几类生物模型正平衡态解的存在性、多重性及惟一性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中的许多生态现象都可以用数学模型来刻划.通过对数学模型的研究,我们可以对生态现象作出科学的解释和预测,从而为生态问题的解决提供合理的方案.早在十九世纪初,数学家们就利用常微分方程来描述生物种群的发展演变过程,这个时期所讨论的问题大都假定种群密度在空间分布均匀.如果密度分布不均匀,那么高密度位置的种群就会向低密度位置扩散,此时大量的生物数学模型可归纳为反应扩散方程.应用反应扩散方程来研究种群的动力学行为已成为偏微分方程领域研究的一个重要方向.鉴于种群的长时行为与反应扩散系统相应的平衡态问题密切相关,因此研究反应扩散系统正平衡态解的定性性质有着十分重要的理论和现实意义.
     本文主要运用非线性分析和非线性偏微分方程,特别是反应扩散方程和对应椭圆型方程的理论和方法,深入研究了四类生物模型的动力学行为,包括正平衡态解的存在性、多重性、惟一性及稳定性.所涉及的数学理论包括上下解方法、比较原理、全局分歧理论、不动点指标理论和摄动理论等.主要内容有以下几个方面:
     一、进一步研究了带Beddington-DeAngelis反应项的捕食-食饵模型正平衡态解的存在性和惟一性.首先利用分歧理论给出正解存在的充分条件,然后结合变分原理对主特征值进行估计,从而得到直接以参数形式出现的简单可计算的条件以保证正解的存在性和不存在性.同时,在一维情况下,我们给出了正解的存在惟一性.结果表明,当捕食者之间干涉作用较强时正解是惟一存在的.最后详细分析了体现捕食者之间相互干涉的参数k对正解渐近性的影响,进而在七充分大时得到了正解的惟一性.这与一维情况下的结果是一致的.
     二、研究了一类具有扩散的捕食-食饵-互惠模型正平衡态解的多重性和惟一性.在种群的相互作用过程中,第三种群对捕食过程的干涉可以有很多方式.我们考虑的是第三种群阻碍捕食过程的情况,这种阻碍通过与食饵建立合作关系体现出来.首先利用不动点指标理论给出正平衡态解存在的两个充分条件,然后讨论了第三种群与食饵的合作关系对正解的影响.通过分歧理论和不动点指标理论的巧妙结合,我们在食饵对第三种群的影响较大时得到了正解的多重性结果,并且发现所有的正解只有两种类型,一种渐近稳定,一种不稳定;另一方面,通过细致分析解的渐近性态,我们在第三种群对捕食过程干涉较强(即γ充分大)时得到了正解的惟一性.进一步的研究发现,正解的惟一性不必然要求γ充分大,我们甚至在γ有界时得到了一个更一般的惟一性结果.
     三、考虑了一类具有交叉扩散的捕食-食饵模型,其反应项为修正的Leslie-Gower和HollingⅡ型反应函数.首先利用分歧理论给出正解存在的两个充分条件,同时刻画了正解的共存区域.其次,通过分析共存区域的边界曲线对交叉扩散系数的依赖关系,我们发现当食饵对捕食者的扩散产生较大影响时,共存区域扩张,而当捕食者对食饵的扩散产生较大影响时,共存区域缩小.最后我们讨论了非线性扩散对正解的影响.结果表明,当非线性扩散较强时,所有正解只有两种可能的渐近行为.
     四、研究了非均匀恒化器模型二重特征值处的分歧及稳定性.在两竞争物种的生长率均靠近其临界值时,得到了正解(u(s),v(s))的存在性,同时发现当s>0充分小时,该正解连接了分别发自两个半平凡解的分歧曲线.而且,通过复杂的计算,我们给出了该正解的渐近稳定性条件.
Many ecological phenomena in nature can be rationalized into mathematical models. By investigating these models, some ecological phenomena may be ex-plained and controlled scientifically, and some reasonable schemes may be provided for the solution of ecological problems.
     As early as the beginning of the nineteenth century, mathematicians have made use of ordinary differential equations to describe the evolution of biological popula-tions. During that period, the issues discussed by people were under the assumption that the population density in space distribution is uniform. If the density distribu-tion is non-uniform, then high-density populations would diffuse to the position of low-density. At this point, a large number of bio-mathematical models can be sum-marized as reaction-diffusion equations. Using reaction-diffusion systems to study the dynamical behavior of biological populations has been an important research as-pect in the region of nonlinear partial differential equations. Since the population's long time behavior is closely related to the steady-state problem of reaction-diffusion system, studies on the qualitative properties of positive steady-state solutions have an important significance both in theory and in reality.
     In this dissertation, mainly using the theories of nonlinear analysis and nonlin-ear partial differential equations, especially those of reaction-diffusion equations and the corresponding elliptic equations, we have systematically studied the dynamical behaviors of four biological models with reaction and diffusion, such as the coex-istence, multiplicity, uniqueness and stability of positive steady-states. The tools used here include super-sub solutions method, comparison principle, global bifurca-tion theory, fixed-point theory of topology and perturbation technique. The main contents and results are as follows:
     (i) A diffusive predator-prey model with Beddington-DeAngelis functional re-sponse under homogeneous Dirichlet boundary conditions is studied once more. Making use of global bifurcation theory, we obtain a necessary and sufficient con-dition for the existence of positive solutions. Moreover, a range of parameters for the uniqueness of positive solution is described in one dimension. Furthermore, the effect of large k which represents the extent of mutual interference between preda-tors is extensively studied. By meticulously analyzing the asymptotic behaviors, we obtain a complete understanding of the existence, uniqueness and stability of positive solutions when k is sufficiently large.
     (ii) We consider a reaction-diffusion system of three species:predator, prey and mutualist, and investigate the multiplicity and uniqueness of positive steady-states. Here we consider a case in which a mutualist modifies predation to the benefit of a prey, namely a mutualist deterring predation on a prey. By means of the index theory of fixed points, we obtain two sufficient conditions for the existence of positive solutions, and whenβis suitably large, we establish the multiplicity result and find all the positive solutions are of only two types, one is asymptotically stable and the other unstable. Moreover, by the classic regular and singular perturbation theory, we extensively study the effect ofγ, which represents the extent of a mutualist deterring predation on a prey, and gain a good understanding of the existence, uniqueness and stability of positive solutions whenγis sufficiently large. Our further results show that the uniqueness does not necessarily needγto be large at some moment, and we establish a more general result even whenγis bounded.
     (iii) A cross-diffusion predator-prey model with modified Leslie-Gower and Holling-II functional responses is discussed. Making use of global bifurcation the-ory, we obtain two sufficient conditions for the existence of positive solutions and then describe the coexistence region. Moreover, by analyzing the cross-diffusion co-efficients dependence of two boundary curves, we find that the coexistence region spreads as the effect of prey on predator's diffusion increases, and narrows when the effect of predator on prey's diffusion is large. At last, we derive the effect of nonlin-ear diffusion on positive solutions. The results show that all the positive solutions have only two possible asymptotic behaviors.
     (iv) A competition model in the unstirred chemostat is considered. The bifur-cation solution (u(s),v(s)) from a double eigenvalue is obtained. And we see that for sufficiently small s> 0, (u(s),v(s)) connects the bifurcating positive solution from the semitrivial solution (θa,0) with that from the other semitrivial solution (0,θb). Moreover, the asymptotic stability of (u(s),v(s)) is derived under certain conditions.
引文
[1]Volterra V. Variations and fluctuations of the number of individuals in animal species living together[J]. R. N. Chapman:Animal Ecol.,1931:409-448.
    [2]Lotka A J. Elements of Physical Biology[M]. Baltimore:Williams and Wilkins,1925.
    [3]Dancer E N. On the indices of fixed points of mappings in cones and applications [J]. J. Math. Anal. Appl.,1983,91:131-151.
    [4]Dancer E N. On positive solutions of some pairs of differential equations[J]. Trans. Amer. Math. Soc.,1984,284:729-743.
    [5]Dancer E N. On positive solutions of some pairs of differential equations II[J]. J. Differential Equations,1985,60:236-258.
    [6]Dancer E N. On uniqueness and stability for solutions of singularly perturbated predator-prey type equations with diffusion [J]. J. Differential Equations,1993,102: 1-32.
    [7]Wu J H, Wei G S. Coexistence states for cooperative model with diffusion [J]. Com-put. Math. Appl.,2002,43:1277-1290.
    [8]Dancer E N, Zhang Z T. Dynamics of Lotka-Volterra competition system with large interaction[J]. J. Differential Equations,2002,182:470-489.
    [9]Wang L Z, Li K T. On positive solutions of the Lotka-Volterra cooperating models with diffusion[J]. Nonlinear Anal.,2003,53:1115-1125.
    [10]Yamada Y. Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions [J]. SIAM J. Math. Anal.,1990,21:327-345.
    [11]Li K T, Wang L Z. Global bifurcation and long time behavior of the Volterra-Lotka ecological model[J]. International J. Bifurcation and Chaos,2001,11(1):133-142.
    [12]Lopez-Gomez J, Pardo R M. Existence and uniqueness of coexistence states for the predator-prey model with diffusion:the scalar case[J]. Differential and Integral Equations,1993,6(5):1025-1031.
    [13]Lou Y. Necessary and sufficient condition for the existence of positive solutions of certain cooperative system[J]. Nonlinear Anal.,1996,26(6):1079-1095.
    [14]Lou Y, Nagylaki T, Ni W M. On diffusion-induced blowups in a mutualistic model[J]. Nonlinear Anal.,2001,45:329-342.
    [15]Li L. Coexistence theorems of steady states for predator-prey interacting system [J]. Trans. Amer. Math. Soc.,1988,305:143-166.
    [16]Gui C F, Lou Y. Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model[J]. Comm. Pure Appl. Math.,1994,47:1571-1594.
    [17]Hutson V, Lou Y, Mischaikow K. Convergence in competition models with small diffusion coefficients[J]. J. Differential Equations,2005,211:135-161.
    [18]Du Y H, Brown K J. Bifurcation and monotonicity in competition reaction-diffusion systems[J]. Nonlinear Anal.,1994,23(1):1-13.
    [19]Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation [J]. Mem. Entomol. Soc. Canad.,1965,45: 1-60.
    [20]Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. SIAM J. Math. Anal.,1986,17:1339-1353.
    [21]Casal A, Eilbeck J C, Lopez-Gomez J. Existence and uniqueness of coexistence states for a predator-prey model with diffusion[J]. Differential and Integral Equations, 1994,7:411-439.
    [22]Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model[J]. Trans. Amer. Math.Soc.,1997,349(6):2443-2475.
    [23]Du Y H, Lou Y. S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model[J].J. Differential Equations,1998,144:390-440.
    [24]Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation[J]. Proc. Royal Soc. Edinburgh,2001,131A:321-349.
    [25]Li W T, Wu S L. Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response[J]. Chaos, Solitons and Fractals,2008,37:476-486.
    [26]Huang Y J, Chen F D, Zhong L. Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge [J]. Appl. Math. Com-put.,2006,182:672-683.
    [27]Sokol W, Howell J A. Kinetics of phenol oxidation by washed cells [J]. Biotechnol. Bioeng.,1981,23:2039-2049.
    [28]Pang P Y H, Wang M X. Non-constant positive steady states of a predator-prey sys-tem with non-monotonic functional response and diffusion[J]. Proc. London-Math. Soc.,2004,88:135-157.
    [29]Ruan S G, Xiao D M. Global analysis in a predator-prey system with nonmonotonic functional response[J]. SIAM J. Appl. Math.,2001,61:1445-1472.
    [30]Nie H, Wu J H. Multiplicity and stability of a predator-prey model with non-monotonic conversion rate[J]. Nonlinear Anal. RWA,2009,10(1):154-171.
    [31]Jia Y F, Wu J H, Nie H. The coexistence states of a predator-prey model with nonmonotonic functional response and diffusion[J]. Acta Appl. Math.,2009,108: 413-428.
    [32]Arditi R, Ginzburg L R. Coupling in predator-prey dynamics:ratio-dependence[J]. J. Theoret. Biol.,1989,139(3):311-326.
    [33]Ruan W H, Feng W. On the fixed point index and multiple steady-state solutions of reaction-diffusion systems [J]. Differential and Integral Equations,1995,8(2):371-392.
    [34]Ryu K, Ahn I. Positive solutions for ratio-dependent predator-prey interaction sys-tems[J]. J. Differential Equations,2005,218(1):117-135.
    [35]Wang M X, Peter P H Y. Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model[J]. Appl. Math. Letters,2008, 21(11):1215-1220.
    [36]Zeng X Z. A ratio-dependent predator-prey model with diffusion[J]. Nonlinear Anal. RWA,2007,8(4):1062-1078.
    [37]Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency [J]. J. Animal Ecol.,1975,44(1):331-340.
    [38]DeAngelis D L, Goldstein R A, O'neill R V. A model for trophic interaction[J]. Ecology,1975,56(2):881-892.
    [39]Dimitrov D T, Kojouharov H V. Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response [J]. Appl. Math. Comput.,2005,162(2):523-538.
    [40]Cantrell R S, Cosner C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. J. Math. Anal. Appl.,2001,257(1): 206-222.
    [41]Hwang T W. Global analysis of the predator-preysystem with Beddington-DeAngelis functional response[J]. J. Math. Anal. Appl.,2003,281(1):395-401.
    [42]Chen W Y, Wang M X. Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion [J]. Math. Comput. Mod-elling,2005,42:31-44.
    [43]Liu S Q, Zhang J H. Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure[J]. J. Math. Anal. Appl.,2008,342(1):446-460.
    [44]Wang F Y, Pang G P, Lu Z Y. Analysis of a Beddington-DeAngelis food chain chemostat with periodically varying dilution rate[J]. Chaos, Solitons and Fractals, 2009,40(4):1609-1615.
    [45]Liu Z H, Yuan R. Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response[J]. J. Math. Anal. Appl.,2004,296(2): 521-537.
    [46]Shigesada N, Kawasaki K, Teramoto E. Spatial segregation of interacting species [J]. J. Theoret. Biol.,1979,79:83-99.
    [47]Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion[J]. J. Differential Equa-tions,1996,131:79-131.
    [48]Lou Y, Ni W M. Diffusion vs cross-diffusion:an elliptic approach[J]. J. Differential Equations,1999,154:157-190.
    [49]Kuto K. Stability of steady-state solutions to a prey-predator system with cross-diffusion[J]. J. Differential Equations,2004,197:293-314.
    [50]Kuto K, Yamada Y. Mutiple coexistence states for a prey-predator system with cross-diffusion[J]. J. Differential Equations,2004,197:315-348.
    [51]Kadota T, Kuto K. Positive steady states for a prey-predator model with some nonlinear diffusion terms[J]. J. Math. Anal. Appl.,2006,323:1387-1401.
    [52]Kuto K. A strongly coupled diffusion effect on the stationary solution set of a prey-predator model[J]. Advance in Differential Equations,2007,12(2):145-172.
    [53]Ruan W H. Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients[J]. J. Math. Anal. Appl.,1996,197:558-578.
    [54]Ruan W H. A competing reaction-diffusion system with small cross-diffusions [J]. Canadian Appl. Math. Quart.,1999,7(1):69-91.
    [55]Pao C V. Strongly coupled elliptic systems and applications to Lotka-Volterra mod-els with cross-diffusion [J]. Nonlinear Anal.,2005,60:1197-1217.
    [56]Zheng S N. A reaction-diffusion system of a predator-prey-mutualist model[J]. Math. Biosci.,1986,78:217-245.
    [57]Zheng S N. A reaction-diffusion system of a competitor-competitor-mutualist model[J]. J. Math. Anal. Appl.,1987,124:254-280.
    [58]Dancer E N, Du Y H. Positive solutions for a three-species competition system with diffusion, Part Ⅰ and Part Ⅱ[J]. Nonlinear Anal.,1995,24(3):337-373.
    [59]Hei L J. Global bifurcation of co-existence states for a predator-prey-mutualist model with diffusion[J], Nonlinear Anal. RWA,2007,8(2):619-635.
    [60]Lakos N. Existence of steady-state solutions for one-predator-two-prey system[J]. SIAM J. Math. Anal.,1990,21(3):647-659.
    [61]Ko W, Ryu K. Analysis of diffusive two-competing-prey and one-predator systems with Beddington-DeAngelis functional response[J]. Nonlinear Anal. TMA,2009,71: 4185-4202.
    [62]Wang M X. Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion[J]. Physic D,2004,196:172-192.
    [63]Pang P Y H, Wang M X. Strategy and stationary pattern in a three-species predator-prey model[J]. J. Differential Equations,2004,200:245-273.
    [64]Chen W Y, Wang M X. Positive steady states of a competitor-competitor-mutualist model[J]. Acta Math. Appl. Sinica, English Series,2004,20(1):53-58.
    [65]Ko W, Ahn I. Analysis of ratio-dependent food chain model[J]. J. Math. Anal. Appl.,2007,335:498-523.
    [66]刘婧.关于非均匀Chemostat食物链反应扩散模型的研究[D].大连理工大学博士学位论文,2003.
    [67]聂华.两类生物模型的共存态和渐近行为[D].陕西师范大学博士学位论文,2006.
    [68]Smith H L, Waltman P. The Theory of the Chemostat[M]. Cambridge, UK:Cam-bridge University Press,1995.
    [69]Hsu S B, Hubbell S P, Waltman P. A mathematical model for single nutrient com-petition in continuous cultures of micro-organisms [J]. SIAM J. Appl. Math.,1977, 32:366-383.
    [70]Ballyk M, Dung L, Jones D A, Smith H L. Effects of random motility on microbial growth and competition in a flow reactor [J]. SIAM J. Appl. Math.,1998,59:573-596.
    [71]So W H, Waltman P. A nonlinear boundary value problem arising from competition in the chemostat[J]. Appl. Math. Comput.,1989,32:169-183.
    [72]Hsu S B, Waltman P. On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat[J]. SIAM J. Appl. Math.,1993,53:1026-1044.
    [73]Hsu S B, Smith H L, Waltman P. Dynamics of competition in the unstirred chemo-stat[J]. Canadian Appl. Math. Quar.,1994,2:461-483.
    [74]Wang Y F, Yin J X. Predator-prey in an unstirred chemostat with periodical input and washout [J]. Nonlinear Anal. RWA,2002,3:597-610.
    [75]Dung L, Smith H L. A parabolic system modelling microbial competition in an unmixed bio-reactor[J]. J. Differential Equations,1996,130:59-91.
    [76]Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Anal.,2000,39:817-835.
    [77]Nie H, Wu J H. A system of reaction-diffusion equations in the unstirred chemostat with an internal inhibitor[J]. J. Bifur. Chaos Appl. Sci. Engrg.,2006,16(4):989-1009.
    [78]Nie H, Wu J H. Asymptotic behavior of an unstirred chemostat model with internal inhibitor [J]. J. Math. Anal. Appl.,2007,334(2):889-908.
    [79]Nie H, Zhang H W, Wu J H. Characterization of positive solutions of the unstirred chemostat with an inhibitor[J]. Nonlinear Anal. RWA,2008,9(3):1078-1089.
    [80]Wu J H, Nie H, Wolkowicz G S K. The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat [J]. SIAM J. Math. Anal.,2007, 38(6):1860-1885.
    [81]Nie H, Wu J H, Jia Y F. Dynamical behavior of a plasmid-bearing and plasmid-free model in the unstirred chemostat[J]. Chinese Ann. Math. Ser. A,2008,29(5): 697-708.
    [82]Wu J H, Wolkowicz G S K. A system of resource-based growth models with two resources in the unstirred chemostat[J]. J. Differential Equations,2001,172:300-332.
    [83]Wu J H, Nie H, Wolkowicz G S K. A mathematical model of competition for two essential resources in the unstirred chemostat [J]. SIAM J. Appl. Math.,2004,65: 209-229.
    [84]Nie H, Wu J H. Positive solutions of a competition model for two resources in the unstirred chemostat[J]. J. Math. Anal. Appl.,2009,355(1):231-242.
    [85]Zheng S N, Liu J. Coexistence solutions for a reaction-diffusion system of unstirred chemostat model[J]. Appl. Math. Comput.,2003,145:579-590.
    [86]Jones D A, Smith H L. Microbial competition for nutrient and wall sites in plug flow[J]. SIAM J. Appl. Math.,2000,60:1576-1600.
    [87]Pilyugin S, Waltman P. The simple chemostat with wall growth [J]. SIAM J. Appl. Math.,1999,59:1552-1572.
    [88]Smith H L, Zhao X Q. Microbial growth in a plug flow reactor with wall adherence and cell motility[J]. J. Math. Anal. Appl.,2000,241:134-155.
    [89]Stemmons D E, Smith H L. Competition in a chemostat with wall attachment [J]. SIAM J. Appl. Math.,2000,61:567-595.
    [90]Smith H J. Competitive coexistence in oscillating chemostat[J]. SIAM J. Appl. Math.,1981,40:498-522.
    [91]Smith H L, Zhao X Q. Dynamics of a periodically pulsed bio-reactor model[J]. J. Differential Equations,1999,155:365-404.
    [92]Pilyugin S, Waltman P. Competition in the unstirred chemostat with periodic input and washout [J]. SIAM J. Appl. Math.,1999,59:1157-1177.
    [93]郭改慧,吴建华.一类捕食-食饵模型正解的存在性和惟一性[J],武汉大学学报(理学版),2008,54(1):9-14.
    [94]郭改慧,李艳玲.带B-D反应项的捕食-食饵模型的全局分支及稳定性[J],应用数学学报,2008,31(2):220-230.
    [95]Guo G H, Wu J H. Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response [J]. Nonlinear Anal. TMA,2010,72:1632-1646.
    [96]Aziz-Alaoui M A, Okiye M D. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type Ⅱ Schemes [J]. Appl. Math. Lett.,2003,16:1069-1075.
    [97]王明新,王旭勃.一个捕食椭圆型方程组正解的存在性、唯一性与稳定性[J].中国科学A辑,2008,38(10):1095-1104.
    [98]叶其孝,李正元.反应扩散方程引论[M].北京:科学出版社,1990:115-156,192-228.
    [99]Smoller J. Shock Waves and Reaction-Diffusion Equations[M]. New York:Spring-Verlag,1983:93-122,126-156,167-181.
    [100]Cassanova C S. Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems [J]. Nonlinear Anal.,2002,49(3):361-430.
    [101]王明新.非线性抛物方程[M].北京:科学出版社,1993:161-186.
    [102]Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues [J]. J. Func-tional Anal.,1971,8:321-340.
    [103]Rabinowitz P H. Some global results for nonlinear problems[J]. J. Functional Anal., 1971,7:487-513.
    [104]Pao C V. Nonlinear Parabolic and Elliptic Equations[M]. Plenum Press, New York, 1992.
    [105]Cantrell R S, Cosner C. On the steady-state problem for the Lotka-Volterra com-petition model with diffusion[J]. Houston J. math,1987,13(3):337-352
    [106]Rai B, Freedman H I, Addicott J F. Analysis of three species models of mutualism in predator-prey and competitive systems [J]. Math. Biosci.,1983,65:13-50.
    [107]Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues and linearized stability [J]. Arch. Rational Mech. Anal.,1973,52:161-180.
    [108]Hess P. Periodic Parabolic Boundary Value Problems and Positivity[M]. Longman Scientific and Technical, Harlow, UK,1991.
    [109]Mcleod J B, Sattinger D H. Loss of stability and bifurcation at a double eigen-value[J]. J. Functional Anal.,1937,14:62-84.
    [110]Westreich D. Bifurcation at double characteristic values[J]. J. London Math. Soc., 1977,15(2):345-350.
    [111]Ito M. Global aspect of steady-states for competitive-diffuse systems with homoge-neous Dirichlet conditions [J]. Physic D,1984(14):1-28.
    [112]Kato T. Perturbation Theory for Linear Operators, Second edition[M]. Springer-Verlag, Berlin, New York,1980.