微生物发酵与阶段结构种群模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学和技术的发展,生物数学已经被广泛的应用于各个领域,例如:生物技术、药物动力学、物理、经济、种群动力学、流行病学等领域.微分方程数学模型在描述生物动力学性质中起到了非常重要的作用.人们用它不仅能够从数学的角度解释各种生物学行为,而且还能够用它来解释一些复杂的生物现象,从而达到对某些生物的相互作用进行有目的地控制.自然界的许多变化规律呈现出脉冲效应,用脉冲微分方程描述某些运动状态在固定时刻或不固定时刻的快速变化或跳跃更为切合实际.由于脉冲动力系统的解在脉冲时刻之间具有连续性,而在脉冲时刻具有间断性,使得脉冲动力系统比相应连续动力系统理论更为复杂.本文根据生化反应动力学、种群动力学、脉冲微分方程、时滞微分方程基本理论研究了脉冲效应在微生物发酵和阶段结构模型中的动力学性质,包括平衡点的存在性和稳定性、周期解的存在性和吸引性、系统的持久性与灭绝等.
     全文分五章,主要结构概括如下:
     前两章分别给出微生物发酵与阶段结构种群模型的研究背景和有关脉冲微分方程动力系统的一些基本理论,包括解存在性、连续性和Foquet定理等.
     由于乳酸是一种非常重要的有机酸,在工农业生产中有很多重要的用途,本文第三章首先利用微分方程定性分析理论研究连续输入营养基的乳酸发酵模型,得到了正平衡点全局渐近稳定性和发酵失败微生物灭绝平衡点的稳定性的条件.接着研究具有周期脉冲输入乳酸发酵模型,通过Floquet乘子理论得到微生物灭绝周期解的稳定性条件.用周期脉冲分支理论得到系统正周期解的存在性,最后通过计算机进行数值分析并得出生物结论.
     恒化器是一种最简单的实验装置,能够广泛的用于各种各样的微生物培养.因此第四章我们研究微生物培养中恒化器模型的性质,以便为微生物的培养提供理论依据和指导.本章首先给出带时滞和脉冲输入两种互补营养液恒化器模型、利用脉冲微分方程和时滞微分方程比较定理,得到了微生物灭绝周期解全局吸引的充分条件,同时也得到了系统持续生存的充分条件.接着研究在污染环境下带周期脉冲输入恒化器模型的持续和灭绝.最后一节研究带脉冲输入具有环状结构恒化器模型动力学性质.通过脉冲微分方程和差分方程的有关理论得到边界周期解的局部稳定性,通过计算机进行数值分析当边界周期解失去稳定性时系统出现复杂的动力学性质包括周期解、倍周期分支、混沌等.
     第五章假设捕食者具有阶段结构而害虫具有一般的增长率,利用离散动力系统的频闪映射得到捕食者灭绝周期解,并利用脉冲微分方程和时滞微分方程的有关理论,得到了捕食者灭绝周期解全局吸引和系统持续生存的充分条件.数值模拟验证了理论结果,最后通过系统中某些参数的变化研究了脉冲扰动对种群复杂性质的影响.
With the development of science and technology, biomathematics has been used in many domains such as biological technology, medicine dynamics, physics, economy, popu-lation dynamics and epidemiology. Mathematical models of differential equations play an important role in describing biological dynamics. Mathematically, these models explain all kinds of biological behaviors, which allows people to understand biological complexity scientifically so that some interactions of population can be intend to control. Impulsive differential equations are suitable for the mathematical simulation of the evolutionary process in which the parameters undergo relatively long period of smooth variation fol-lowed by a short-term rapid change in their values. The solutions of the impulsive systems are continuous between two impulses and discontinuous at the impulse, which makes the theory of the impulsive systems more complicated than that of the corresponding contin-uous systems. Based on the basic theory of the biochemical reaction kinetics、population dynamics、impulsive differential equations and delay differential equations, microorgan-ism fermentation and stage-structured population models have been established to study the effects of impulses on the these models including the existence and stability of equi-libria, the existence of periodic solution and its global attractivity, the permanence and extinction of system.
     The dissertation has five chapters and the main results of this dissertation may be summarized as follows:
     Chapter 1 and Chapter 2 give the biological backgrounds of the microorganism fer-mentation and pest control, basic theories and preliminaries of impulsive differential equa-tions, including the existence of the solution, the continuity of the solution and Floquet's theory and so on.
     Lactic acid is one of the organic acids, which has many applications in various types of industry and agriculture. Chapter 3 studies the dynamical behaviors of the lactic acid fermentation. Firstly, we present the lactic acid fermentation model with the continuous input. The globally asymptotical stability of the positive equilibrium has been obtained by using the qualitative analysis method. Secondly, we give the lactic acid fermentation model with impulsive input. The sufficient condition for the existence and stability of the biomass-free periodic solution is gotten by using the Floquet's theory. There exists a unique positive periodic solution via bifurcation theory, which implies the substrate, biomass and lactic acid oscillate with a positive amplitude. The numerical simulations verify the theoretical results and give some biological explanation.
     The chemostat can be used for representing all kinds of microorganism systems, mostly because these are the simplest and most easily constructed types of continuous cultures. In Chapter 4, we investigate the dynamics of the chemostat model during the microorganism culture, which can give a theoretical guidance. Firstly, we present dynamics of two-nutrient and one-microorganism chemostat model with time delay and pulsed input. By means of the principle of the impulsive differential equations and delay differential equations, the sufficient condition for the existence and attractivity of the microorganism-free periodic solution is obtained. In addition, the sufficient condition for the permanence of the system is also obtained. Next, we discuss the extinction and permanence of chemostat model with pulsed input in a polluted environment. Finally, The dynamical behavior of the annular chemostat model including competition relation and predator-prey relation is investigated. By using the theories about the impulsive differential equations and difference equations, the sufficient condition for the existence and stability of the boundary periodic solution is obtained. When the boundary periodic solution losses its stability, numerical simulation shows there is a characteristic sequence of bifurcation, leading to a chaotic dynamics, which implies that this system has more complex dynamics including period-doubling bifurcation, chaos and strange attractors.
     In Chapter 5, It is assumed that the predator population has two stages including immaturity and maturity and prey has a generic growth rare. Using the discrete dynam-ical system determined by the stroboscopic map, we obtain predator-extinction periodic solution. By use of the basic theorem related to impulsive differential equations and delay differential equations, sufficient condition for the global attractivity of predator-extinction periodic solution and permanence of the system is obtained. Furthermore, the results are confirmed by numeric simulations and complex dynamics is also investigated in view of the some parameter variations.
引文
[1]冯长根,曾庆轩.化学振荡混沌与化学波[M].北京:北京理工大学科学出版社,2004.
    [2]NOLIS G, PRIGOGINE I. Self-organization in nonequilibrium systems[M]. New York: Wiley Sons,1977.
    [3]PRIGOGINE I, LEFEVER R. Symmetry breaking instabilities in dissipative systems-Ⅱ[J]. Journal of chemical physics,1968,48:1659-1700.
    [4]杨志春.不连续动力系统的渐近行为及其应用[D].成都:四川大学博士论文,2006.
    [5]钟月华.新型硅橡胶膜生物反应器制造乙醇连续发酵动力学研究[D].成都:四川大学博士论文,2003.
    [6]刘如林.微生物工程概论[M].天津:南开大学出版社,1995.
    [7]黄方一,叶斌.发酵工程[M].武汉:华中师范大学出版社:2008.
    [8]伍勇.细胞循环硅橡胶膜生物反应器连续乙醇发酵动力学模型的研究D].成都:四川大学博士论文,2004.
    [9]VICK ROY T B. Lactic acid. In:Moo-Young M, editor[J]. Comprehensive biotechnology, Oxford:Pergamon,1985,3:761-776.
    [10]刘振民.乳酸菌高密度培养及浓缩型发酵剂研究[D].哈尔滨:东北农业大学博士论文,2002.
    [11]DING S F, TAN T W. L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies[J]. Bulletin of Process Biochemistry,2006,1451-1454.
    [12]INAYARA C A. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil[J]. International Journal of Food Microbiology,2005,105:213-219.
    [13]BOUDRANT J, MENSHUTINA N V, GUSEVA E V, et al. Mathematical modelling of cell suspension in high density conditions: Application to L-Lactic acid fermentation using Lactobacillus casei in membrane bioreactor[J]. Process Biochemistry,2005,40:1641-1647.
    [14]DEBACH P. Biological control of insect pests and weeds[M]. New York, Rheinhold,1964.
    [15]DEBACH P, ROSEN D. Biological control by natural enemies,2nd ed [M]. Cambridge, Cambridge University Press,1991.
    [16]FREEDMAN H J. Graphical stability, enrichment and pest control by a natural enemy[J]. Mathematical Biosciences,1976,31:207-225.
    [17]HUFFAKER C B. New technology of pest control[M]. New York, Wiley,1980.
    [18]SIMEONOV P S. Existence, uniqueness and continuability of systems with impulse ef-fect [J]. Godishnik VUZ Applied mathematics,1986,22:69-80.
    [19]SIMEONOV P S. Continuous dependence of the solutions of systems with impulse ef-fect[J]. Godishnik VUZ Applied mathematics,1986,22(3):57-67.
    [20]SIMEONOV P S, BAINOV D D. Differentiability of solutions of systems with impulse effect with respect to initial data and parameter[J]. Institute of mathematics. Academia Sinica,1987,15(2):251-269.
    [21]BAINOV D D, DISHLIEV A B. Continuous dependence on the initial condition of the solution of a system of differential equations with variable structure and with impulses[J]. Publ. RIMS. Kyoto Univ,1987,23:923-936.
    [22]BAINOV D D, DIMITROVA M B. Oscillation of the solutions of a class of impulsive differential equaions with a deviating argument[J]. Journal of Applied Mathematics and Stochastic Analysis,1998,11:95-102.
    [23]BAINOV D D, DIMITROVA M B, PETROV V. Oscillatory properties of the solutions of impulsive differential equations with several retarded arguments[J]. Geogian Mathematical journal,1998,5:201-212.
    [24]BAINOV D D, DOMSHLAK Y I, SIMEONOV P S. On the oscillatory properties of first order impulsive differential with a deviating argument[J]. Israel Journal Mathematics, 1998,98:167-187.
    [25]BEREZANSKY L, BRAVERMAN E. Oscillation of a linear delay impulsive differential equations[J]. Comm. Appl. Nonlinear Analysis,1996,3:61-77.
    [26]CHEN M P, YU J S, SHEN J H. The persistence of nonoscillatory solutions of delay differential equations under impulsive perturbations[J]. Applied Mathematics and Com-putation,1994,27:1-6.
    [27]BAINOV D D:DISHLIEV A B. Sufficient conditions for absence of "beating" in system of differential equations with impulses[J]. Applied Nonlinear,1984,18:67-73.
    [28]HU S, LAKSHMIKANTHM V, LEELA S. Impulsive differential systems and the pulse phenomena[J]. Mathematical analysis and application,1989,137:605-613.
    [29]BAINOV D D, DISHLIEV A B. Conditions for the absence of the phenomenon "beating" for systems of impulse differential equations[J]. Bulletin of the Institute of Mathematics, Academia Sinica,1985,13:237-256.
    [30]QI J G, FU X L. Existence of limit cycles of impulsive differential equations with impulses at variables times[J]. Nonlinear analysis,2001,44:345-353.
    [31]AKHMETOV M U, ZAFER A. Stability of the zero solutions of impulsive differential equations by the Lyapunov second method[J]. Mathematical analysis and application, 2000,248:69-82.
    [32]KULEV G K, BAINOV D D. On the asymptotic stability of systems with impulses by direct method of Lyapunov[J]. Mathematical analysis and application,1989,140:324-340.
    [33]LAKSHMIKANTHAM V, LIU X Z. Stability criteria for impulsive differential equations in terms of two measures[J]. Mathematical analysis and application,1998,137:591-604.
    [34]BAINOV D D, LULEV G. Application of Lyapunov's direct method to the investigation of global stability of solutions of systems with impulsive effect[J]. Applied analysis,1988, 26:255-270.
    [35]ERBE L H. LIU X Z. Existence of periodic solutions of impulsive differential systems[J]. Applied mathematics and stochastic analysis,1991,4:137-146.
    [36]GUTU V L. Periodic solutions of linear differential equations with impulses in a Banach space[J]. Differential equations and mathematical physics,1989,59-66.
    [37]KAUL S K, LIU X Z. Generalized variation of parameters and stability of impulsive systems[J]. Nonlinear analysis,2000.40:295-307.
    [38]GUTU V L. Periodic solutions of weakly nonlinear differential equations in a Hilbert space[J]. Differential equations and mathematical physics,1989,4:67-71.
    [39]LIU X Z. Impulsive stabilization and applications to growth models [J]. Rocky Mountain Journal of Mathematics,1995,25:381-395.
    [40]HRISTOVA S G, BAINOV D D. Existence of periodic solutions of nonlinear systems of differential equations with impulsive effect[J]. Mathematical analysis and application, 1987,125(1):192-202.
    [41]BAINOV D D, SIMEONOV P. Impulsive differential equations:Periodic solutions and applications[J]. Pitman Monograph and Surveys in Pure and Applied Mathematics,1993, 66.
    [42]LAKSMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theorey of impulsive differen-tial equations[M]. World Scientific:Singapore,1993.
    [43]BAINOV D D, SIMEONOV P S. Impulsive differential equations:Periodic sollutions and applications[M]. England:Longman,1993.
    [44]SAMOILENKO A M, PERCEIVING N A. Impulsive differential equations[M]. Singapore: World Scientific,1995.
    [45]ZHAO Z, CHEN L S, SONG X Y. Impulsive vaccination of SEIR epidemic model with time delay and nonlinear incidence rate[J]. Mathematics and Computers in Simulation, 2008,79:500-510.
    [46]MENG X Z, CHEN L S, CHENG H D. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination[J]. Applied Mathematics and Computation,2007,186:516-529.
    [47]JIN Z, MA Z E, HAN M A. The existence of periodic solutions of the n-species Lotka-Volterra competition systems with impulse[J]. Chaos, Solitons and Fractals,2004,22(1): 181-188.
    [48]LIU K Y, MENG X Z, CHEN L S. A new stage structured predator-prey Gomportz model with time delay and impulsive perturbations on the prey[J]. Applied Mathematics and Computation,2008,196(2):705-719.
    [49]SONG X Y, HAO M Y, MENG X Z. A stage-structured predator-prey model with dis-turbing pulse and time delays [J]. Applied Mathematical Modelling,2009,33(1):211-223.
    [50]LIU X N, CHEN L S. Global dynamical of the period logistic system with periodic impul-sive perturbations[J]. Journal of Mathematical Analysis and Applications,2004,289(1): 279-291.
    [51]ABDELKADER L, OVIDE A. Nonlinear mathematical model of pulsed-theraph of Het- erogeneous Turnors[J]. Nonlinear analysis,1998,60:1125-1148.
    [52]ZHAO Z, ZHANG X Q, CHEN L S. The effect of pulsed harvesting policy on the inshore-offshore fishery model with the impulsive diffusion[J]. Nonlinear Dynamics DOI: 10.1007/sl1071-009-9527-7.
    [53]MENG X Z, Gao Q, Li Z Q. The effects of delayed growth response on the dynamic behaviors of the Monod type chemostat model with impulsive in-put nutrient concentration.Nonlinear Analysis: Real World Applications (2010), doi:10.1016/j.nonrwa.2010.05.030.
    [54]吉国栋.微生物谷氨酰胺转胺酶分批补料发酵及发酵动力学模型的研究[D].长春:东北师范大学硕士论文,2006.
    [55]贾林.毕氏酵母发酵过程建模和优化[D].上海:上海交通大学博士论文,2007.
    [56]LAKMECHE A, ARINO O. Bifurcation of nontrivial periodic solutions of impulsive differ-ential equations arising chemotheraputic treatment [J]. Dynamics of Continuous, Discrete and Impulsive Systems,2000,7:256-287.
    [57]杜连祥.乳酸菌及其发酵制品生产技术[M].天津:天津科技出版社,1999.
    [58]刘勇军.细菌L-乳酸发酵的研究[D].天津:天津科技大学硕士论文,2003.
    [59]乐晓洁.细菌L-乳酸发酵及其代谢通量分析的研究[D].天津:天津科技大学硕士论文,2004.
    [60]LIU X N, CHEN L S. Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J]. Chaos, Solutions and Fractals. 200,16:311-320.
    [61]CHOW C N, HALE J K. Method of bifurcation theory[M]. New York:Springer Verlag, 1982.
    [62]WILLIAMS F M. Dynamics of microbial populations, system analysis and simulation in ecology[M]. B. Patten, ed., Academic Press,1971, Char 3.
    [63]WU J H, NIE H. The Effect of Inhibitor on the Plasmid-Bearing and Plasmid-Free Model in the Unstirred Chemostat[J]. SIAM J. Mathematical analysis,2007,38(6):1860-1885.
    [64]PILYIUGINl S S, WALTMAN P. The simple chemostat with wall growth[J]. SIAM J Applied Mathematics.1999,59(5):1552-1572.
    [65]PILYUGIN S S, WALTMAN P. Competition in the unstirred chemostat with periodic input and washout[J]. SIAM J Applied Mathematics,1999,59(4):1157-1177.
    [66]马永峰,孙丽华,修志龙.连续时滞对微生物连续培养过程中动态行为的影响[J].高校应用数学学报,2003,18(1):1-7.
    [67]WANG L, WOLKOWICZ GAIL S K. A delayed chemostat model with general non-monotone response functions and differential removal rates[J]. Mathematical analysis ans application,2006:321:452-468.
    [68]YUAN S L, XIAO D M, HAN M A. Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor[J]. Mathematical Biosciences,2006,202(1):1-28.
    [69]VAYENAS D V, PAVLOU S. Coexistence of three microbial populations competing for three complementary nutrients in a chemostat[J]. Mathematical Biosciences,1999,161(1): 1-13.
    [70]LI B T. Periodic coexistence in the chemostat with three species competing for three essential resources[J]. Mathematical Biosciences,2001,174(1):27-40.
    [71]SREE HARI RAO V, RAJA SEKHARA RAO P. Global stability in chemostat models involving time delays and wall growth[J]. Nonlinear Analysis:Real World Applications, 2004,5(1):141-158.
    [72]ZHU L M. Limit cycles in chemostat with constant yields[J]. Mathematical and Computer Modelling,2007,7:927-932.
    [73]HUANG X C, ZHU L M, EDWARD H C. Limit cycles in a chemostat with general variable yields and growth rates[J]. Nonlinear Analysis:Real World Applications.2007,8 (1) 165-173.
    [74]DAMON T. MARK K. Limit cycles in a chemostat model for a single species with age structure [J]. Mathematical Biosciences,2006,202(1):194-217.
    [75]SMITH H L, WALTMAN P. The theory of the chemostat[M]. Cambridge University Press, 1995.
    [76]陈兰荪,陈键.非线性生物动力系统[M].北京:科学出版社,1993.
    [77]AGRAWAL R, LEE C, LIM H C, RAMKRISHNA D. Theorerical investigations of dy-namic behavior of isothermal continuous stirred tank biological reactors[J]. Chemical En-gineering Science,1982,37:453-462.
    [78]BERETTA E, KUANG Y. Global asymptotic stability in a well known delated chemostat model[J]. Communications in Mathematical Analysis,2000,4:147-155.
    [79]ROBERTS M G, KAO R R. The dynamics of an infectious disease in a population with birth pulses [J]. Mathematical Biosciences,1998,149:23-36.
    [80]TANG S Y, CHEN L S. Multiple attractor in stage-structured population models with birth pulses[J]. Bullition Mathematical Biology,2003,65:479-495.
    [81]JIANG G R, YANG Q G. Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination[J]. Applied Mathematics and Computation,2009,215(3):1035-1046.
    [82]LIU B, TENG Z D, CHEN L S. The effect of impulsive spaying pesticide on stage-structured population models with birth pulses[J]. Journal of Biological Systems,2005, 13(1):31-44.
    [83]WANG L M, TAN Y S, CHEN L S. Impusive dispersal of plant seeds in singles model[J]. Journal of Biological Systems,2007,13(5):385-396.
    [84]ZHANG Y J, CHEN L S, SUN S L. Maximum sustainable yield for seasonal harvesting in fishery management:Impulsive dynamical systems and applications[J]. Dynamics of Con-tinuous, Discrete and Impulsive Systems, Series A Mathematical analysis,2004, Added Volume,311-316.
    [85]MACDONALD N. Time delays in Chemostat models, In:Microbial Population Dyam-ics[M]. Florida, M. J. Bazin(ed.):CRC Press,1982.
    [86]WOLKOWICZ GAIN S K, XIA H. Global asymptotical behavior of a Chemostat model with discrete delays[J]. SIAM J. Applied Mathematics,1997,57(4):1019-1043.
    [87]阮士贵.恒化器模型的动力学[J].华中师范大学学报(自然科学版),1997,31(4):377-397.
    [88]HSU S B, HUBBELL S P, WALMAN P. A mathematical theory for single-nutrient com-petition in continuous culture of microorganisms[J]. SIAM J. Applied mathematics,1977, 32:366-383.
    [89]QUI Z P, ZOU J Y. The asymptotic behavior of a chemostat model with the Beddington-DeAngelis functional response[J]. Mathematical Bioscience,2004,187:175-187.
    [90]FREEDMAN H I, SO J, WALMAN P. Chemostat competition with time delays[J]. In: V ichnevetsky R, Bo rne P, V ignes J, eds. P roceedings of IMACS 1988-12thWo rld Congress on Scientific Computing, Paris,1988,4:102-104.
    [91]邱志鹏,王稳地,邹云.双营养Chemostat模型周期解的全局吸引性[J].生物数学学报,2000,4:388-398.
    [92]SONG X Y, ZHAO Z. Extinction and permanence of two-nutrient and one-microorganism chemostat model with pulsed input[J]. Discrete Dynamics in Nature and Society Volume 2006, Article ID 38310, Pages 1-14, DOI 10.1155/DDNS/2006/38310
    [93]董庆来,马万彪.具有时滞和可变营养消耗率的比率型Chemostat模型稳定性分析[J].系统科学与数学,2009,2:228-241.
    [94]邱志鹏,邹云.双营养Chemostat模型的一致持续生存[J].南京理工大学学报,200:26(4):341-344.
    [95]YOON H, KLINZING G. BLANCH H W. Competition for mixed substrates by microbial populations[J]. Biotechnology and Bioengineering.2005,19 (8):1193-1210:
    [96]KUANG Y. Delay differential equations:with application in population dynamics[M]. Boston, academic press,1993.
    [97]SMITH H L. Monotone dynamical system[M]. Mathematical Surveys and Monographs, V41, Am. Math. Soc., Providence, RI.1995.
    [98]HALLAM T G, CLARK C E, LASSITER R R. Effect of toxicants on populations:A qualitative approach. Ⅰ. equailibrium environment exposure[J]. Ecological modelling,1984, 18:291-304.
    [99]HALLAM T G, CLARK C E, JORDAN G S. Effect of toxicants on populations: A qualitative approach. Ⅱ. First order knetics[J]. Journal of Mathematical Biology.1983, 18:25-37.
    [100]HALLAM T G, DE LUNA J L. Effect of toxicants on populations:A qualitative approach. Ⅲ. Environment and food chain pathways[J]. Journal of Theoretical Biology,1984,109: 411-429.
    [101]HALLAM T G, MA Z. Persistence in population models with demographic fluctuations[J]. Journal of Mathematical Biology,1986,24:32:7-339.
    [102]DEBASIS M. Persistence and global stability of a population in a polluted environment with delay[J]. Journal of Biological Systems,2002,10:225-232.
    [103]FREEDMAN H I, SHUKLA T B. Models for the effect of toxicant in single-species and predator-prey systems[J]. Journal of Mathematical Biology,1991,30:15-30.
    [104]LIU H P, MA Z. The threshold of survival for system of two species in a polluted envi-ronment[J]. Journal of Mathematical Biology,1991,29:49-61.
    [105]MA Z, CUI G, WANG W. Persistence and extinction of a population in a polluted envi-ronment[J]. Mathematical Biosciences,1990,101:75-97.
    [106]THOMAS P M, SNELL T W, JOFFERS M. A control problem in a polluted environ-ment[J]. Mathematical Biosciences,1996,133:139-163.
    [107]LIU B, ZHANG T L. Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input[J]. Applied Mathematics and Computa-tion,2009,214(1):155-162.
    [108]YANG X F, JIN Z,, XUE Y K. Weak average persistence and extinction of a predator prey system in a polluted environment with impulsive toxicant input[J]. Chaos, Solitons and Fractals,2007,31(3):726-735.
    [109]LIU B, CHEN L S, ZHANG Y J. The effects of impulsive toxicant input on a population in a polluted environment[J]. Journal of Biological systems,2003,11:265-274.
    [110]陈晓婷.非均匀Chemostat中环状模型的定性分析[D].大连:大连海事大学硕士论文,2008.
    [111]宋国华,李秀琴,窦家维,贺庆棠.Chemostat系统中Hopf分支的存在性[J].系统科学与数学,2001,4:486-490.
    [112]YANG K. Limit cycles in a Chemostat related model[J]. SIAM Applied Mathematics, 1989,49(1):1759-1776.
    [113]WU J H. Global bifurcation of coexistence state for the competition model in the Chemo-stat[J]. Nonlinear Analysis,2000,39:817-835.
    [114]ZHU L M, HUANG X C, SU H Q. Bifurcation for a functional yield chemostat when one competitor produces a toxin [J]. Journal of Mathematical Analysis and Applications,2007, 329:891-903
    [115]郭庆广.一类具有增长抑制和代谢过量的微生物连续培养模型的研究[D].大连理工大学硕士论文,2000.
    [116]刘侃,孙建华.混沌学传奇[M].上海:上海翻译出版公司,1991.
    [117]AYALA F J, GILPIN M E, EHERENFELD J G. Competition between species:theoretical models and experimental tests[J]. Theoretical Population Biology,1973,4:331-356.
    [118]GILPIN M E, AYALA F J. Scheoner's model and Drosophila competition[J]. Theoretical Population Biology,1976,9:147-156.
    [119]GILPIN M E, AYALA F J. Global models of growth and competition[J]. Proceedings of the National Academy of Sciences, USA,1973,70:3590-3593.
    [120]陈兰荪,宋新宇,陆征一.数学生态学模型与研究方法[M].成都:四川科学出版社,2003.
    [121]AMINE Z, ORTEGA R. A periodic prey-predator system[J]. Journal of Mathematical Analysis and Applications,1994,185:477-489.
    [122]ANDERSON R M, MAY R M. Population biology of infectious diseases:Part Ⅰ[J]. Nature, 1979,280:361-367.
    [123]ANDERSON R M, MAY R M. Infectious diseases of human:dynamics and control[M]. Oxford, Oxford University Press,1991.
    [124]CLARK C W. Mathematical Bioeconomics[M]. Wiley, New York,1990.
    [125]CULL P. Global stability for population models[J]. Bulletin of Mathematical Biology, 1981,43:47-58.
    [126]CALTAGIRONE L E, DOUTT R L. Global behavior of an SEIRS epidemic model with delays. The history of the vedalia beetle importation to California and its impact on the development of biological control[J]. Ann. Rev. Entomol.,1989 34:1-16.