两类生物模型的平衡态与长时行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恒化器(chemostat)模型和Lotka-Volterra模型是生态数学研究领域中两类非常重要的生态数学模型.这两类模型分别在微生物学与生态学中有着广泛的应用,因此受到了国内外专家与学者的广泛关注.近多半个世纪,相关的研究取得许多有意义的成果.本文基于这两类生物模型的研究现状,主要利用反应扩散方程及对应椭圆方程的理论和方法,深入地研究了两种具有Beddington-DeAngelis功能反应函数的非搅拌的恒化器(chemostat)模型和两种具有功能反应项的Lotka-Volterra模型平衡态解及动力学行为.本文主要应用上下解方法、比较原理、单调动力系统理论、全局分歧理论、拓扑度理论、Lyapunov-Schmidt过程、扰动理论和持续性理论等,研究了模型的平衡态解的存在性、多重性、稳定性、动力系统的长时行为以及参数对模型解的影响.
     本文的主要内容共分五章:
     第一章首先介绍了恒化器(chemostat)模型和Lotka-Volterra模型的研究背景与发展现状.然后列举了本文要用到的一些基本理论,主要包括锥映射不动点指标理论,特征值问题及分歧理论等.
     第二章研究了一类带B-D反应项的具有质粒载体的微生物(plasmid-bearing or-ganism)与质粒自由的微生物(plasmid-free organism)之间竞争的非均匀恒化器模型.首先,采用通常的锥映射的不动点指标理论得到了物种共存的充分条件.然后,利用度理论、分歧理论、摄动理论、比较原理及持续性理论,主要讨论了模型的分歧解全局走向及稳定性,参数ki(i=1,2)及q对解的多重性及稳定性的影响和解的动力学行为.结果得到了分歧解的全局分支走向及稳定性;还得到了当参数k1特别小k2特别大且q>1/2时,模型至少存在两个正解,而当参数k1充分大时,模型存在唯一且稳定的正解;最后得到了解的长时行为,包括非负解的渐近稳定性和正解的一致持续性.
     第三章研究了一类具有B-D反应项的食物链恒化器模型的正平衡态解的存在性.首先分析了平凡解、弱半平凡解及强半平凡解的存在性及稳定性.然后利用度理论计算平凡解、弱半平凡解及强半平凡解处的指标数.最后利用指标可加性得到了该模型正平衡态解存在的充分条件.
     第四章研究了一类具有交叉扩散项的捕食模型的平衡态解.首先利用极大值原理讨论并得到了模型的正解的先验估计;然后给出了正解存在的充分条件,并利用介值定理、隐函数定理及Dini's定理等数学分析理论讨论了正解的共存区域,得到了正解的共存区域与两物种的生长率a,b的关系,并且发现正解的共存区域随着交叉扩散系数β(α)趋于无穷大而扩张(紧缩)的变化规律;最后利用分歧理论讨论了局部分歧解的存在性、全局分歧解的存在性及解的结构.
     第五章研究了一类具有饱和竞争项的捕食模型.采用度理论、分歧理论、Lyapunov-Schmidt过程、扰动理论、比较原理及持续性理论分析了此模型平衡态系统的全局分歧解的结构及稳定性,二重特征值处分歧解的存在唯一性及稳定性,参数引起解的多重性及稳定性的变化和系统的动力学行为.结果如下:(ⅰ)得到了全局分歧解的具体走向及稳定性;(ⅱ)得到了二重特征值处的分歧解是唯一存在且稳定的;(ⅲ)如果参数d适当小,那么系统的至少存在两个正解,而且当参数m或k充分大时,模型至少存在两个正解;特别地,得到了参数m充分大且参数α满足一定条件时,模型正好存在两个确定的解,且解的类型正好有两种,一种是渐进稳定性,另一种不稳定;(ⅳ)得到了平凡、半平凡解一致渐近稳定性和正解的一致持续存在性.
Chemostat model and Lotka-Volterra model are two kinds of the most significant models in mathematical biology. The two kinds of models play a very important role in microbiology and ecology, respectively. Therefore, it has aroused extensive concern to domestic and overseas experts and scholars, and many significant research results have been obtained. Base on the recent work on these two kinds of biological models, mainly applying the theory and method of reaction-diffusion equations and correspond-ing elliptic equations, we have profoundly investigated the equilibrium state and the dynamical behavior of two unstirred chemostat models with Beddington-DeAngelis functional response and two (cross-) diffusion Lotka-Volterra model with functional response. The main tools used in this thesis include super-sub solutions method, com-parison principle, monotone system of topology, Lyapunov-Schmidt procedure, per-turbation technique and persistence theory. The obtained results include coexistence, multiplicity, uniqueness, stability of positive steady-states and the longtime behavior of species.
     The main contents in this dissertation are as follows:
     Chapter 1 firstly introduce some research background and current stage of chemo-stat model and Lotka-Volterra model. Secondly, we list some primary theory such as fixed-point index theory, eigenvalue problem and bifurcation theory, etc.
     Chapter 2, a competition model between plasmid-bearing and plasmid-free or-ganisms in the unstirred chemostat is researched. Firstly, the sufficient condition of existence on the coexistence solutions are obtained by applying fixed-point index theory. Secondly, global structure of bifurcation solutions and local stability are inves-tigated by global bifurcation theory and eigenvalue perturbation technique. Thirdly, uniqueness, multiplicity and linear stability of coexistence solutions depending on pa-rameter ki(i=1,2) are discussed by fixed-point index theory, perturbation technique and linear stability method. Finally, the longtime behavior of the system is determined by monotone method.
     Chapter 3, the positive solutions of a Beddington-DeAngelis food chain unstirred chemostat model is investigated. Firstly, the existence and stability of the trivial、semi-trivial、strongly semi-trivial solutions of the model are obtained. Secondly, the index of the trivial、weakly semi-trivial、strongly semi-trivial solutions are calculated by fixed-point index theory. Finally, the sufficient condition of the existence to positive solutions are given.
     Chapter 4 investigate a strongly couple prey-predator model with Michelis-Menten functional response in a bounded domain under Dirichlet boundary condition. some priori estimates for steady-state solutions are obtained by maximum principle. The sufficient condition of the existence for positive solutions is given, next, the coexistence region of positive solutions is analyzed by implicit function theorem, intermediate value theorem and Dini's theorem. The relation of the coexistence regionΣand the parameters a and b is considered. Moreover, we can prove that the coexistence region∑spreads (narrows) asβ(α) increases. Finally, local bifurcation solution and global bifurcation solution are obtained by bifurcation theory.
     Chapter 5 deals with the positive solution and asymptotic behavior of a prey-predator model with predator saturation and competition. Firstly, global structure of bifurcation solutions and local stability are investigated by global bifurcation theory and eigenvalue perturbation technique. Secondly, the unique existence and stability of bifurcation solution which bifurcates from double multiplicity eigenvalue are proved by Lyapunov-Schmidt procedure. Thirdly, by fixed-point index theory and perturbation, we may show that if parameter d is sufficient small or m or k is sufficient large, then the model exist at least two positive solutions. Especially, if parameter m is sufficient large and a satisfies some condition, the model have exactly two positive solutions which belongs to two different types, one asymptotically stable and the other unstable. Finally, the asymptotic stability and persistence of positive solutions are obtained by monotone method and persistence theory.
引文
[1]Smith H. L, Waltman P. The Theory of the Chemostat:Dynamics of Microbial Competition[M]. Cambridge:Cambridge University Press,1995.
    [2]Vyenas D. V, Pavlon S. Coexistence of three microbial populations competing for three complementary nutrients in a chemostat[J]. Math. Bio.,1993,161:1-13.
    [3]Ballyk M, Dung L, Smith H. L. Effects of random motility on microbial growth and competition in a flow reactor[J]. SIAM J. Appl. Math.,1998,59:573-596.
    [4]Braslton J. P, Waltman P. A. A competition model with dynamically allocated inhibitor [J]. Math. Biosci.,2001,173:55-84.
    [5]Bulter G. J, Hsu S. B, Waltman P. A. A mathematical model of the chemostat with periodic washout rate[J]. SIAM J. Appl. Math.,1985,45:435-449.
    [6]Bush A. W, Cook A. E. The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater [J]. J. Theoret. Biol.,1975,63:385-395.
    [7]Chao L, Levin B. R. Structured habitats and the evolution of anti-competitor toxins in bacteria[J]. Proc. Nat. Acad. Sci.,1981,75:6324-6328.
    [8]Freedman H. I, So J. W. H, Waltman P. Coexistence in a model of competition in the chemostat incorporating discrete delays[J]. SIAM J. Appl. Math.,1989,49(3): 859-870.
    [9]Hansen S. T, Hubbell S. P. Single nutrient microbial competition:agreement be-tween experimental and theoretical forecast outcomes[J]. Science,1980,207:1491-1493.
    [10]Hsu S. B. A competition model for a seasonly fluctuating nutrient[J]. J. Math. Biol., 1980,9:115-132.
    [11]Hsu S. B, Hubbell S. P, Waltman P. A mathematical model for singe nutrient com-petition in continuous cultures of micro-organisms [J]. SIAM J. Appl. Math.,1977, 32:366-383.
    [12]Hsu S. B, Waltman P. Analysis of a model of two competitors in a chemostat with an external inhibitor[J]. SIAM J. Appl. Math.,1992,52:528-540.
    [13]Hsu S. B, Waltman P. Competition in the chemostat when one competitor produce a toxin [J]. Japan J. Indust. Appl. Math.,1978,15:471-490.
    [14]Hsu S. B, Waltman P. A model of the effect of the anti-competitor toxins on plasmid-bearing, plasmid-free competition [J]. Taiwanese J. Math.,2002,6(1):135-155.
    [15]Hsu S. B, Waltman P. A survey of mathematical models of competition with an inhibitor[J]. Math. Biosci.,2004,187:53-97.
    [16]Lenski R. E, Hattingh S. Coexistence of two competitors on one resource and one inhibitor:a chemostat model based on bacteria and antibiotics [J]. J. Theoret. Biol., 1986,122:83-93.
    [17]Levin B. R. Frequency-dependent selection in bacterial populations[J]. Phil. Trans. Royal Soc. London,1988,319:459-472.
    [18]Wu J. H, Wolkowicz G. S. K. A system of resource-based growth models with two resources in the unstirred chemostat[J]. J. Differential Equations,2001,172:300-332.
    [19]Wu J. H, Nie H, Wolkowicz G. S. K. A mathematical model of competition for two essential resources in the unstirred chemostat [J]. SIAM J. Appl. Math.,2004,65: 209-229.
    [20]Wu J. H. Stability of steady-state solutions of the competition model in the chemo-stat[J]. Systems Sci. Math. Sci.,1994,7:256-260.
    [21]Wu J. H, Nie H, Wolkowicz G. S. K. The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat [J]. SIAM J. Math. Anal.,2007, 38(6):1860-1885.
    [22]Wu J. H, Nie H. Asymptotic behavior of an unstirred chemostat model with internal inhibitor [J]. J. Math. Anal. Appl.,2007,334:889-908.
    [23]Nie H, Zang H. W, Wu J. H. Characterization of positive solutions of the unstirred chemostat with an inhibitor [J]. Nonlinear Anal.,2008,9:1078-1089.
    [24]So J, Waltman P. Inertial manifold for a reaction diffusion equation model of com-petition in a chemostat [J]. J. Austral Math. Soc., Ser B,1991,33:9-15.
    [25]So J, Waltman P. A nonlinear boundary value problem arising from competition in the chemostat [J]. Appl. Math. comput.,1989,32:169-183.
    [26]Baxley J. V, Thompson H. B. Nonlinear boundary value problems and competition in the chemostat[J]. Nonlinear Anal.,1994,22:1329-1344.
    [27]Baxley J. V, Robinson S. B. Coexistence in the unstirred chemostat [J]. Appl. Math. Comput.,1998,89:41-65.
    [28]Dung L, Smith H. L. A parabolic system modelling microbial competition in an unmixed bio-reactor [J].J. Differential Equations,1996,130:59-91.
    [29]Hess P, Lazer A. C. On an abstract competition in an unstirred chemostat[J]. Canad. Appl. Math. Quart.,1994,2:461-484.
    [30]Hsu S. B, Waltman P. On a system of reaction-diffusion equations arising from competition in an unstirred chemostat[J]. SIAM J. Appl. Math.,1993,53:1026-1044.
    [31]Hsu S. B, Smith H. L, Waltman P. Dynamics of competition in the unstirred chemo-stat[J]. Canad. Appl. Math. Quart.,1994,4:461-483.
    [32]Zheng S. N, Liu J. Coexistence solution for a reaction-diffusion system of unstirred chemostat model[J]. Appl. Math. Comput.,2003,145:579-590.
    [33]Rydre D. F, Dibiasio D. An operational strategy for unstable recombinant DNA cultures[J]. Biotechnol. Bioeng.,1984,26:942-947.
    [34]Ko W, Ryu K. Coexistence states of a predator-prey system with non-monotonic functional response [J]. Nonlinear Anal.,2007,8:769-786.
    [35]Hsu S. B, Waltman P. Competition between plasmid-bearing and plasmid-free or-ganisms in selective media[J]. Chem. Eng. Sci.,1997,52:23-35.
    [36]Lu Z. Q, Hadeler K. P. Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor [J]. Math. Bios.,1998,148:147-159.
    [37]陆志奇.微生物之间竞争模型的全局分析[J].河南大学学报(自然科学版),1996,24(4):1-4.
    [38]Hsu S. B, Waltman P, Wolkowicz G. S. K. Global analysis of a model of plasmid-bearing, plasmid-free competition in the chemostat [J]. J. Math. Biol.,1994,32: 731-742.
    [39]Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Ba-nach spaces[J]. SIAM Review,1976,18:620-709.
    [40]王明新.非线性抛物型方程[M].北京:科学出版社,1993.
    [41]Li L, Logan R. Positive solution to general elliptic competition models [J].Differential and Integral Equations,1991,4(4):817-834.
    [42]Smith H. J. Competitive coexistence in oscillating chemostat[J]. SIAM J. Appl. Math.,1981,40:498-522.
    [43]Smith H. J. Monotone dynamical systems:an introduction to the theory of com-petitive and cooperative systems[M]. Math. Surv. and Monographs, Vol.41. Prov-idence, Rhode Island:American Mathematical Society,1995,31-51,145-161.
    [44]Zheng S. N, Liu J. A reaction-diffusion system of a competitor-mutualist model[J]. J. Math. Anal. Appl.,1987,124:254-280.
    [45]Ryu K, Ahn I. Positive solutions for ratio-dependent predator-prey interaction sys-tem[J]. J. Differential Equations,2005,218:117-135.
    [46]Nie H, Wu J. H. A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor [J]. Advances in Mathematics(in chinese),2003,32(6):753-756.
    [47]Hsu S. B, Luo T. K, Waltman P. Competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor [J]. J. Math. Biol.,1995,34:225-238.
    [48]Stephanopoulos S. G, Lapidus G. Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures[J]. Chem. Eng. Sci.,1988,43:49-57.
    [49]Li L. Coexistence theorems of steady states for predator-prey interacting systems[J]. Trans. Amer. Math. Soc.,1988,305:143-166.
    [50]Andrews J. F. A mathematical model for the continuous of microorganisms utilizing inhibitory substrates [J]. Biotechnol. Bioeng.,1968,10:707-723.
    [51]Edwards V. H. Influence of high substrate concentrations on microbial kinetics [J]. Biotechnol. Bioeng.,1970,12:321-349.
    [52]Holling C. S. The functional response of predators to prey density and its role in mimicry and populations [J]. Mem. Entomol. Soc. Can.,1965,45:3-60.
    [53]Protter M. H, Weinberg H. Maximum Principles in Differential Equations[M]. Ea-glewood Cliffs, New Jersey:Prentice-Hall,1967.
    [54]陈文源.非线性泛函分析[M].兰州:甘肃人民出版社,1982.
    [55]聂华,吴建华.一类无搅拌的双营养竞争模型的数值模拟[J].工程数学学报,2005,22(3):420-426.
    [56]Pao C. V. Nonlinear Parabolic and Elliptic Equations[M]. New York:Plenum Press, 1992.
    [57]Yuan Z. J, Qiu Z. P. The asymptotic behavior of chemostat model with the Beddington-DeAngelis functional responses[J], J. Southwest China Normal Univer-sity(Natural science),2003,28(2):193-197.
    [58]Wang M. X, Wu Q. Positive solutions of a prey-predator model with predator sat-uration and competition[J]. J. Math. Anal. Appl.,2008,345:708-718.
    [59]Pang P. Y. H, Wang M. X. Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion[J]. Proc. London Math. Soc.,2004,88:135-157.
    [60]聂华,吴建华,贾云锋.具有质体的非均匀恒化器模型的动力学[J].数学年刊,2008,29A(5):697-708.
    [61]Wu J. H. The longtime behavior for prey-predator model with saturation (Ⅰ)[J]. Acta Appl. Math. Sinica,1998,21:224-232.
    [62]Wu J. H. Maximal attractor, stability and persistence for prey-predator model with saturation [J]. Mathematical and Computer Modelling,1999,30:7-16.
    [63]Wu J. H. Coexistence states for cooperative model with diffusion[J]. Computers and mathematical with Applications,2002,43:1277-1290.
    [64]Nie H, Wu J. H. Positive solutions of a competition model for two resources in the unstirred chemostat[J]. J. Math. Anal.,2009,355:231-242.
    [65]Ye Q. X, Li Z. Y. Introduction to reaction-diffusion equations[M]. Beijing:Scientific press,1990(in chinese).
    [66]Lotka A. J. Elements of Physical Biology[M]. Baltimore:Williams and Wilkins Co., 1925.
    [67]Volterra V. Variations and fluctuations of the number of individuals in animal species living together [J]. R. N. Chapman:Animal Ecol.,1931:409-448.
    [68]May R. M. Stability and complexity in model ecosystem[M]. Princeton:Princeton University Press,1974.
    [69]Arditi R, Ginzburg L. R. Coupling in predator-prey dynamics:ratio-dependence[J]. J. Theoret. Biol.,1989,139(3):311-326.
    [70]Ruan W. H, Feng W. On the fixed point index and multiple steady-state solutions of reaction-diffusion systems[J]. Differential Integral Equations,1995,8(2):371-392.
    [71]Ryu K, Ahn I. Positive, solutions for ratio-dependent predator-prey interaction sys-tems[J]. J. Differential Equations,2005,218(1):117-135.
    [72]Beddington J. R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. J. Animal Ecol.,1975,44(1):331-340.
    [73]DeAngelis D. L, Goldstein R. A, O'neill R V. A model for trophic interaction [J]. Ecology,1975,56(2):881-892.
    [74]Dimitrov D. T, Kojouharov H. V. Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response [J]. Appl. Math. Comput.,2005,162(2):523-538.
    [75]Cantrell R. S, Cosner C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. J. Math. Anal. Appl.,2001,257(1): 206-222.
    [76]Hwang T. W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. J. Math. Anal. Appl.,2003,281(1):395-401.
    [77]Blat J, Brown K. J. Bifurcation of steady-state solutions in predator-prey and com-petition systems[J]. Proc. R. Soc. Edinburgh Sect. A,1984,97:21-34.
    [78]Li L. Coexistence theorems of steady states for predator-prey interacting systems [J]. Trans. Amer. Math. Soc.,1988,305:143-166.
    [79]Blat J, Brown K. J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. SIAM J. Math. Anal.,1986,17(6):1339-1353.
    [80]Kato T. Perturbation Theory for Linear Operators[M]. New York:Springer,1966.
    [81]Wonlyul K, Kimun R. Coexistence states of a predator-prey system with non-monotonic functional response[J]. Nonlinear Anal.,2007,8(3):769-786.
    [82]Hale J. K, Waltman P. Persistence in infinite dimensional systems[J]. SIAM J. Math. Anal.,1989,20:388-395.
    [83]Shigesada N, Kawadki K, Teramoto E. Spatial segregation of interacting species[J]. J. Theoret. Biol.,1979,79:83-99.
    [84]Amann H. Dynamic theory of quasilinear parabolic equations-Ⅲ.Global existence[J]. Math. Z.,1989,202:219-250.
    [85]Choi Y. S, Lui R, Yamada Y. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion[J]. Discrete Contin. Dyn. Syst.,2004,10:719-730.
    [86]Dung L. Cross diffusion systems on n spatial dimension domains [J]. Indiana Univ. Math. J.,2002,51:625-643.
    [87 Dung L, Nguyen L. V, Nguyen T. T. Shigesada-Kawasaki-Teramoto model on higher dimensional domains[J]. Electron. J. Differential Equations,2003,72:1-12.
    [88]Lou Y, Ni W. M, Wu Y. On the global existence of a cross-diffusion system[J]. Discrete Contin. Dyn. Syst.,1998,4:193-203.
    [89]Yagi A. Global solution to some quasilinear parabolic system in population dynam-ics[J]. Nonlinear Anal.,1993,21:531-556.
    [90]Kan-on Y. Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics[J]. Hiroshima Math. J.,1993,23:509-536.
    [91]Kuto K. Stability of steady-state solutions to a prey-predator system with cross-diffusion[J].J. Differential Equations,2004,197:293-314.
    [92]Wu Y. The instability of spiky steady states for a competing species model with cross diffusion[J]. J. Differential Equations,2005,213:289-340.
    [93]Kuto K, Yamada Y. Multiple coexistence states for a prey-predator system with cross-diffusion [J]. J. Differential Equations,2004,197:315-348.
    [94]Li L. On positive solutions of a nonlinear equilibrium boundary value problem[J]. J. Math. Anal. Appl.,1989,138:537-549.
    [95]Thieme H. R. Persistence under relaxed point-dissipativity (with application to an epidemic model)[J]. SIAM J. Math. Anal. Appl.,1993,24:407-435.
    [96]Casal A, Eilbeck J. C, Lopez-gomez J. Existence and uniqueness of coexistence states for a predator-prey model with diffusion [J]. Differential Integral Equations, 1994,7(2):411-439.
    [97]Du Y. H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model[J]. Trans. Amer. Math. Soc.,1997,349(6):2443-2475.
    [98]Du Y. H, Lou Y. S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model[J]. J. Differential Equations,1998,144(2):390-440.
    [99]Du Y. H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation[J]. Proc. R. Soc. Edinburgh Sect. A,2001,131(2):321-349.
    [100]Cassanova C. S. Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems [J]. Nonlinear Anal.,2002,49(3):361-430.
    [101]Crandall M. G, Rabinowitz P. H. Bifurcation from simple eigenvalues [J]. J. Func-tional Anal.,1971,8(2):321-340.
    [102]Crandall M. G, Rabinowitz P. H. Bifurcation, perturbation of simple eigenvalues and linearized stability[J]. Arch. Rational Mech. Anal.,1973,52(2):161-180.
    [103]Smoller J. Shock Waves and Reaction-Diffusion Equations[M]. New York:Spring-Verlag,1983:93-122,126-156,167-181.
    [104]Rabinowitz P. H. Some global results for nonlinear problems[J]. J. Functional Anal., 1971,7(3):487-513.
    [105]Dancer E. N. On the indices of fixed points of mappings in cones and applications [J]. J. Math. Anal. Appl.,1983,91(1):131-151.
    [106]Wu J. H. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Anal.,2000,39(7):817-835.
    [107]彭锐.几类捕食模型平衡态模式的定性分析[D].南京:东南大学,2006.
    [108]聂华.两类生物模型的共存态和渐近行为[D].西安:陕西师范大学,2006.
    [109]Bazykin A. D. Nonlinear Dynamics of interacting Populations[M]. Singapore:World Scientific,1998.
    [110]Figueiredo D. G, Gossez J. P. Strict monotonicity of eigenvalues and unique contin-uation [J]. Comm. Partial Differential Equations,1992,17:339-346.
    [111]郑秋红.一类微生物之间竞争模型解的性质[D].西安:陕西师范大学,2006.
    [112]Bulter G. J, Hus S. B, Waltman P. Coexistence of competing predators in a chemo-stat[J]. J. Math. Biol.,1983,17:133-151.
    [113]Dancer E. N. Positive solutions for a three-species competition system with diffusion-I. General existence results [J]. Nonlinear Anal.,1995,254:337-357.
    [114]李艳玲,李海侠,吴建华.一类非均匀Chemostat模型的共存态[J].数学学报,2009,52(1):141-152.
    [115]Guo G. H, Wu J. H. Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response[J]. Nonlinear Anal.,2010,72(3-4):1632-1646.
    [116]阮士贵.恒化器模型的动力学[J].华中师范大学学报(自然科学版),1997,34(4):377-397.