏酸对沉积物中重金属形态分布的影响[J].环境化学.2007.26(2):224-227.
    [13]范延臻,王宝贞,王琳,等.改性活性炭对有机物的吸附性能[J].环境化学.2001.20(5):444-448.
    [14]冯新灵,冯自立,罗隆诚,等.青藏高原冷暖气候变化趋势的R/S分析及Hurst指数试验研究[J].干旱区地理.2008,31(2):175-181.
    [15]付英,于水利,暴瑞玲.聚硅酸铁(PSF)混凝剂搅拌动力学的特性及理论分析.水处理技术[J].2006,32(11):16-20.
    [16]高廷耀,顾国维.水污染控制工程,高等教育出版社[M],1999,5.
    [17]葛世荣,索双富.表面轮廓分形维数计算方法的研究[J].摩擦学学报.1997.17(4):354-362.
    [18]葛世荣,朱华等.摩擦学的分形[M].北京:机械工业出版社,2005.
    [19]郝明亮,张光辉,韩美清,等.河北省土壤苯并(a)芘含量的空间变异特征[J].生态与农村环境学报.2006.22(4):48-51.
    [20]胡小荣.变差函数球状模型的拟合研究[J].本溪冶金高等专科学校学报.2000:41-43.
    [21]黄登仕,李后强.分形几何学、R/S分析与分式布朗运动[J].自然杂志.1990.13(8)477-482.
    [22]黄君礼,鲍治宇,霍范菊.饮用水氯化中氯仿形成的动力学模式[J].中国给水排水,1996,12(5):73-81.
    [23]黄廷林,熊向陨.生物流化床去除水中腐殖酸的动力学模式[J].中国环境科 学,1998,18(6):531-534.
    [24]黄廷林.强化絮凝法去除水中DBP先质研究[J].环境科学学报,1999,19(4):399-404.
    [25]黄韵,马晓燕,朱雅红.2005.改性累托石对苯酚和铬的吸附等温线及分形维数[J].硅酸盐学报,33(11):1381-1384.
    [26]姜勇,梁文举,张玉革.田块尺度下土壤磷素的空间变异性[J].应用生态学报.2005,16(11):2086-2091.
    [27]蒋展鹏,尤作亮.混凝形态学的研究进展[J].给水排水.1998.24(10).70-71.
    [28]矫希国,刘超.变差函数的参数模拟[J].物探化探计算技术,1996,18(2):157-161.
    [29]金鹏康,腐植酸混凝的化学成因、形态学特征及动力学研究[D].西安建筑科技大学.2005.
    [30]金鹏康,王晓昌,王广华.天然有机物与无机悬浮物的混凝特性对比[J].西安建筑科技大学学报(自然科学版),2005,37(3):307-310,321.
    [31]金鹏康,王晓昌,王洪波,等.水中腐植酸的臭氧化特性研究[J].西安建筑科技大学学报,2000,32(4):334-337.
    [32]金鹏康,王晓昌.腐殖酸絮凝体的形态学特征和混凝化学条件[J].环境科学学报,2001,21(增刊):23-29.
    [33]金鹏康,王晓昌.天然有机物的混凝特性研究[J].西安建筑科技大学学报(自然科学版),2000(32):155-159.
    [34]金同轨,高湘,张建锋,等.黄河泥沙的絮凝形态学和絮凝体构造模型问题.泥沙研究,2003,(5):69-72.
    [35]黎应书,秦德先,蔡燕,等.变异函数在云南大红山铁矿床中的应用[J].中国矿业.2005,14(5):52-55.
    [36]李朝生,王新伟,何江,等.河流沉积物重金属潜在生态风险及其空间分异——以黄河包头段为例[J].农业环境科学学报.2005.24(2):308-311.
    [37]李芙蓉.天然饮用水源中腐殖质的去除[J].工业安全与环保,2002,28(7):8-10.
    [38]李建华,李万社.小波理论发展及其应用.河西学院学报.2006.22(2):27-31.
    [39]李俊,栾富波,谢丽,等.腐殖酸还原Fe(ⅢI)的影响因素研究[J].环境污染与防治.2009.31(2):23-30.
    [40]李丽,冉勇,傅家谟,等.超滤分级研究腐殖酸的结构组成[J].地球化学,2004,33(4):387-394.
    [41]李乃稳,曾抗美,肖芳,等.活性炭多维电极法去除水中腐殖酸的探讨[J].四川大学学报(工程科学版).2002.34(3):57-61.
    [42]李小兵,刘莹.表面形貌分形表征方法的比较[J].南昌大学学报(理科版).2006.30(1):84-85.
    [43]李晓东,蔡国庆,马军.水中有机成分及其对饮用水水质的影响[J].给水排水,1999,25(5):12-14.
    [44]李兴拼,郑江丽,贺新春,李杰.东江流域水文变异及其对生态环境的影响[J].人民珠江.2009.5:32-34.
    [45]李业学,刘建锋.基于R/S分析法与分形理论的围岩变形特征研究[J].四川大学学报(工程科学版).2010,42(3):43-48.
    [46]李子忠,龚元石.不同尺度下田间土壤水分和混合电导率空间变异性与套合结构模型.植物营养 与肥料学报2001,7(3):255~261.
    [47]梁聪,邓慧萍,苏宇,等.聚合硫酸铁、硫酸铝强化混凝去除腐殖酸[J].净水技术.2006,25(2):27-31.
    [48]梁霖等.长江水体氯化过程中强致突变物前驱物的筛选[J].环境科学,1998,19(1):24-26.
    [49]梁中龙,袁中友,林兴通,等.城郊耕层土壤养分的空间变异特征[J].土壤通报,2006,37(3):4]7-421.
    [50]刘瑞民,王学军.湖泊水质参数空间优化估算的原理与方法[J].中国环境科学,2001(2):177-179.
    [51]刘显东,陆现彩,侯庆锋,等.基于吸附等温线的表面分形研究及其地球科学应用[J].地球科学进展,2005,20(2):201-206.
    [52]刘艳妮.变异函数和分形容量维的相关性分析.佳木斯大学学报(自然科学版).2008.26(5):702-704.
    [53]卢佳.不同拓扑空间下聚合氯化铁-腐殖酸(PFC-HA)絮体的分形维数及其动态变化特征.北京林业大学硕士论文.2008.
    [54]陆谢娟,李孟,唐友尧.絮凝过程中絮体分形及其分形维数的测定[J].华中科技大学学报(城市科学版),2003,9(20):46-49.
    [55]栾兆坤.混凝基础理论研究进展与发展趋势[J].环境科学学报,2001,21增刊:1-10.
    [56]罗旭,程承旗,冯仲科,等.树木直径生长的时间序列分析及模型预测[J].中南林业科技大学学报.2007,27(2):7-12.
    [57]罗周全,刘晓明,吴亚斌,等.地质统计学在多金属矿床储量计算中的应用研究[J].地质与勘探.2007,43(3):83-87.
    [58]马桂秋,原续波,盛京.光散射研究聚丙烯/橡胶合金相结构及其结晶特征[J].天津大学学报,2001,34(6):761-765.
    [59]马慧,王啸.凝聚法处理水中腐植质的初步研究.环境监测管理与技术[J].1997,19(1):21-25.
    [60]孟宪国,赵鹏大.地质数据的分形结构[J].地球科学——中国地质大学学报.1991,16(2):207-212.
    [61]孟宪国.R/S分析和地球化学数据的分形处理[J].地球科学——中国地质大学学报.1991,16(3):281-286.
    [62]曲久辉,雷鹏举,杨日光.微絮凝直接纤维过滤去除低浊水中的腐殖质[J].中国环境科学,1999b,19(4):293-296.
    [63]曲久辉,林谡.高铁酸盐氧化絮凝去除水中腐殖质的研究[J].环境科学学报,1999a,19(5):510-514.
    [64]曲久辉.水中天然有机大分子对混凝影响的电动特征[J].环境科学学报,1997,17(2):160-166.
    [65]任爱玲,王启山,郭斌.2006.污泥活性炭的结构特征及表面分形分析[J].化学学报,64(10):1068-1072.
    [66]申维.分形混沌与矿产预测[M]北京:地质出版社,2002.
    [67]孙红杰,张万忠,谷晓昱,等.水力条件对絮凝剂絮凝效果的影响[J].辽宁化工,2004,33(11):629-631,634.
    [68]孙洪泉,谢和平.断层粗糙表面的分形模拟[J].中国矿业大学学报.1999.28(5):433-436.
    [69]谭建新,陈耀中,林漳基.腐殖酸还原杯的动力学研究[J].核化学与放射化学.]992.14(1):1-7.
    [70]汤鸿霄,微界面水质过程的理论与模式应用[J].环境科学学.2000.20(3):2-9.
    [71]汤鸿霄.环境科学中的化学问题:环境水质学中的几个化学问题[J].化学进展,2000,12(4):415-422.
    [72]汤鸿霄.无机高子絮凝剂的基础研究[J].环境化学,1990,9(3):1-12.
    [73]陶澍,王永华,刘文新,等.引滦水中不同形态天然有机物的卤代活性[J].环境科学学报1994,14(1):19-23.
    [74]田秉晖,葛小鹏,潘纲,等PDADMAC强化絮凝去除腐殖质类天然有机污染物的研究[J].环境科学,2007,28(1):92-97.
    [75]万丽.基于变异函数的空间异质性定量分析[J].统计与决策,2006,2(下):26-27.
    [76]王春霞,彭安.不同来源腐殖酸的光解及过氧化氢对其影响.环境科学学报,1996,16(3):270-275.
    [77]王东升,刘海龙,晏明全,等.强化混凝与优化混凝:必要性、研究进展和发展方向[J].环境科学学报.2006.26(4):544-551.
    [78]王东升,汤鸿霄,栾兆坤.分形理论及其研究方法[J].环境科学学报,2006,21增刊:10-16.
    [79]王红宇,李久义,栾兆坤,等聚合氯化铁絮凝处理低温低浊水的研究[J].环境污染治理技术与设备.2004.5(12):25-27.
    [80]王红宇,赵华章,栾兆坤,等.聚合氯化铁对浊度和腐殖酸的絮凝特性研究[J].环境科学,2004,5(25):65-68.
    [81]王建军,魏宗信.粗糙表面轮廓分形维数的计算方法[J].工具技术,2006,40(8)73-75.
    [82]王晶,张旭东,李彬,等.腐殖酸对土壤中Cd形态的影响及利用研究[J].土壤通报.2002,33(3):185-187.
    [83]王仁铎,胡光道.线性地质统计学[M].北京.地质出版社.1998:45-52.
    [84]王晓昌,丹保宪仁.絮凝体形态学合密度的探讨-Ⅰ:从絮凝体分形构造谈起[J].环境科学学报.2000a,20(3):257-262.
    [85]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨-Ⅱ.致密型絮凝体形成操作模式[J].环境科学学报.2000b,20(4):385-390.
    [86]王晓昌,金鹏康.腐殖酸铝盐絮凝体的动态特性[J].环境科学,2002a,23(4):71-75.
    [87]王晓昌,王锦.混凝-超滤去除腐殖酸的试验研究[J].中国给水排水.2002b,18(03):18-22.
    [88]王晓昌.臭氧处理的副产物[J].给水排水,1998,24(12):75-77.
    [89]王毅力,杜白雨,卢佳,等.聚合氯化铁-腐殖酸(PFC-HA)冷冻干燥絮体的表面微观形貌及表面分形特征[J].环境科学学报,2008b,28(4):616-623.
    [90]王毅力,刘杰,杜白雨,等.颗粒物表面酸碱特性与孔表面分形的研究[J].环境科学学报.2007.27(1):106-113.
    [91]王毅力,娄敏,石宝友,等.微涡旋絮凝-逆流气浮-纳滤集成工艺去除水中腐殖酸的研究-以聚合 氯化铁(PFC)为絮凝剂[J].环境科学学报,2006a,26(5):791-797.
    [92]王毅力,卢佳,杜白雨,等.聚合氯化铁-腐殖酸(PFC-HA)絮体的不同拓扑空间下分形维数的研究[J].环境科学学报,2008a,28(4):606-615.
    [93]王毅力,石宝友,杜白雨,等.聚合氯化铁-腐殖酸(PFC-HA)冷冻干燥絮体的表面与孔分形研究.环境科学学报,2006b,26(9):1474-1483.
    [94]王毅力,于富玲,王东升,等.颗粒活性炭吸附染料的分形动力学特征的研究[J].环境科学学报,2005,25(5):643-649.
    [95]王政权,王庆成,李哈滨.红松老龄林主要树种的空间异质性特征与比较的定量研究[J].植物生态学报.2000,24(6):718-723.
    [96]魏凤英,曹鸿兴,徐祥德.变异函数在降水场空间特征分析中的应用.南京气象学院学报.2002,25(6):795-799.
    [97]魏宏斌,徐迪民,徐建伟.水溶液中腐殖酸的二氧化钛膜光催化氧化研宄.环境科学学报,1998,(18)2:161-165.
    [98]魏守强,刘瑛,史敬伟,等.混凝及其与粉末活性炭联用去除水中腐殖酸的研究.当代化工[J].2003,32(4):204-207.
    [99]吴应琴,马明广,张媛,等.皂角苷及腐殖酸对微生物降解蒽的影响[J].环境科学学报,2007,27(11):1818-1822.
    [100]肖淑衡,梁栋,王云鹤,等.煤表面介观形貌特征的二维功率谱分析[J].湖南科技大学学报(自然科学版).2006,21(4):23-26.
    [101]谢昌武,王毅力,刘囡,等.强化混凝技术去除腐殖酸的研究进展[J].中国给水排水,2004(20):37-39.
    [102]谢和平,王金安.岩石节理(断裂)表面的多重分形性质[J].力学学报.1998a,20(3):314-320.
    [103]谢和平,周宏伟.基于分形理论的岩石节理力学行为研究[J].中国科学基金,1998b,12(4):247-252.
    [104]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.21.
    [105]熊向陨,黄廷林,丁京亭.水中腐殖酸的O3氧化与其生物可降解性实验研究[J].环境工程,1998,16(6):7-10.
    [106]杨秀虹,李适宇.地统计学方法在环境污染研究中的应用[J].中山大学学报(自然科学版),2005,44(3):97-101.
    [107]杨艳玲,李星,李圭白.水中颗粒物的检测及应用[M],化学工业出版社,2007.
    [108]易成,张亮,陈忠辉,等.一种新的描述粗糙表面形貌尺度分维参数Rd的研究[J].中国矿业大学学报.2007,36(1):75-80.
    [109]于光,李鹏,赵清亮,等.超精密加工表面特性的功率谱密度表征与分析[J].哈尔滨工业大学学报.2010,42(1):29-32.
    [110]于鑫,张晓健,王占生.水源水及饮用水中的有机物对人体健康的影响[J].中国公共卫 生,2003,19(4):66-67.
    [111]于祚斌,蔡心培,周英田.五种消毒剂消毒饮水后形成三卤甲烷的研究[J].中国给水排水,1994,10(4):4-8.
    [112]余贵芬,蒋新,和文祥,等.腐殖酸对红壤中铅镉赋存形态及活性的影响.环境科学学报.2002,22(4):508-513.
    [113]湛含辉,湛雪辉,李小东.混凝(沉降)反应中“流体剪切力与物理化学”的相互效应研究[J].矿冶工程,2005,12(25):38-40.
    [114]张爱萍.基于仿真的网络流量分形维数的估计与分析[J].计算机与现代化.2006,5:12-14.
    [115]张建春.化学混凝法处理城市污水.科技信息[J].2007,21:318.
    [116]张绍园,姜兆春,王菊思.饮用水消毒副产物控制技术研究现状与发展[J].水处理技术.1998,24(1):7-13.
    [117]张小艳,谭勇.变差函数球状模型的自动拟合与实现[J].物探与化探.2010,34(2):253-257.
    [118]张亚衡,周宏伟,谢和平.粗糙表面分形维数估算的改进立方体覆盖法[J].岩石力学与工程学报.2005,24(17):3192:3196.
    [119]张颖,牛志广,张宏伟.地统计学用于近海有机物浓度估值的研究[J].天津大学学报.2007,40(4):484-488.
    [120]张元晶,周明,王阳俊.高速铣削SiCp/Al复合材料表面形貌功率谱密度研究[J].工具技术.2010,4:17-20.
    [121]赵军,张久明,孟凯等.地统计学及GIS在黑土区域土壤养分空间异质性分析中的应用——以海伦市为例[J].水土保持通报.2004,24(6):53-57.
    1122]赵伟新,于春华,李磊,等.变异函数在平面非均质性研究中的应用[J].特种油气藏.2003,10(6):30-33.
    [123]郑雅芹,王毅力,卢佳,等.粘土颗粒吸附直接染料的分形特征[J].环境科学学报,2008,28(4):634-646.
    [124]周宏伟,谢和平,Kwasniewskima粗糙表面分维计算的立方体覆盖法.摩擦学报,2000a,20(6):455-459.
    [125]周宏伟.岩石节理表面形貌的各向异性与尺度效应[D].中国矿业大学博士后出站报告,2000b.
    [126]Aiken G. R.,Mc Knight D. M.,WershawR.L.,et al. Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization[M].John Wiley and Sons.New York NY.1985:363-385.
    [127]Amy G.L., Sierka R.A., Bedessem J., et al. Molecular size distribution of dissolved organic matter[J].JAWWA,1992,84 (6):67-75.
    [128]Babcock D.B. Singer P.C. Chlorination coagulation of humic and fulvic acid [J].J.AWWA.1979 (3):149-153.
    [129]Baltar C.A.M., Oliveira J.F. Flocculation of colloidal silica with polyacrylamide and the effect of dodecylamine and aluminium chloride pre-conditioning[J]. Miner. Eng.1998,11:463-467.
    [130]Belem T, Homand Etienne F, Soul EY M. Fractal analysis of shear joint roughness[J]. International Journal of Rock Mechanics and Mining Sciences.1997.34 (324):130-140.
    [131]Borjesson G., Danielsson A., Svensson B.H. Methane fluxes from a Swedish landfill determined by geostatistical treatment of static chamber measurements[J]. Environ Sci Technol.2000 (34):4044-4050.
    [132]Bower C., Washington C. Purewall and T.S. The use of image analysis to characterize aggregation in a shear field [J].Colloids and Surfaces,1997,127(1-3):105-112.
    [133]Bushell G.C. Yan Y.D.,Woodfield D.,et al. On techniques for the measurement of the mass fractal dimension of aggregates[J].Advances in Colloid Interface Science.2002.95(1):1-50.
    [134]Bushell G.C., Amal R.Measurement of fractal aggregates of polydiperse particles using small-angle scattering[J].Journal of colloid and Interface Science.2000.221(2):186-194.
    [135]Chakraborti R K, Atkinson J F, Van Benschoten J E. Characterization of alum floc by image analysis [J]. Environmental Science and Technology,2000,34(18):3969-3976.
    [136]Chakraborti R.K., Gardenr K.H., Atkinson J.F., Van BenschotenJ.E.Changes in fractal dimension during aggregation[J]. Water Res.2003 37:873-883.
    [137]Chantal de Fouquet, Jacques Deraisme, Michel Bobbia.How to evaluate the risks of exceeding limits:Geostatistical models and their application to air pollution [J].Environnement, Risques&Sante.2007.6(3):207-218.
    [138]Chen M.J., Pang Q.L., Wang J.H., et al. Analysis of 3D microtopography in machined KDP crystal surfaces based on fractal and wavelet methods[J].International Journal of Machine Tools & Manufacture.2008,48(7-8):905.
    [139]Choi Y.H.,Kim, H.S.Kweon, J.H.Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes[J].Separation and PurificationTechnology.2008,62(3):529-534.
    [140]Christian Volk, Kimberly Bell, Eva Ibrahim, et al. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water[J]. Wat. Res.2000. 34(12):3247-3257.
    [141]Clark I.Practical geostatistics[M].Applied Science LTD.London,1981.
    [142]Clark K.C.,Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method[J].Computers&Geoscience.1986.12(5):713-722.
    [143]Clifford P.J., Li X.Y. Settling Velocities of Fractal Aggregates [J].Envrion. Sci.Technol.1996.30.1911-1918.
    [144]Dathe A., Eins S., Niemeyer J., et al. The surface fractal dimension of the soilpore interface as measured by image analysis[J]. Geoderma.2001.103(12).203-229.
    [145]Douglas M Owen,Gray L Amy. Nom characterization and treatability [J].JAWWA,1995,87(1):46- 63.
    [146]Driscoll C.T., Blette V., Yan C., Schofield L.C., Munson R.,Holsapple J.. The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes[J]. Water, Air and Soil Pollution,1995,80:499-508
    [147]Edwards M.1997.Predicting DOC removal during enhancedcoagulation[J].JAWWA,89(5):78-89.
    [148]Edzwald JK. TobiasonJE.Enhanced Coagulation:US Requirement and A Broader View [J].Water Science&Technology.1999.40 (9):63-70.
    [149]El Shafei G.M.S.,Philip C.A,Moussa N.A.Fractal analysis of hydroxyapatite from nitrogen isotherms[J].Journal of Colloid and Interface Science.2004.277:410-416.
    [150]Elisabete Antunes, Fernando A.P. Garcia, Paulo Ferreira, Angeles Blanco,Carlos Negro,and M. Graca Rasteiro.Effect of Water Cationic Content on Flocculation, Flocs Resistance and Reflocculation Capacity of PCC Induced by Polyelectrolytes[J].Ind. Eng. Chem. Res.2008,47, 6006-6013.
    [151]Erzan A., Gungor N. Fractal geometry and size distribution of clay particles[J].Colloid and interface science.1995.176:301-307.
    [152]Francois R.J.,Van Haute A.A. Structure of hydroxide flocs[J]. Water Res.1985.19(30):1249-1254.
    [153]GamalM.S.,El Shafei,Philip C.A.,MoussaN.A.Fractal analysis of hydroxyapatite from nitrogen isotherms[J].Journal of Colloid and Interface Science.2004(277):410-416.
    [154]Glover S.M., Yan Y.D., Jameson G.J., et al. Dewatering properties of dual-polymer-flocculated systems[J]. Int. J. Miner. Process.2004,73:145-160.
    [155]Goodarz-Nia.Floc simulation:promote spheroidal particles[J].JC&IS.1970.70(2):306-319.
    [156]Gregory J. The density of particle aggregates [J].Wat. Sci. Tech.1997,36(4):1-13.
    [157]Guan J, Waite T D, Amal R. Rapid structure characterization of bacterial aggregates [J]. Environmental Science and Technology.1998,32(23):3735-3742.
    [158]Hajnos M.,Korsunskaia L.,PachepskyY.Soil pore surface properties in managed grasslands[J].Soil&Tillage Research.2000.55.127-135.
    [159]Hanson A.T., CleasbyJ.L.The effects of temperature on turbulent flocculation:fluid dynamics and chemistry [J].J.AWWA.1990.82 (11):56-73.
    [160]Hurst H.E. Long-term storage capacity of reservoirs:An experimental study [J].Transactions of American Society of civil Engineers.1951.116:770-808.
    [161]Jekel M.R. Interactions of Humic Acids and Aluminium salts in the Flocculation Process [J]. Water Research.1986.20(12):1535.
    [162]Jiang J.Q.and Nigel J.D.Graham.preliminary evaluation of the performance of new Pre-Polymerised inorganic coagulants for lowland surface water treatment[J]. Wat.Sei.Tech.,1998,37(2):121-128.
    [163]Jiang Q.,Logan B.E. Faractal dimensions of aggregates from shear deices[J].J.AWWA.1996.88(2):100-113.
    [164]Jiang Q.,Logan B.E.Fractal dimensions determined from steady-state size distribution[J].Environmental Science and technology.1991.25(12):2031-2038.
    [165]Johnson C P, Li X Y, Logan B E. Settling velocities of fractal aggregates [J].Environmental Science and Technology,1996,30(6):1911-1918.
    [166]Josso B., Burton D.R., Lalor M.J.Wavelet strategy for surface roughness analysis and characterization[J].Computer Methods in Applied Mechanics and Engineering 2001(191):829-842.
    [167]Jost, G., G. B. M. Heuvelink and A. Papritz. Analysing the Space-Time Distribution of Soil Water Storage of a Forest Ecosystem Using Spatio-Temporal Kriging[J]. Geoderma.2005.182:258-273.
    [168]Journel A G, Huijbregts C J.Mining geostatistics[M].London.AcademicPress.UK.1978.
    [169]Jozefaciuk G., Muranyi A., Szatanik-Kloc A.,et al. GyuriczaC.Changes of surface, fine pore and variable charge properties of a brown forest soil under various tillage practices[J].Soil Tillage Res. 2001(59).127-135.
    [170]Kang C. Temperature effects on flocculation kinetics on using Fe(Ⅲ) coagulant.[J]. Environ. Engrg.1995.121(12):893.
    [171]Kavanaugh M.C. Modified coagulation for improved of trihalomethane precursor [J].J.AWWA.1978(11):163-165.
    [172]Kim A.S. Stolzenbach K.D. The Permeability of Synthetic Fractal Aggregates with Realistic Three. dimensional Structure[J]. Journal of Colloid and interface Science,2002,253:315-328.
    [173]Knulst J C. Boerschke R C. LoemoS.Differences in organic surface microlayers from an artificially acidified and control lake,elucidated by XAD-8/XAD-4 tandem separation and solid state 13C NMR spectroscopy[J].Environ Sci Technol..1998,32(1):8-12.
    [174]Koen G., Willy V. Image analysis to estimate the settleability and concentration of activated sludge[J]. Water Res.1997,31:1126-1134.
    [175]Kostoglou M. Konstandopoulos A.C. Evolution of Aggregate Size and Fractal Dimension during Brownian Coagulation[J]. Journal of Aerosol Science.2001.32:1399-1420.
    [176]Lavankar A.L.,Gemmell R.S.A size-density relationship for flocs[J].J.AWWA.1968.60(9):1040-1046.
    [177]Lee D.G. Bonner J.S. Garton L.S. et al. Modeling coagulation kinetics incorporating fractal theories:comparison with observed data [J].Water Research.2002,36(4):1056-1066.
    [178]Levine S., Friesen W.I., in.Y.A. Attia (Ed.).Flocculation in Biotechnology and Separation Systems [M].Elsevier.Amsterdam,1987:3.
    [179]Li D.H.,Ganczarczyk J.J. Stroboscopic determination of settling velocity, size and porosity of activated sludge floc[J].Wat.Res.1989.21(3):257-262.
    [180]Li T.,Yan, X.M.,WangD.S.,et al.Impact of preozonation on the performance of coagulated flocs[J].Chemosphere.2009,75(2):187-192.
    [181]Li T.,Zhu Z.,WangD.S.,et al.The strength and fractal dimension characteristics of alum-kaolin flocs[J].Int.J.Miner.Process.2007(82):23-29.
    [182]Li X., Logan B.E. Settling and coagulating behavior of fractal aggregates[J]. Wat.Sci.Tech.2000.42:253-258.
    [183]Lin Y., Xiao X.R.,Li X. P.,et al.Wavelet analysis of the surface morphologic of nanocrystalline TiO2 thin films[J].Surface Science.2005.579(1):37-46.
    [184]Logan B.E., Kilps J.R. Fractal dimensions of aggregates formed in different fluid mechanical environments [J].Water Rearch.1995.29 (2):443-453.
    [185]Lorene E.M混沌的本质[M].刘式达译.北京:气象出版社.1997.
    [186]Mandelbrot B., Van Vess J. Fractional Brownian motion, fractional noises, and applications [J].SIAM Rev.1968(10):422-437.
    [187]Mandelbrot B.B., Wallis J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence [J].Water Resources Res:B.1969,5(5):967-988.
    [188]Mandelbrot B.B., Wallis J.R. Some log-run properties of geographysical records [J].Water Resource Research:A.1969,5(2):321-340.
    [189]Mandelbrot B.B.The fractal geometry ofnature[M].New York:W.H. Freeman and Company.1982.
    [190]Matheron G. Principles of geostatistics[J]. Economic Geology,1963,58:1246-1266.
    [191]Meakin P. Fractal aggregates[J].Advances in Colloid Inter.Sci..1988(28):249-331.
    [192]MeczislawHajnos, LudmilaKorsunskaia, YakovPachepsky.Soil pore surface properties in managed grasslands[J].Soil&Tillage Research.2000(55):63-70.
    [193]Michael C, Sterling Jr, James S B.,et al. Application of fractal flocculation and vertical transport model to aquatic sol sediment systems [J]. Wat Res.2005,39(11):1818-1830.
    [194]Morris J.K.,Knocke, W.R. Temperature effects on the use of metal-ion coagulants for water treatment [J].J.AWWA.1984,76 (3):74-79.
    [195]Neimark A V, Unger K K. Method of discrimination of surface fractality[J]. Journal of Colloid of Interface Science,1993,158:412-419.
    [196]Niola V., Nasti G., Quaremba G. A problem of emphasizing features of a surface roughness by means the discrete wavelet transform[J].Journal of Material Processing Technology.2005(164):1410-1415.
    [197]Noemi Barabas, Pierre Goovaerts, Peter Adriaens. Geostatistical Assessment and Validation of Uncertainty for Three-Dimensional Dioxin Data from Sediments in an Estuarine River[J]. Environ. Sci. Technol.2001 (35)3294-3301.
    [198]O'Melia C R, Becker W C. Removal of humic substances by coagulation[J].Wat. Sci. Tech,1999,40(9):47-54.
    [199]Philip C S,SingerC.Control of disinfection by-products in dringking water[J]. Journal Environmental Engineering,1994,120(4-6):84.
    [200]Rajat K.C Joseph F.A. John V.B.Characterization of Alum Floc by image Analysis[J].Environment Science Technology.2000,34:3969-3976.
    [201]Rodriguez J. Castrillon L. Maranon E.Removal of non-biodegradable organic matter from landfill leachates by adsorption[J].Water Res.,2004,38:3297-3303.
    [202]Serra T,Logan B E. Collision frequencies of fractal bacterial aggregates with small particles in a sheared fluid[J].Environ Sci Technol,1999,33(13):2247-2251.
    [203]Sokolowska Z.,Bor6wko M.,Reszko-ZygmuntJ,etal.Adsorption of nitrogen and water vapor by alluvial soils[J].Geoderma.2002,107:33-54.
    [204]Sorensen C.M.,et al.Fractal cluster size distribution measurement using static light scattering[J].Colloid and interface science.1995,174:456-460.
    [205]Stevens A A,Slocum C J.Chlorination of organics in drinking water[J].J Am Water Assoc,1976,68:615-620.
    [206]Stevenson F J. Genesis, Composition, Reactions 2nd Edition.Humus Chemistry [M],1994,New York.
    [207]Stuart W.K.,et al, Three Approaches for Characterizing NOM [J].J.AWWA,1996,88(6):66-79
    [208]Stuart W.K.Jar-tests evaluation of enhanced coagulation[J].J.AWWA.1995(10):93-107.
    [209]Stumm W, Morgan J. Aquatic Chemistry (3rd edition) [M]. John Wiley &Sons Inc.1996,141-143.
    [210]Sutherland.D.N.A theoretical model of flocstructure[J].Colloid and Interface Science.1967,25:373-385.
    [211]Tambo N.,WangX.C.The mechanism of pellet floeculation in a fluidized-bed operation[J]Water SRT-Aqua.1993,42(2):152-157.
    [212]Tang P., Greenwood J., Raper J.A.A model to describe the settling behavior of fractal aggregates[J].J. Colloid Interf. Sci.2002,247:210-219.
    [213]Toth T., Jozefaciuk G. Physicochemical properties of a solonetzictoposequence[J]. Geoderma.2002,106 (1-2):137-159.
    [214]USEPA. Enhanced Coagulation and Enhanced Precipitative Softening Guidance Manual [M].EPA. 1999.815-R-99-012.
    [215]Vidal Vazquez E., Miranda J.G.V.,Alves M.C.,Paz Gonzalez A.Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models[J]. Ecological Modelling.2005,182:337-353.
    [216]Void M.J. Computer simulation of floc formation in a colloidal suspension[J].Colloid and Interface Science.1963,18:684.
    [217]Waite T.D. Cleaver J.K. Beattie J.K. Aggregation kinetics and fractal structure of 7-alumina assemblages [J].Journal of Colloid and Interface Science.2001,241 (2):333-339.
    [218]Wang X.C.,Tambo N. Application of fluidized pellet bed technique in the treatment of highly colored and turbid water[J].Water SRT-Aqua.l993c,42(5):301-309.
    [219]Wang X.C.,Tambo N. Control of coagulation condition for treatment of high-turbidity water by fluidized pellet bed separation[J].Water SRT-Aqua.1993b,42(4):212-222.
    [220]Wang X.C.,Tambo N. Kinetic study of fluidized pellet bed process I.Characteristics of particle motions[J].Water SRT-Aqua.1993a,42(3):146-154.
    [221]Wang Y.,Gao B.Y.,Xu X.M.,et al. Characterization of floc size, strength and structure in various aluminum coagulants treatment[J].Journal of Colloid and Interface Science.2009,332(2):354-359.
    [222]Wang Y.L., Du B.Y., Dou X.M., et al. Study on the pore surface fractal dimension and surface acid-base properties of natural particles around Guantingreservoir.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007a,307:16-27.
    [223]Wang Y.L., Lu J.,Du B.Y., et al. Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces. Journal of Environmental Sciences.2009,21:41-48.
    [224]Wang Y.L., Zhou H.W., Yu F.L., et al. Fractal adsorption characteristics of complex molecules on particles-a case study of dyes onto granular activated carbon (GAC).Colloids and Surfaces A: Physicochemical and Engineering Aspects.2007b,299:224-231.
    [225]Wang Y.L.,Du B.Y.,Liu J.,et al.Surface analysis of cryofixation-vacuum-freeze-dried polyaluminum chloride-humic acid (PACI-HA) flocs. Journal of Colloid and Interface Science, 2007c,316:457-466.
    [226]Watras C.J., Morrison A.K., Bloom S.N.. Chemical correlates of Hg and methyl-Hg in Northern Wisconsin lake water under ice-lake[J].Water,Air and Soil Pollution,1995,84:253-267.
    [227]Wei J.C.,Gao B.Y.,Yue Q.Y.,et al.Comparison of coagulation behavior and floc structure characteristic of different polyferric-cationic polymer dual-coagulants in humic acid solution[J].Water Rearch.2009,43(3):724-732.
    [228]Whelan T J. Kannangara G S K. Wilson M A.Increased resolution in high-performance liquid chromatograph spectra of high-molecular-weight organic components of bayerliquors[J].IndEngChem Res.,2003,41(26):6673-6681.
    [229]Wu R.M. Lee D.J. Waite T.D. et al. Multilevel structure of sludge flocs [J].Journal of Colloid and Interface Science.2002.252 (2):383-392.
    [230]Xiao F.,HuangJu-Chang Howard.et al/.Effects of low temperature on coagulation kineticsandfloc surface morphology using alum [J].Desalination.2009,237:201-213.
    [231]Xie H.,Wang J.A.,Direct fractal measurement of fracture surfaces[J].Int J. Solids&Structures.1999b,36:3073-3084.
    [232]Xie H.,Wang J.A.,Kwasniewski M.A.,Multifractal characterization of rock fracture surfaces[J].Int J Rock Mech Min Sci.1999a,35(1):19-27.
    [233]Xie H.,Wang J.A.,Stein E.Direct fractal measurement and multifractal properties of fracture surface[J].PhyLett A.1998.A242:41-50.